{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from xsmc import XSMC, Segmentation\n", "import numpy as np\n", "from scipy.stats import sem\n", "from scipy.interpolate import PPoly\n", "import pandas as pd\n", "\n", "import msprime as msp\n", "import stdpopsim\n", "\n", "import os\n", "import psutil\n", "import time" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import matplotlib\n", "%matplotlib inline\n", "matplotlib.rcParams.update({\n", " 'font.family': 'Times New Roman',\n", " 'text.usetex': True,\n", "})\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import plotnine as pn\n", "from plotnine import *" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "folder = '../../../exact_decoding_paper/figures/benchmark/'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bayesian vs MAP\n", "\n", "Functions needed to run simulations" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def plot_scenario(r, mu, N0, constant, seed, ax, plot_label, **kwargs):\n", " theta = mu * N0\n", " rho = r * N0\n", " ts = simulate(2, r, constant, seed)\n", " \n", " truth = Segmentation.from_ts(ts, 0, [1])\n", " truth.draw(axis=ax, color=\"red\", label='Truth')\n", " \n", " xs = XSMC(ts, focal=0, panel=[1], theta=theta, rho_over_theta=rho/theta)\n", " \n", " rescale = xs.theta / (2 * 1e-8)\n", " b_paths = xs.sample(k=200, seed=seed)\n", " b_paths = [path.rescale(rescale) for path in b_paths]\n", " kwargs.setdefault(\"alpha\", 2 / len(b_paths))\n", " for p in b_paths:\n", " p.draw(axis=ax, color=\"blue\", alpha=kwargs[\"alpha\"])\n", " \n", " x = np.arange(xs.ts.sequence_length)\n", " y = np.median([path.to_pp()(x) for path in b_paths], axis=0)\n", " ymin = np.amin(y)\n", " ymax = np.amax(y)\n", " ax.plot(y, color='purple', label='Posterior Median')\n", " \n", " map_path = xs.viterbi(-np.log(xs.rho))\n", " map_path = map_path.rescale(rescale) \n", " map_path.draw(axis=ax, color='green', label='MAP')\n", " \n", " ax.set_xlim(0, ts.sequence_length * 1e-9/r) \n", " ax.ticklabel_format(axis=\"x\", style=\"sci\", scilimits=(0, 0))\n", " ax.set_yscale(\"log\")\n", " \n", " ax.xaxis.set_tick_params(labelsize=size)\n", " ax.yaxis.set_tick_params(labelsize=size)\n", " ax.xaxis.offsetText.set_fontsize(size)\n", " ax.legend(loc = 'lower right', prop={'size': size})\n", "\n", " ax.text(0.01, .99, plot_label, transform=ax.transAxes,\n", " fontsize=size, va='top')\n", " sns.despine()\n", " \n", " return ymin, ymax\n", "\n", "\n", "def simulate(n, recombination_rate, constant = True, seed = 1):\n", " if constant:\n", " de = None\n", " else:\n", " de = [msp.PopulationParametersChange(time=0, initial_size=100 * N0),\n", " msp.PopulationParametersChange(time=1000, initial_size=0.5 * N0),\n", " msp.PopulationParametersChange(time=3612, initial_size=N0)]\n", "\n", " return msp.simulate(\n", " sample_size=n,\n", " mutation_rate=mu,\n", " recombination_rate=recombination_rate,\n", " Ne=N0,\n", " length=L,\n", " demographic_events=de,\n", " random_seed=seed,\n", " )\n", "\n", "def get_truth(ts, focal, panel):\n", " truth = np.empty(int(ts.sequence_length))\n", " for tree in ts.trees():\n", " start = int(tree.interval[0])\n", " end = int(tree.interval[1])\n", " truth[start:end] = tree.get_tmrca(focal, panel)\n", " return truth\n", "\n", "def get_dist(truth, y):\n", " L = truth.size\n", " err_A = np.abs(truth - y).sum()/L\n", " err_B = np.abs(np.log10(truth/y)).sum()/L\n", " return err_A, err_B\n", "\n", "def get_map_path(xs):\n", " path = xs.viterbi(-np.log(xs.rho))\n", " x = np.arange(xs.ts.sequence_length)\n", " y = path.rescale(xs.theta / (2 * 1e-8)).to_pp()(x) \n", " return y\n", "\n", "def get_b_path(xs, seed):\n", " paths = xs.sample(k=200, seed=seed)\n", " x = np.arange(xs.ts.sequence_length)\n", " y = np.median([path.rescale(xs.theta / (2 * 1e-8)).to_pp()(x) for path in paths], axis=0)\n", " return y\n", "\n", "def one_run(ts, focal, panel, rho_over_theta, seed):\n", " xs = XSMC(ts, focal=focal, panel=panel, rho_over_theta=rho_over_theta)\n", " map_path = get_map_path(xs)\n", " b_path = get_b_path(xs, seed)\n", " truth = get_truth(ts, focal, panel[0])\n", " err_A_map, err_B_map = get_dist(truth, map_path)\n", " err_A_b, err_B_b = get_dist(truth, b_path)\n", " return err_A_map, err_A_b, err_B_map, err_B_b \n", "\n", "def run_sim(num_sim, r, constant, seed):\n", " ts = simulate(2*num_sim, r, constant, seed)\n", " err_mat = [one_run(ts=ts, focal=2 * i, panel=[2 * i + 1], \n", " rho_over_theta = r/mu, seed=seed) for i in range(num_sim)]\n", " return np.array(err_mat).T\n", "\n", "def save_table(tab, name):\n", " index_list = ['1','2','3','4']\n", " tab['Scenario'] = index_list\n", " tab = tab.set_index('Scenario').T\n", " tab.to_latex(folder + name)\n", " display(tab)\n", " \n", "def format_entry(mean, se, dec_places):\n", " entry = f'{mean:.{dec_places}f} ({se:.{dec_places}f})'\n", " return entry\n", " \n", "mfunc = np.vectorize(format_entry)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Simulations Parameters" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "num_sim = 25\n", "N0 = 1e4 #base effective population size\n", "mu = 1.4e-8 #mutation rate\n", "L = 1_000_000 #sequence length" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "plot_seed = 6\n", "rs = [1e-9] * 2 + [1.4e-8] * 2\n", "constants = [True, False] * 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Plot one run for each scenario" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2020-09-10 10:16:59,748 DEBUG xsmc.xsmc MainThread Setting window size w=1000.000000\n", "2020-09-10 10:16:59,749 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-10 10:16:59,750 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-10 10:16:59,750 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-10 10:16:59,751 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 1002) positions=[0.000e+00 1.000e+00 2.000e+00 ... 9.990e+02 1.000e+03 1.001e+03] params={'theta': 0.14000000059604645, 'rho': 0.009999999776482582, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-10 10:16:59,772 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-10 10:16:59,782 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-10 10:16:59,789 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-10 10:16:59,800 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-10 10:17:04,103 DEBUG xsmc.xsmc MainThread Setting window size w=1000.000000\n", "2020-09-10 10:17:04,103 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-10 10:17:04,104 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-10 10:17:04,105 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-10 10:17:04,105 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 1002) positions=[0.000e+00 1.000e+00 2.000e+00 ... 9.990e+02 1.000e+03 1.001e+03] params={'theta': 0.14000000059604645, 'rho': 0.009999999776482582, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-10 10:17:04,120 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-10 10:17:04,127 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-10 10:17:04,135 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-10 10:17:04,145 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-10 10:17:07,754 DEBUG xsmc.xsmc MainThread Setting window size w=71.000000\n", "2020-09-10 10:17:07,755 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-10 10:17:07,757 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-10 10:17:07,758 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-10 10:17:07,759 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 14086) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.4083e+04 1.4084e+04 1.4085e+04] params={'theta': 0.009940000250935555, 'rho': 0.009940000250935555, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-10 10:17:08,310 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-10 10:17:08,447 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-10 10:17:08,454 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-10 10:17:08,469 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-10 10:17:12,497 DEBUG xsmc.xsmc MainThread Setting window size w=71.000000\n", "2020-09-10 10:17:12,498 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-10 10:17:12,499 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-10 10:17:12,500 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-10 10:17:12,500 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 14086) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.4083e+04 1.4084e+04 1.4085e+04] params={'theta': 0.009940000250935555, 'rho': 0.009940000250935555, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-10 10:17:13,003 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-10 10:17:13,136 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-10 10:17:13,143 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-10 10:17:13,157 DEBUG xsmc.sampler MainThread Done sampling heights\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABWwAAAWqCAYAAABruCmBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5wcx3nn/avumdnZAGABEAAzKYBJYAIhUjkwAJIsmbIlEaRFOZ8IyuHOsu5MHu/1nS/pdKR99tlnnw3IcjzTpgjZlinJkgglS1QiCIE5iFhmgADBxQLYNKnr/aPnmX76meqentnZ3dnd5/vBYGe6q6urq9NTv3rqKWOthaIoiqIoiqIoiqIoiqIoijL/ePNdAEVRFEVRFEVRFEVRFEVRFCVEBVtFURRFURRFURRFURRFUZQeQQVbRVEURVEURVEURVEURVGUHkEFW0VRFEVRFEVRFEVRFEVRlB5BBVtFURRFURRFURRFURRFUZQeQQVbRVEURVEURVEURVEURVGUHkEFW0VRFEVRFEVRFEVRFEVRlB5BBVtFURRFURRFURRFURRFUZQeQQVbRVEURVEURVEURVEURVGUHiE33wVYiLz73e+2X/rSl+a7GIqiKIqiKIqiKIqiKIqizC+m2xmqh20HHDlyZL6LoCiKoiiKoiiKoiiKoijKIkQFW0VRFEVRFEVRFEVRFEVRlB5BBVtFURRFURRFURRFURRFUZQeQQXbeeSOO+7A1q1bsXXrVmzbtg3btm3DHXfc0Vg/MjKCXbt2zWMJlxZ0PowxMMZgw4YN2LZtG/bu3TvfRVMURVEURVEURVEURVGWCCrYzgO7du3CypUrAQB333037r33Xtx99924++67sX37dmzbtg0jIyO4+eabMTo6Os+ldTPfIuZs7P+WW27Bvffei82bN2N4eBj79+/H3Xffjc2bN3d9X4qiKIqiKIqiKIqiKIriQgXbOeaOO+7Atm3b8NWvfhW33HILhoeHY+uHh4dx991349Zbb8Xu3bvnp5AZ2LFjx6Ld/6pVq2Ytb0VRFEVRFEVRFEVRFEVJQwXbOWT37t249dZbM3lt3n777XNUqs4YGRlZ0vtXFEVRFEVRFEVRFEVRlNlABds55Oabb8bmzZtx3XXXtUy7fv16bN++fQ5K1T47d+5c0vtXFEVRFEVRFEVRFEVRlNlCBds5YteuXRgZGcENN9yQeZutW7fOYonaZ2xsDDt37sTNN9+8JPevKIqiKIqiKIqiKIqiKLNNbr4LsFS49957AQBbtmzJvM2WLVucQ/937drVmIxsbGwMQDhhFjEyMtKYuOzyyy/Hvffe29hmbGwM999/P26//XasX78+lu/IyAh2797diOE6OjqKVatWNdLv3LkT999/P9avX489e/Zg27ZtjW1d+XFP2AceeAC33nprLE275Wx3/3NNq/Ny6623YufOnRgbG8P69euxY8cObNmyBdu2bcPu3bsxNjaGzZs34+6778b69esxNjaG17zmNY30nU6ANjIygttvvx3Dw8MYGRnB+vXrez7khqIoiqIoiqIoiqIoylLFWGvnuwwLjssvv9zu2bOnrW1e97rXYe/evTh69GjTRGPtcPPNN+N1r3tdLFwCCZ8k9BHbtm3D2NgYtm3bhuuvv76x3127duGmm27C0aNHG2nHxsZw00034e67747tb+fOnbj33ntjy2+99Vbs3bu3IUK7uOOOO2JiJYmPd999d5No3U45s+5/JmzduhV79uxp2m8aWc/L3r178brXvQ733ntvrB52796NrVu3Qt6PY2NjuOaaa/DAAw90dCw7d+7Ejh078NWvfrVRr1u3bsXmzZtVtFUURVEURVEURVEURZk5ptsZakiEOYI8Lmci1u7cuRN79uxpim27fv163HzzzTGPUwC44oorsGfPHqxfvz623y1btmBsbAx79+5tLNuzZ0/Ds5azfft25/I0RkZGsGPHjph38PDwMLZv345bb721KX075exF2jkvmzdvxubNm5vE5ssvvxxAKFJLbrvtto7KRZPccbEWCAXbO+64o6M8FUVRFEVRFEVRFEVRlNlFBds5ggQzEm474dZbb02MgXv99ddj79692L17d2z52NhYk0crlYWG7wOhuPiZz3ymaXsATUJwFkZHR5vCOWzYsCHx+LOWsxdp97zccMMNTROn7d69G9dddx127NgRW/6Zz3wm0yR1LrZt24bt27cndhK4wm0oiqIoiqIoiqIoiqIo84sKtnMEeVC2K5KRwDkyMtKIZepieHgYw8PDTZ6bWeO6rl+/Htdffz22bt2KlStX4uabb254e7YTd5fyOnr0KLZs2YK9e/fijjvuwM6dO/HAAw8kiq/zHX+2E0ZGRjo6L9u3b2/yHB4ZGcFtt93WiGU7UyhWrmuCtvvvv3/G+SuKoiiKoiiKoiiKoiizw5ITbI0x640x7SmQXWDr1q0A4PRgTYImAaPvQOuQCjPxmtyxYwceeOABbN++Hbt378a2bduwcuXKjkIS7Nq1Cxs2bGiECti+fXujDhYDY2Nj2L17d0fnZXh4GJs3b254046NjTWWkaczbdOpkL1jx45GfhI6nwtRJFcURVEURVEURVEURVnsLDnBFsBmAHcbY6wx5qgx5m5jzKwrV9dddx3Wr1+Pu+66K/M2u3fvbni3kriW5n2Z5unZChLxaDKq/fv34+jRo7j++utxzTXXtNyex17dtWtXY7KttCH53cQV+3U2ITG10/Ny8803N4TZz3zmM7j++usBhNcJTfDGz3+77N2717kteQV3GmZBURRFURRFURRFURRFmV2WomALa+1KACuttSuttdustXMSzHPHjh3Yu3dvZnFx//79DbGTBL8kD1pafsUVV3RUNu7NSwwPD2PHjh1YtWpV035laAO+/pOf/CS2bNmCzZs3p24zE5E1bf9zwV133YVVq1Z1fF6uv/76hpcuedgCoZBLyzoNjUDn0eXRTHV+++23d5S3oiiKoiiKoiiKoiiKMrssScEWAKy1Y3O9zy1btuD222/Htm3bWoYZuOOOO5rij+7YsaNpUipi165d2Lx584w8J5Py3rx5M1atWtX4vXr16iYxkXvRJg3lf+CBB2LbdTqZWKv9zwU7d+5sHGMn52V4eLhxPfC6Iq/dW2+9tUnwzgp56MpzMDY2hk9+8pNN+1QURVEURVEURVEURVF6hyUr2M4Xt9xyC+6++25cc801uOOOO5rWj42NNcQ6Kapt374dmzdvxq233hpbPjIygrvuuqsh1BGvvvpqalmk6Ll79+4mIZnScEH0uuuua0y2BYTD72lSNSAUpqW37t69exsen2NjYxgZGWls0245W+0fALZt24YNGzak5ptEmpA8NjaGrVu3xrxi2z0vvIyusAcULqHTcAi7d+/G+vXrm0Tkbdu24bbbbsMtt9zSUb6KoiiKoiiKoiiKoijK7GOstfNdhkwYYzYDuMFae2tKmi0AtgLYD2AYAKy1d4g01wEYY4s2yzStuPzyy+2ePXva2aSJsbEx7Ny5sxHTlsTZ9evX47bbbkv1GN25cyf279+P1atXAwgFT77N2NgYbrrppsbQ+i1btuDmm2/GddddhzvuuAN33XUX9u7di/Xr12Pz5s24++67sXv3bqxatQqjo6Ox4f1jY2NOgW/Xrl3YsWMHtm7diuHhYWzfvj22/tZbb8XIyEhDpF2/fj22bNmCW2+9tSHebt++ve1yZt0/hRbYsWNHZuGT7xMIhWfpOUzrhoeHcfTo0bbOi4R7vMrlO3fu7EhYHRsbw8qVK3HLLbdg69at2Lt3L1599VWMjIzg5ptv7lgEVhRFURRFURRFURRFUZyYrme4EATbusj6KQCfsdbenJLmBmvtNrZsC4BbrbVb2bL1AEYpJEJ9uyvShGBJNwRbZfahGLFLaYItmvDtgQce6DikgqIoiqIoiqIoiqIoipKZrgu2PR0SwRhzuzGG3CpbzSr1KQA38QXW2t31fLazZSM8fq21dhcAHSO+CEmKpbuYuffeewFAxVpFURRFURRFURRFUZQFSk8LttbaW6212+qiaiJ1QXY0YSKxewE4vXIZY/WQC8oiYs+ePUtOuHTFxFUURVEURVEURVEURVEWDj0t2LbBNiR74I4A2GyMGTbGbDbGHE1INzYrJVPmDTlZ2WKHJnOjuMGKoiiKoiiKoiiKoijKwmOxCLaXI12wpTRjEGETjDHDQBgqYZbKpswDu3bt6mjSroXMyMgIhoeHl1TMXkVRFEVRFEVRFEVRlMVGbr4L0CWG0dpDdthaO1KfiIxzG4DME44pC4OlKFpu3rwZR48mOZArM2LnTuDOO8PvN94IbN+enj5pW067+SiKoiiKoiiKsmSxNvxkwZjwoyjKwmWxCLZpjNX/rgIAa+1OY8wt9eUbAOy31u6cn6IpirIguPNOYN++6Hc7Qittu2lTtIzyUsFWURRFURRFUZQMkGDbSoglUVcFW0VZ2CwFwbYJa+0d7W5Tn9hsOwCceeaZXS+Toig9DhdcO9n2G9+Ifl955czKoiiKoiiKoijKksMYwGsR2DII5qYsiqLMLoslhu2sY63daa293Fp7+Zo1a+a7OIqiKIqiKIqiKIqiKIqiLEIWk2A73GL56NwUQ1EURVEURVEURVEURVEUpTMWS0iEEdRj1DpYxdIoiqIoiqIoiqIoiqIoirKIkBPztTNRXxqtJvFrFaakUxaLh+1etPCwtdbunavCKIqiKIqiKIqiKIqiKIoyN8yGYNst0bcTFouH7b0Abk1YdwVCQVdRFEVRFEVRAMydAd7KK0NRFEVR2qHV+ysI9L2jLF1cE/PNxAOWJvGbLS/aNBaLh+1nAKwyxqx3rLsOwCe7sRNjzLXGmJ3Hjh3rRnaKoiiKoijKPDEXgu18emUoiqIoi5NW7xZ99yjK4mAhCbbDSIhTa60dA3ATgB18uTHmOgAj1tpd3SiAtfYea+32FStWdCM7RVEURVEUZR4hL4zZ+qiHk6IoitItrA29/YKgtWBL6ZI+KugqSu/T0yERjDG3IAxpsBnAegDrjTEPIJxA7C4uxFprdxljxowxtwPYjyh27dY5L7iiKIqiKIqiKIqiKEqXIM/ZmXYGklirnYqK0tv0tGBrrb2jzfS7AeyepeIoiqIoiqIoiqIoiqLMCxQXvZWHrCuOJ0ExORVF6W16WrBVFEVRFEVRFEVRFEVRQrLEsFV6mJ07gTvvbJ3uxhuB7dtnvzxKz7KQYtgqiqIoiqIoiqIoiqIsadJisGuogx7nzjuBffvS0+zbl03UVRY16mHbBsaYawFcu2HDOT0/jICGSiiKoiiKoiiKoiiKoig9wqZNwDe+kbz+yivnqCBKL6Metm1grb3HWrt9eHjFfBcllVZDJBRFURRFURRFURRFWTgEAVCtxj+VClAuN38qlShNrRZuKz+qGShKb6Meth2SFMC7F+h1719FURRFURRFURRFUbJDQivXIshZi4+u5UIsfZejb13bKUoWetlBUGph3dDGkvKYi1HtKtgqiqIoiqIoiqIoiqL0OJ4H5OoqTi4XiUlcxKVlSet5GkVpl26I/bMl+tJ1TfknXf+d5Ck7SuhenE3RVgXbDpnNB5zGn1UURVEURVEURVGU+UeKS9peV5YK/Nqn77VaJFh2CoXk6PZ9xHU6XvZuC7a1Wvi3UAB8P5rwr9uoYNsBXKmfjbxpxsdO0d4yRekyVrxJ2rnHaNugxbJ5RI1ORVEURVEURXHDPQqTQgzM9r6BqJ3P/7ra/lnWz0Qz0LbD4kV2TnBhlb6TYDsT6PqbzeuIX6fdEFOlF3utFn66uQ+JCrYdYC0wPT07ec+Wy7aiKBnZuRPYtSu+bN+j4UyexGQb+VXyzdvUl5mp2X9JeV7yPugllpZGURRFURRFUZY6ZDPPtXOUFIu581hWwbabdv5cC9ZK92gVhoCLsXR+ubbEr7WZOhkSc6VZdbusc/UsUMG2A4IAmJiYnYeUCraKMs/87eeaBdoLrwDe8xPA5z4X/u6CYGth4E2GQyhmA3oZ0xAN13p60eZyUSys2RrOoSiKoiiKoihK+3BxrF3PRpme59WJ3a+jeRcurWLP8vXyunBdJ0ltzF6dkKxbUP3Iz2yggm0bGGOuBXDt6aefg9HReC9Xt1DBVlHmmckB4Lw3A395d/O6v703/HukzfzkNpMDqFkP5lAklM4E17AkPtmA61lAwzd8H1i2DFi+vDsxfhRFURRFURRF6T58CDYfkg3E7ffp6cgpo1oNl0mNYDbih3aLJI1FQzHMHCnGuuIzuwTIrIJtu6EOFpqHLRe0VbDtMay19wC4Z+PGy286ciQMMNyNGfI43Qi+nEWwncnDTh+UimRRXRMuj9gs69rJr5JHNfCA8ZkJtjxeDnnq0rmoVtPj6ZTL4d8giETbxd4bqiiKQszmfAScbg9FVRRFUZYutVpk45NuUKmE66Rgm8sBxWL0ruMTRdE7kIt1ae25uW7ruTQWDcUwO7SrZ8mQHJI0wdYVj7nbzEa+PE9+7HQvco/1bqOCbQeUSsAzz0QeaTOdIY/TDY/dVoLtTCY268akaMriYqFcE5kNjYnB8O/hNte1k9/EYCjYHm5PsOXHwGNZeR6Qz4fffT/Ms1QK0w0MhMvk8U9Nhc+KUil82QwMhOsHB6NzuaiEeEVRFEa3O9zT9qMoiqIo3YCHPKOQZuTdx8OsVavhskIhLiYFQfSXv5/SxND5Ekpl+1JDMXQXGQ8ZcMdE5kI/recTbUnStCg5gRlPN9OJ8OT+JTNxZnTF8Q2CsLOEjonfa91EBdsOKJWAH+09gRWDVdSmSrDlCvxWJ6dbT7gM+QQ0rDnpJrIAYDq6oJrynsPjCtN1KVGX87EWQFKjbK7raI7zmXEIjizlmeH5shYwvoGXSytkfftXTgr//mC8OWtadz9b16qAtM2eiSj1K6sRWA/ej0KhtR34S43PVFsoRC/PQiEUZIGwYymXiw/d8H1gfDz0sp2cBDZsAFavDtMUi+F22outKMpiJ2nYXzfRBqaiKIrSLUgs4x2OFOKMO4G4hrPncnHBFohE31Yi23zgEhMXDZZm9Jphmqy7E+IsF+25cM/FWboWqtXIKYhEVXkdcVzLXPuvVqN8aD/8dyfHl7R/2mfStq2cz7jXMIUgCYKwLZ3LhW3vQgEYHm6/7K0wVrv+26Zvbb895b3r5rsYiqIscAy5vsYWOhRS0/QlxDMwvg/TV4DJ+fU+AwPjATYwQCGPXDEP40X58pAJNKxqYABYsQJ471k34tffth1DQxoLW1GUxQ1vcMzmc45iB3YjXrmiKIoyP7g87ObKRuZeiYcOhSIRjYyjGLV8AmEAGBsL169cGaYnb1sutNVq4bJ8PnIEcU2G7PKE5L9n65ipTNQ0WlRtk6uuCv9+/eszS5MRKc66xFYa4k/ruZAKRMI+t59cto3rPLn2Xy6HyymPmdhLLs9dSdJ1k+W64nnyGNJcsAWAVauyuZm1g5qPnVA/Y96akwBjYLh7LZ2iiVHgeAlY3gcMrorWHzwI2GnAFJvzpeUnn9JeeV4+CNgJwAy2v20iCUI+LTZi2UwuzQXbZzDLBT90CLAlwPS1KEY9zdpsnQgtPSb5YR2ulwFI3IfrkmjOaP6w7L9Ml+krr4R/16zJvC7VG9W1zSuvIIABBvuby2Sbvoj1NvpTrSKYmAQmkoPq1jsB6+IwYDwfpuDDwoNdvgJVFFCtAo+N7kO1CvzKG7bHhqRoWARFURYC7YaU4s+52ZzRmIalKoqiKEqn0DuqVguHYdO7hZwwpDdqqRSuK5fDeLZ8snTylKQ8fD8SoVw2v0vYI2azneASiskDdMFTrctw0zNM0wLp2cq9smVdVqvhtSVHH1UqYbqZCrYcEmyBSOxsJdim2WquDhVJtwRb3unB40frpGM9xOrqObjR/zo2XrK2sYyGHDceWL/yK8CRbwInvQP4oz+KNt75K+Ffvgxsm6R1aYh9tbroZtI75dqWHvDqPdJlfvmXw7//9/92JV1H553yJhz76PXezra9qBLq0xjA/PIvhT/++I8BxF+Crn1YC9hfjt/XQQDgV38V1cCD/f0/QF9f8zZkPPHebtnzTS/UaqkGWyqjrxCgMh3A1gLk/ACjT41i4tnD6C8GqI2Nw5bKCMpVlA4fgy1XcOKJAwCAiXMuwbqPvh+fGbgStVr8hTRXMR4VRVFminxetRJhZay02XjWpXl6KIqiKEorZDuDRscBYZuA2gj0nd5j1F4gUZfaECTYcqGX9pM0GadLsOVh2WajnUDei0CkMdAyOoZ2yNoxO2eOKgG5r3aeptUxWRuJstJG4oItLatWw4/vR9cNEIr/QRB5YndbsKV1rQRb7kWbts+5Emyp84Taz0WHP2Y3UImtA/Ir+rHy/LU488xoWdOFtfw4cOR4+Pd0sRyIL8uyLg2xryyCbacNE9e2Otxvlhisxzxdm54sa7qOhNXBifhvxz4WnWDrqM9GbBuxjg/vSBJsMTQeetGezIybZSdQCTzYU8KHu+uFRi8C6gyRHSPRS86Htf0YGIhi6hQKwPIzV2J6egNWrQpfsGSAUFD0xz/3FB7//a8g9+phTE4CGGh+6c+m15midELaNane4AqPQSa9SZLgz99uvsfovUHPZUVRFKX3cNkVvWRPyPLxUAF8bgo+ARkQeS0WCpGHpOdFf4HOj1GKvLNRX+RNS+IhtbXIYaWVYCvLlMUmmI2JtBPrxqMgwikbt0jTSjCntqkMKQE0TzzH9R26jqjsJEhSSI1uCLa8Q5vyoOupVf03OUdZ97q07TpZL9NSHeTzUQzb2UAltjYwxlwL4No1a87BmjXAqadG65ou1mUnAJwARr4F/PJPRstH9gGXbgJORTPLToR/XevSoH0tOwGc2lpAm4kI49pWPWxniawCfsZ0HQmrlDfh2MdMOgDmgrYFW8d92Ki7ofpkYyfHl9N31z7MsuOhUHoaq6Plx1Gu+QhOTRdseWeI7BjhvZK1GtDfH21bKITpJifDycT6+uL5FwrAhh87D/t3/RCl50Zjva8cFWyVXiPJ61snyQvp9J7tpcZpt5jvEQK8M2+x1a2iKMpiwTU6A+it5za9o3mHJH/Xcy9cgr5TO4HETv5uopAI5FmZBG+b8I5I3n5xTcvRDq7Jryj2LpVheho4fjxMx9s2cluX8MqPIclW6rYTUqoAPDkQ/j2SkkGGNGn2G28D02+CBEd+LVUq4Sefj9q0nhe2J62N2pouwZZff1kEWyAK20FCJ/fkTToeV76tYvPyY86ab1Ia+k4ewtUqMDQUtueLxdmZdEwltjaw1t4D4J4NGy6/qa8vnH2daBIr+0oASsDrXxv+JV7/WuD97wGWo5m+ejrXujRoX30lYPncezzKodpKl+ifCv+uSk+WNV1H1wXlTTj20euiXtuCraM+G3Un1mURbNEfBh4KVrBlfaVQsF3eHcG2Wg3z4YItDXPq64sP0SDBtlAATN1q4S9Gl4daJ3TjuliMIpIyc1zGrw47D+lEpOzFxulM4cMAk5CNW77tTJ5d9NyivGu13h2BoiiKonTP9p0LarVQuKS4tBQmgEIj0HGUy1HYA2oT0HtRelfy4097X0nhmMfFnWkHKX/3UlnpuGgovrWhoChFPek8lCTs8fWu8nb73Ke2vQMvPOZySga1uriSkKaVvULnvpVgS78pPdkt9Jmux9Cla4y3rXk4A7mslWBbqTTHyk3r5ObXb1K+fP9ZvW+zCrZyVO3UVFhm0sBmy3lRBdsOoTgxXM2PYSzwhrcDX/rn7JkayqzNwhgLwIZ/Z2lon6IksVBEtcyCbcp96LW4R537cG1jLLwHfwj8xLXwctUoXwCwprEvrx67yPOC2HcA8Oglbg28wIOXq0bb+jV400WYUh9QnAZy1Xj+fg32xHLYp84FanlUv7cT9t3dFd9narwtRhFJUeaCdofz9XrjtBP48yfrEDhrAbtjJ6p3fgYBPJiUiTOtRTiN5XXXAdu3x5bTPqlRUa1GHkl8aKKiKIqiZIWEolIJOHYsCpeWy8Vnqqd32sRE+H1wMBSWgLh3KcXfLBSSBVvZAUnLkoTQmSLzIU9eXmYSql3vdilM8jR8RHCSQNdtp7ek/KwFrBcgsAY2zTO53uazvrt91knop6RlXKB1fZK24bGMyeOWlyutXZmUf5q3trVxJ8E0wVYK8zMRbLlYK0NN5PORh+1soIJtB3heeEL6+ppjbzTwKZhkGxl3sk1ju1r4tzD3Q9Tn2qN3yZAltk0b6To6T554Ci7AJ0bbHraO+ozqLr4uk4dtfZuA19229yOwBoENkPOCmGAbMMGWyLHzQN8pHf3N1V/89F1+eP45L4BvaFkN9vMvAe9OrJGOmUkcqMUoIimK0rtYC9i/+wyCfQ8BmzbFO9IEAQywbx+MscBHI8GWe3VQI5YPPc3ldDSSoiiK0j4kfFWrkfdsX1+kQUjBliZEp3ikpA1QPnLCJDmcnXdAymWcrPZ6Ow4+crIrKv/x48DRo+FxDgw0lyFNsOUjFeV6LsbJ7dqFO7+kCcO2VAzTnUjZXzkUhYITzWE7KNRFWnlLpTANhRzI6mFL1xEPiUDbSw9bOjdUFl6/VNakCVgp5EWhEKabPFFDeXQc1cOvwjiU3okDx1CbLMEzFjaof2oW1lrYIACCsPKrUxVUjk2hVq7i2EPPA15YcUmXH+0py+XJ0wYwOPXmazG4dcOsxa8FFqT80gM89xzszR8FXjPS8GhrErb27QM2bWo/7337gK1b29+God4bijI/8Jd9tLAurPLlH9mO4Ge3hy+8ImLet410HhDUjYsgF/8OAAELiRBUw3waxlYBCMaA4DgQDNf3wfIPCkDwImB/8R+A+x+CTfEk6xZUN608eF29+e2yULy+FUXpHrKRRN40aR4V1FCl3wgM7KWb4N37FXhiEoz4xoDZujUUdRPylzEFez18kKIoitK7SBGwUAhjilInIE18RO88ivFaKEQhBUhMy+UisTZJsJUhBPhfoA1HGFb2VrY5bytUq6FnsLVhGEopMHbTOc0VA7hTuONcUn5BALTb9EqaVDXNzklb3y0P28YyazF9+DhqCBDULGwtgLUWqFkYY1Et1VCbKjeWVU5M4eVvP43pQ8fgGWDq0HFMPP9qe5XiwjMwxqAwPACvLwfjG6y86HTkhgrZBVuTLt5ahPX6/D89hJf+7+eQO3Q5Lv7I61EdB4Duu9mqYNsBBkDeq6Hg10JXdgv4nrjrNl8C3LCtvRr+0La68Nvm02LzJcC3vxluOw9nVD1sZ4msHtcZ03V0nihvYhZ7j2aLtj1sHfXZqDuxztWDmJRf4Kg7iiebFMOW95Lz7zIP6p3kRpz8yH3m84CX82AQDu2dbYGTi9lpw1zS1mfdz0zzUHofKX61a2SrqL/4cAmiSQ0VHieP0gF1T1jrwWNRZFyjlkJx1wsFW5GWII9a2j5Lh5WiKIqiuJAdkvShZS7oHSgFNz6UPem9lBZWSLYppbCXlL4VvK1gbeSBSZNg5XLhJ58PBWkKT9mJh62MecuX8dAR7cL3ndT2rtUAy9qUfH1sv2KUJj8+Wfdp5aGh+p162E6/cgKHv/M08jmLI3tfQK1cQ61Sg61UMfHSGGrTFUy8cDRbBTk4afMZGFi3DKsuPg39Jy/DSRefioF1y5rSWc/H0JmrkC8YGM8AnoGFB+OZxkeGROD1liUkQpZwWuQQkF+5DE//2bfw9M6v4+mdXwcA/Jb9rU6qIBUVbDvh7LOQ+8NPIbclutBnOjMiAOCXt4efTrjqKmDfXmDrVTMsRPu4hnDjQx+K4rrt3An87d/Oebm6Cj+euUJDInSFuQqJEK535NfLgu0sdrK4BDWK6diOQdeusKahFJYGM4mRPNei/lx6VnZy/XMvmoWKc3RDhvS80ROKtT6q1kfO4W3USR35fjRppHrYKoqiKFng7wsSZiuV8D00PR3Gp52aCoe8UwxbGaezVAqXVSrRhFDyPcnfhfKdR/HXuaeoXEe2ve832/fcfk8TlOUwf7JJKhVgfDx+fDTZGrWFXDFSpejL65HKzPdDMeZleAFXZ20W+LEmHXc4eVY9Vr7wlp3pHCAzYeyJgzj0nRFURk+gNl1BeXQCQaWKl7+9P5YuN1hA/7oV8PIe8oMFrDhnDVZdcjpyAwWs2Xw6YDwYY2D8UFT1fQ/WGOQGC/B8D/AMvJwPb/kgBk9ejuKgH9pgTFR3tRVpve9oo1sA1uElngXXOUtrI1M5zv7FqzH4lktRefQpFItAbpZCXi1A+aU3mUmsxq7w4Q9Fk4/NEw3Bdt++sCwU1+3v7gQe3NdZiIheQB7PXJF1Ero2J6tr6zqVMfwWsBf1QhckXPCec35ek4ayyPXG92btlHZDnEgyWtLyzvJyVu/KxYHrvZvl+TbXov58Gt9ZWEgiIr/3ZUNP1nHaEEfZQKXhl9Wah5o18ByNV7l9IyRW0Bz/LgjCxrK18RiBiqIoitIK/k6T75dyOfyQN6S14fuG4IKttaGwOz0dTVBG6ykf+sh3XpmHXgvi4mi12izOSvikTEnHSNtSDNRaLRLDpqfD2Kn9/XGhmB8/lU96y5I4y/dDE3/y97/0NJbl5XZmtztdDWwjrFLifkUbPym0QZLt63lArVzDkR8eQK1UQa0cIKjWYKsBKmOTeOHLj2H61XFMHjwWhiuoRQdYXDOE3EABheX9GL7oNKzYeCou2v4WWM9DYdUQrDWxfdM5kjFsqRwuG6hcDo8tqdNA4lqfaKOl5JOUPus2dD/UakDx1NXYcMWbsGJFPK5yN1HBdrGwffvce4ASNNyPHjZXXRXqxnTBWwNcehnwta/PT/lmijyeuYI1BruRrqPGohVvkAXY4OTDUDO9aB31GQTudZnq1BXDFs0vp6Z9If7CkS8fboy4XnTy49qvt2wQ1BkYVAN0W5FPEtRaiWry5S9ZSN6VigLMfaduO/taSEKibDDx+5h3YFG6JE8b8uSoVKL0tRpQDTxUrd8UEgFwjIRgIRHoPcMbs5OTkVdUEISGPMUUVBRFUZQ0ZDgDGs1Lk1cWClFYgCAIhc1iMUo/MIDGcPhSKXwXkWBLoQX4h3vLcq/aXK5ZAOWjU7hd3U4oAVfceVdIBGMi8XhqCjhxIvw+Odk8gRgXZKXQSiIzbcNHX5anapg8dAIGYbxVA4ugGk5m5QGw1qI8Xkb52BQAG/6rT3Blra27d4aTYAU1IAjCfGwABLUwPxvYenksqlNVTL98MmAN7CfvbWxrA4vK8WlUp8pAYGGfeQ0sDOy/+pvwt7VAYBFUa6iV6xVG+2aN3bBsQGlsEuVXx1PPQ35FP1a/+Xz0r1sOk89h8PzTsXrTGSgMFRr105h0rH5NTUzE64/OIV0v7Qi2fJQoXWetPGxzDg9b176k/ebKk3dEpIWxkOWgehkfD6/Lvj7M2sRjKtgqM0aFD6XXaUssSfFY9lp4Mzv3kbBNq9hDMuaUfNl0474buvZKPPuFb2E1AAQ22/SYPUKrczrTOFqKovQmaTGwSYgtl6PhoHzII3lF8HS8cVqzXiPMUyfl4kNS+X7Jy3YheTMriqIocw91IFIYMXp/kLhVqUQdgXKknau94PvhhzxMkz5APCwAz4fbzjIEEf2msAjcUaadY6btSLSr1UJxtlyOh4OYmgrF6dKJEqanSqhMVlA+OoGpg2M48sBzmH51AlOvjCM3UICtBqhOlmGDcCIsBEEojNYCBJUaKsenQpG1VG1dyK5zEjwTAHf9oBF/FcbA+B4KKwfDeUaqeQCAOToJUJxWP4zZml9WDNMbhMtNfaYsE33vP3018quGMHjKcqy69AxYz4PxfZich3x/Hv6ygbAyEYVvqlaBXME9ijNxxCZrk7Uj2JLoS9tQfkmCLe+04Hkk7auVYCudf7IItjy8ny9CIMxWG1MFW2XGNA0vlgJVm0P2e475Kr+GROgas9VIltd+u4LtvDfejdeYL6fToiT1pPOXJRlgsjc2aRvZQy7Tp71Mk9bNe9gaRVFmFT7skYaJ8hmS6XlC3khA+DeXixqH8AJ41qJQiBoEiR62fi3sxCu4Gww0Y3ep1OyBqyiKoigupJcphQrg7y2+jDoFyVOW3lXVarSOhDiaDNMl9FLeronKXEIdF2j5u5ancW0n4SKvDJNQqYR64uBgmG5wEChMHMWBv96Nh//lMWf9eXkPy19zEqaOjsP4HobOWIlcMQ94Bp7vwcuFoic8D/mBPApDBVhr0L9uGQrL+mB8A4/EU8/A88PvFgZ9qwaQL+bqy1AXRusTN9dF01oQ/vZzJMIyQRXh91pg0PdLv4CCHwD/+I9N9kVDSPzJnwyX/f0nm+qP6iutXVUq1Yft1z2vuW1Ev0kM54It2UAkkJKHLXlty5ASVB4gu2BLoTy4hy2301yd83StcaF0JoJt2rZpbVXqPBkfD+tvYCD8qIdtD2CMuRbAtevWnTPfRVGUuWffPuDKK+e3DDfe2Hboj9n0AOcB4jvddr7pRD+Qw5hc4QlkeIYs3mWu0A2t0mVZx4UbZeHgErjSwmTo+VXoGqDhotQIkcM7eWgZPmrBM7Zroip/9tHzTwVbRVEUpRUu70YSqwDga8d34v98/04UHwx/12qRJy1RLofvnEIh7rFLgheNNCFhDojby1y44u8uGZaM58uXZbHJeJxe8u4lKhVgbAzIvQqsGI08bI8fOI7K+lF45/kYWLcMfl8OXs6Dl/fhF3Iweb9pAi9Zt+28i2P5vNq6PZEl9Jq1AN7xaPjjn69sir/f4K31NF++MjGfVvuh8+MqGz+XMpYvP046N74fDzPoKndWW5w6JngoDSJtJFU7tr5ML7e1FsDLB4FXR8P1sLD14aYmoYVsYRplLdd8VAMPxVwVOS+Av2Y17vutJ7MXMCMq2LaBtfYeAPecd97lN813WRRlTrnxxvkuQSgYAx0Jtm0JOR2EROhUsJXGWGxfLUIipPViJw11cq3vROOSxlpSrFpZTldZObPlYatDkRcmWWMVzySmsTL/tCNkpnXiyCGaMm/XNSIbJ56xCOreMi09g0w0YYiEN45UsFUUReltuFcrF0Z7BRLTgiAUMr8/cScO2n24qG9TLF1Wm4nemTwerUu8A9whDrhXrcszVpbFJebRdjw9P17q8ORej7VaGBMWAFZfenrowSqQ50+Wz1VXLlFX1lnaelfalmlo8p+ae70x6Wli6VL2w4XRmQi2SaJy2jlOQ577rPZRq3RSkE87zwBgXx0FJsaBgaHQk5rKlNJCDmxoJwZh1OPwMzERzefUZVSwVRSlNfM5qR0xz9691iKKbShEg9SYNbM06ZjLG1Wmd+1DLufvrnZ7nLmA0amn8Wwgy9ZJPC2l+7QrWNF1m7XxIVGv6vkl6/lO8tJPSsvz5p5HNKwPiGL+ETT0jxqBPIYtDSENl3uoBl7DW4nvs6kcNjTsbbU5DQ1VJcG2Wo0/d/XaVBRF6R1cgmMvwcU0+mwY3IT/t+UbAMJJoJYtC4dl03vx5ZfDd8+pp4ZDt8vlcGi8McDQUBgL9vhxYPny8MM9bnO5aKKvQiGa7IlE1HI5nGSJhtEXi2E6ObSdv6OBZtuc3svWhsPurY2WPfsssHs3cMpa4B3vCLd95hng/i9/HVNf+hfccOt/QqFgnM4e/L1OZefOKryMQGgzWBt5KbscRbiXclqINdfEWM40Oz4IALC/9tmmIf6N+tv5gXDZx/7eWX9B0OxZzaH4v/xc8bqgEAgUN5Y6mCkkAu1vejo8J/39zSEReAc1jWrKEhKBzk0+H37SHHVawe9b175c6ajM9k+vRWAN7Of+KdErW5abQiIcOBB6gZ99NjD8cz+Bgp+grM8QFWwVZQmRJGwkb+AWKOeFuSqLYz+RgTT/gi0ZDPTSBaIXLhcmy+Xo0xR7sb6+WmWCrUVn7ra0eY94Ofaioa2EzOU10m5Pv9J92jnfLo/WtDxdBjUX+EkkBaLGCG9wWhs2YsrlqIEQBEBQH96WKzfnK5+jpuaFxn2luQHAxWD6TiIyeQwlNbAURVGU+YN7JRIzsSU66azm+6YOQJpIk9v7PP5ruC/Lym+anDSoI5Py5B2mrtF5PKwQdXjyuKcUWsE1oi9LDFuehguKvh/+7usLhejly8N05cf3o/b4UzB5H8uXm4ZATHl1KtiSLUDioUuwpfivLkGXk1mwLU6HP1Y2T6LVqNP+qXDZqub6o/NJdeWC2oEkwMq64DYJCa21WlgHUrAFQmE+SbAF4tdEg5074X327qYJXQNrQnvLC5DzAgTWILAGHo1eahMLA4NwW9qXMc2hDShdgyf3wV66CXZ1tv1wwZbsvJNOAoYHJjsqdxZUsFWUJYIKF53T8IZqMcGb8wWeMukY/W0nJAKdR5dRRD2DWUIizAZcdOkkJAJPkyV9WkgEpTfJKsxx0tInXSt6HfQG7ZzvLOl4eBOXl78r1Iz8zT1nqaHTaMB54YVDHkaUTpavVgOMV29U5ONllB79rvhp2rGkKIrSWyQ9l2f6vJ5JZzV1AJJIysUwzwsFtGoVOPH4i/j+H+zGy997rrHtSZvPxMaPbUHh7DMakyGRJ6NsI/AORHr/0TB4Wsc9F3lItG7AR6OQKErvZhITPQ/Y/1ffQfnFw1hx2YZGOVsJtkSaYMtjtCZNeMWF5Sz2SppgG2ZYL1wuRbCtpwly8TJQOn5czl0ktAddQiu3n7ktxffbSZsOu3YBD+4DLr2saRWFovKMDb9b27FgC4TirDFoCLaesbG4tI1y8/xfdzHwoeuBYrZ98PunWGSfXFUFW0VRZkZHQzBbCJRzylyVJW0/PSDYcoOBw3/nctHQJPoQQRAf6jIfOn6St4ErdIOLNDGOeyUD2lGhKAsd/rzggq30QCKPB8+Lh0Sgv1JIpRm0aRKN0OPIQ6XmNYaC8v3w53S1CqCaC43z6Xh5yfticjJ8/pRKkfcOPx7+jNLnlKIoyvzjcjzoRgdwu53V3O7ngm9DbDx2ELWXTuDEOz+If376PBwrRWrT5ae+iD0HTseRvc/jwZv+COdf+CjK77oW5Ru3Nxw7SADmo/GAePieUik6fhqpQh6YU1ORsEqCMonJrUYP8mXcZqd8yOOzVApDPUxOhvszBqi88CJytoLTn/s2yu/+O1ivhpoNK4o8KwNrkPOC8Pe1P4HqL25vnINYHQaRs0upFO3fJbRyT91Wgm0WD9tKBbClvvDH8XhaslN8H/Aq9R7h6eb2ojwvSfuhNLxsXLjmo4+CINwm+JOdsF/4h4YAWa6GBfRy1UYdWxj4JmgSKT1j416s+x4ELrsMwZe+AoDZPAHgWcAvAB7rMMgkArdC2G1W1k8v6BptoIKtoiiK0jWkGJFkvLm8Dbot2NI+ksrAUdFEWQhkia3VLrKTIwtzeb9I7yQ++QofWSC9WrlHLTWGyGNIepPQOmsNatZrDBfl6zlBgMQwPfSsoYZnrVZvADny0dAdiqIoCkeGY+DvlCAIY2bWRssooYx/eGIjSrUcVvRN4fzVR3DqshPwPYvTlx3Ht54/C69ODeJTe1+HVY/vxzkXjmLlhlUAok7FsbHIqxWIx7ClYfB9fZGISl6wJ06EcXCB8P0GhO/avr7u1IGc+Iy8fO2rx4FgKqorhOKhgW32QNm3L3xP1wVbLnoT3IMXiI+u4fDz0Q0P2yAArBd6f0oPWyAqp/GCUPzMNXv+8s7kpH1RPjzEAXlNS8GWvJU9D8h94R9QePgBeJddGu6rbu8U/FpDsAUA3wRN9gsJuA3P1tddDO+nrkNQiMpLoauAsGxyJFK3bKJ2Rmi2m2/TZ5a8awEVbBUlG/v2zf2kV/v2AZs2ZU/rKt+NN7Y/WdjOncCdd7ZfBqUlXFTI0gvNPcIoCH9SOtdvuY/0F2BnL5qkWJI8xi4vgzSU5HaubSRZBFse5zKprqVBqKLJwsF1L3FoSNdioxdiRc/l/SI9UQk653zYngxvICcIkZNSOJ9FXoBK1aSK4lnLTR5M09PhR8N0KIqiKBJpR1NHH1Gthh6gk5Phe+74cQCwqGAIpVoOp33g9Vh7/TuwZsMA8vVJx7wAOO1bh+F/fg+qX/0mRqcG8Mynv4bCzVdi8KyTGvuV9rG0m6PRJ1HZyPOVhEBqn+Tz8UmpOPx9TEgP0UolmvyL1wcXJC0A4y2D9yf/Dbk3h8ttPVQEn/AslwO8H3sXAltFtRgdm0xHtkA+H59sS5ah2x62uRyAfDkU+YZS0tY9WlFIbjOlCba0TZIgKj3KKWZxzguQ23wJvK/dCwDI1+MnF4rx80vb8PyTwja42oE85IaSjAq2HcIfcBqLbJFz443zs99Nm7LtOynNvn3h33YF2zvvjITarGVQWtJJ7EL+AuzkOSONLsov9vxqP9umfbgEJHqBz4aok+ZlSMcqDQZpKMihUcrc04m3qPSgpu+uxoGMy7YYcN1vrvssqTHR7uQnM8kj633VqgOGvGKB+KSLNDEGpZPDKyktLeeTa3D4dWJhUYMfayynsm8f8OM/Hl9mDWw1h9rx5QjyJZSnhzA52Y/KRy5G8O+3C4/e5meSoiiKsnRIeq/zdxWlIYGMVm381atw9s++DVNTBkNDwMBAZNeuuXAtVp7/Hpz+3Kew67GL8MrXH8UrX38UJ7/jPGz9sw8hCMJQAxSDEwi345NqBUEkcPKQQ0AU75XeZXIiM9cxtlsv1PFZrQK1cg21IByKz9/RiQ4adU9QaTfKkAjkOcwnK3U5wvB1WQTbNNumXAZQ80PBtpyStuaHgm25eZ9U52lloXLzyVjlpGAu+xmBF8aSFcfscoDhoTtc+0/ajyu8VbdIcoZaqHaWCrYdwi+EhXrylYxs396+6DmXJJVvJh7BmzYB3/hG59srTST1QKbFsOXfpeAoeyhb7c/lkVirRYIt/e2kM8plWDaG84jhx543c9Go1fYu45cbZ1me2Un70Od995ipt2jS0DYgHut0MSGvy3a9XWfTQ9flkZIFl+cNz4M3jnjDUIYtoAac50Wx6Hge/LkkP40ONdTjsvlR7O/E0QEfvBZergogru7ScMG8H6CQC5BDgNqrD6H2uZdhbtseE2ipvtTLX1EUZeki7WRuz3AHCBJJgXDI+eaPvR2luvfjwEBcsB0YCN+DQ4UK3nf+E3j2534L+//6Ozh039OojR7DwPAKTE9H2wHR+9b3ownKuGBL4RP6+kJv2v7+cDsack+TlVnr9kTlnqD8nU1CMY+xCkTvxhPPH8Wdb/pDBNU+5L2qUxBuGllIsVYz2jyuPHrZ5s9aNm73yDYZIe3KRtgD5nlN4m9S+8hlK0lnIdc+Z0OwTTrnvXw+01DBtkOk585CPPmKoix8kl4+UpjgSJECQH2cEfuZUVR1pZPDubrR0y6R4Qxc+UvBlgwN+fxO8uTkeZCx4jJ0OF0Jlr+ESPIimWlei+2dzL1HXMuJVoavK7wA5TNTj1iXJ38WKC6f9IbmsWrlvl3CtRxCSpOo0IRf5JVL+fCJVshrKKjlUK56yJfDYZ8yJAMdX60G4Ge3w/v55s5S8lqaeA7IrQDKrwCln/p1VIMDTY1y/ldRFEWZXVw2hsub0vV3vsQemlSzXI4EUb6OPCfpw2OTVqtANfAQWIO1V1+EytFxjD7yZdx5xf/G2T9xKc74hasxNLS8yWs06V1F3+kdWypFIX88L/xO7/RCIYpPysOkEeQ9Sx6f5XK4PYUumJoCqq8cxcF/+jL+34NPAgCWF6YxVfUxPR2928vM+zQ2oq5+3EEtem/TMUgPW97Jy/Ph6XkdtGoH8L+JaYwNPWzT8mMTVyd1amcl7frltg4Xu7lgy/fXjkMPD78gbf7ZvKfaGX3W66hg2yFNYoei9CKdxN7VuLUdkSh4iIlp+AvRNZQ7afhIkgHZzsvHOWQoJW1SOjLGPC80lMi4ImiGdh5PkuC/XUYzT8ONJQ4fIu0SZuUQISloubaRSGEri2diJ+dkqdFkFDrWA+2/X7vRCTBTWnkdzATyJpVD9eU1R7/l5BRpZUkSg5NIE2yB9s4dCa30DOF16Go8koe+XOaKx0Z58E+rZx7lwQ39pNEDch1HjiSoWoOq9WPPUzmccTbDyCiKoiidjzKZz1EQ/L1hTN2Ora+bmAhF0/Hx0EuWD10fHw/t9fFyAePlAqbHgTXv3oyNVR+P/c4X8eznHsTYwUnU/vU1KLxxXUMMpjim3JuWe9ieOBHG0c3nQ1GWRNZcLmwTkPhJTg58CL5s18iOV/l+z/3gOyjVxdqrfv8ngd/7X/jei2cgnw/DOFA7w/McMWzr8V+DergHErNdMWzpQ17CMxFsqXO31aRj8IJQsE2Y6CzcYRAKpy3i5iZtz8tNaYyJT/QlRzIBgOfXUPBr8NhIIx5v1mVrZmkDzaWNw6+n2RpZNleoYNsGxphrAVy7bt05810URWlNp7FnNW5t2yyElwAXHjmdaFzy5Z7UY5rk3ev6npbGlS5JUAEi8YdPHCCNJ5fg4toPH5ZFBk9SuV0eBEqcpEaPNNTpbxaPZmB2hlS1izQOCWqUzKSMlYq7ccOHFFIjgfaV5o3B17VbrlaCbTv5kggtPdk5JOhaGzUCZYw4l4hLQ0flrM982KZsrMEE8E3Q2M5VXmq88caLLG8QhA0iEm5rVS91pAF/Ti2E94miKMpCJc2uSLIJ58vGkCGArAWm/uUH8IbD9fwdRwIqvaMKhbo454XiW1AABgYK2PChK3Dxz2/Gl6//M4z94Ed46D8fwyl3/hwGThqIdQrTBGAkuHJP1HI5bpfIUX30vqb3e5JgKz98FFwuB5igBm/FED765Mfg5308/X9qyHs15PPh8fKycZs/lwtFx8AaBIWorpImHePevlywpW3k+U+zS+k4ZkOwlY4BWb15XZ3bsg1F68N2ToCcF8Cjyd5EZ3WaONuLTisLvTNcBds2sNbeA+Ce8867/Kb5LouitKTXY+8uIlJfBGw4C4e/eFt51fLvLqOHB8on+PAo1zCfJuOTvbhdH4J7v5FRA7AZXG2UXnrYSjEiKaRBFtK8GaUARIbjTDzYuMfxQn/xzwe8/lwjVLhYlTbM33UfuISwNC9e7qnS7fMor2++z5nsjxvKdI/xPPmnF8TrdnB17iQJ0/LZReefN2aT4EIvEE1kQo28ahVA4KES+I114f4txl88hhMvHkN5vIzlZ6yAyedQWNaH8tgkjj8/1jgOP+9h4PSV8FcPo1z2UC6HM3tPVPtQquUagrM8zqSQK1muGX0eKYqiLE7o3cA79Spf/gZwA+AZi76+SHDs74/HsB0cDN9zg4UKataDPxh6pdZqwMCQjy13/gK++5tfwEuf34fPvuG38YEv34zl56+DMSZmv8tJx6gzkouArjaDFGNpGeESbHm68LgtjGfg56PeUQvTNGKQ592wAdmkY/w96WoHuUYgkt3Rrl01Exus6X0uQiJw+xXIJtjyzmvZZgPi7brItgzDNbSyRxaKYLvQUcFWUZSFQychHjrZxxyEhCADZ6YN7U4b602irQWQIZ9WXmBSbJPimRRpeV4uQy6p7Gnlc5WlW0Pml6IXXLt1J71lydiVE4HJ893Km5bnT9tSntLIl14dvCy8jLMZO8vlXd6pISsbFjQZiMuTljesksRvl+dQq7LJvGTYBZkP97xJw9UxxBtYtJw3OMjjiMqT5KlDablnEDVIZHnD/VnUAoN9t38Fz37+YQDA1CsTsEF7D4/8UAFn/9KPYfkHNoVCcS0MiSBDWqSRZQjufA7TVRRFWSzw95urY1jand0U8Fx5y3dZ7H1oLWoAil7QGNpeKEQf6WFb8Gvoe2QP7Ic/iL5cDdXAQ6FQRrFSwMYTA8itOAnPHVuJv3/XDqwZmMBlpxzAyYPjsACKuRqK9dACnrGoXvt+9F23PebRWy5H32n/1OHpGuEiofc6pY2FO7IAYCJhsi4kkj1Ax8qH/DdsoBbxXzlSdKZ8pCichTSHAcLasMllDGCYvdZkOyYcgzyetJAIfMSRS7Cl45ReuK4yA2pvzAcq2CqKsjCYqzANcxQSgobTypcsFxFc37lBQr9pCAuRy8WNN5rtnLYrFNKH9mcpuzRseF40TJiXicQzl8HhGmLDxSiXIMXhnoe1GpoMOYJ7AXdK2tB2EpkWG+2Km1LYc4U4kNeB01BNQHqWus6n3E/ScK6FiKynJA8HlzdGq23S4Pdn2vlyCa9A+/edPIe8IcGvSenZI0VkKdpTGtnZZUzYwDs63Y/HPv1d9A0XsebiU7Di3efB8zyc8qaz4PcXUDk+hdKJCl556AA83+DUt7wGy89aCQCYPHgMe373Wzj69BGM/PGXsXL9SphVZ4UNTBM07Z8aqVRO/lzOIqQv5OtYURSlV0jrmHbZfZ3ae679tBJsadKxqan6iBDKC6YRM5YmJaMJuIIgjG1bLgPTP/Z+lCYHUKn58AOLauChGnio1Dx4HvD6017Eeatfxe6RDXhlchBf2X9uoyxXnPoizlh+DP35CgYeewCo5lD9ye0olULv3aRjonddJ4ItINpHzNbwmOdn0nu/W8zm6BVjABP6CjfZNTHE5F/yWslqm3NP7U6PSQXb+UMFW0VRFgZLNMQD9xLjL3I+tDdp9tWkkAjc26xh+DmGA7mGDbmGLNF31zISUY2JwhIQWQRb6hXmJAm2QcCOy8Z7k6kOSOCTw6No3UwMkW548PYqWcVUF608TaWw3k55ZD78mpKeEr1OWoNR3v+yUwOIrl8KDyA7fQB3PXAvkjRcz4FWHra8fK6GAt2zXGCm8sh8uWetTMNxdRjwRl1SxwFtO10NTeMPfv4XsOqCtbHnBHUI0TOt+do+Da9570b84H9/Bw988l784Jf+Aht+/18jgNcolDZ6FEVReo+kzlA54qPdTmaeX1InKt+ftF/Ibm3YrnXL3cA2whMUCqGXK3dWaMRq/+h2eD+9HV4ZQAGolYDqIFAdB6pjQDAMnDkMfMQDRveP4vCeFzB16Dj23P413H/gdNx/4PR6CTfh3GeP4DUHTmBqahkmJ0NReGoqKkOpFL7Tp6fDdyWNBpJx54H45GRBUBeXp6OyT08DNrCwMJieDreZrubCz3S43vNC4ZhsHyCy/72aH4ZEKLttTu4Uwm0Rsi/I61SWW9JJ20GGsuqUVtvLTm0aGZVklzeuO0dIhIVgRy9WVLBVFEXpUfhLOClWU5qommXdbGmMvLxcsE3rCZfl5PGjktLJ5bQd7UfWExePZHlnOkSei96S2eypV+aONFE16bokkVEKhK5wBTyEB4dmYfb9ZnFTNh6pY4R3WKR5bWYNeSHvT8Dd8eESbGXjh+fjEmx5HfCGXrkcf37RsZJnEU9Hzw/yOOLeR9SRxDuRJo9X8OCLZ+Lp0dXhsfUXG5OQ8I4eKZBz6Dgu/MgbceSoj+f+5EsoHS+hFPioBH6q0KwoiqLMjCRvz5naX1L4cnk6ZrEN0gTbVvvP5YC+vmiZZyz6+6P3YX9/+KF3/+BguE1/fxSvnWLeFovhsmIx+ngesPb8VVh7/irkcsA579uIEwdOwE5O4cX7nsNjf/od/Gj0JAx98zHkLn5D47ilPUDvSz6/RppjCdULeQrHnS/CF2/DlmdxabmtIEfLNI2eSRiVlNbRz9/5Ms+k0Vt0LED6pGOeBxivBt+zMPl4eyVmJ4lJx7LYdBI5GklZeKhgqyiK0g7txtGdQUxcbiCQUOMKiSCFENlTmtaTmqUMadvznn/poUvCCHknSMNG/uX582NsF1kOyosblS7B1mVU899J5WnVGFjoHnXtxrBN8uJ01an8nsXL09UJMVciWCfCPu98kMt5XvyY+HI+lE3GjZXlonzaMcpn0ph1eTG7BFtefg5Pw0MDyOcJT8s7ZqixR5OE0b4rlXhHEX0qlag85XLdG6hUww8/+SXs/7s9AEKx9g3/axvyq5djejoKO0NlkhOHyfqoVoGpaQ921SoAwPixGsowmKrkYuWiBlqsA03FXEVRlI6R7+i5sr+60emffWfJq7iNTR6u5HlrTCjYWpss2PLYs+s2rsaaC1ajWARe+4HXYstDv4vf/d5bcPDrT2DZitNRPPU0FIthnvShGLaUX7EY5sXzJei9TO/+YjF8R1sbTp42MAB49eMZGAi3GchXMFQoY2gIGBqKyszbR0C9DvKVUOwcDOuCroVWHraynSU9nfmyNMGUh6OTBAEAPwjj7Aq7KJZXxhi2aTafesYufFSwVRRFyUonsW27FBOXD8cC4gZZmufoTJCCCRCJJGTkUG84GUPWhiIIH7ZMca7IMEsSbLnh4zKeuMjB4dtTDz2flAmIysDz4N9dAm7WuFCUL/11eREuZNoVbOeauS5fq2GQsjzcwHdtRx0bruVA/P5K81DvJllF3KQOoaTfaTMTc09hV/78O6Xhz0GKf0cfSk9xvOl5QA1YAMjnLY58dwT7/24PBk5ZjrVTz+LsFWM47X0bGw1bSisF6KT6oOPMF8IfxgYIYBCwma1d9Pp9piiKshDg7+iZ2F/0TOajMei9Iof4kx3pekdz25aH5Or8XV4PrwMT67x0eazSh0b6yHBpvDOTOjhpe7Lv6Z3nWQ8nDUzg5e8+i/HSN7HudTc2tqVQZFRvdLxyro5WMWx5myY8hxYQk4759cnW6D3v8nL1PMTETpejRtu17hhB57q+5ky4V5YMKtgqiqJkpQfj6Mr4jGQwtutha0RePE9OmhhF8J50Ejkon3YEW/pOXsRUvjTBFohPPEZGNBmDvN7SjqkTg2sxiy3txmrjJF1/rt/t7IN7RsxX3UvPVvrLy0MNpbRYzNTocl1zrY5PduS47m/+vVVddcMjKS2EC0HHzNdRrF4Z3801xNUl5spjdy3nz4YXPv8QvnvLPwIA3va/P4iT/8e/wXi5EJv8hLxkXB7DslxcQPYL9RMe1ABY1AKv0bglz6csdZZGp17/iqIoShyXkwIXbPl71PVuo9BHSe96aVsmicpy5EWaDUD7pXep3IaP0HEdJx/pk9RByjuVb7jwEXwm2IaJ6UrM9uH7p/oihw0uBAPJI0ycx2sRutky6Be3+Z02asqEXfI8d9OO1Pev0m1UsFUURekx0npxXX+ThuS4jM8mo4jSwm3EAXHjI0kYkcONeJgGEn65WOLyFpaCLeVP4gpfx8vFxWouFnOvOmsdw6UQH/rUSgCUgrb0EFQDLTtJIShaiVT8+nQtk+uThMJOvW7kdtRIkfGSgeh64I2ppLx4o6kdWnlskgBK1zuVJa1BkfQ84Y1OCvHAnwHyHuX7pnXSw5buWcqD7l9XBxDl43r2Jd2z8pnGP7WaxfiLYwCALX/2Iay69AzUrNcUH8+1P94QdtVfEAC2fhAT3/ohAgC1IMy3XI7iEc7GM2Ohh2BRFEWZTVz2Bxcd+TOU3lGuDlUpElLYH+lF6rJ12i1v7P1moy+0r3w+Gk1CNnNfX1geCn8QBGE8WyAeEqGvzx26gIcqqFYBk6+iFhjk/RzMeLkRSqFQiMI1SScS17FQ3aUR1a2Ntxfqk2G1OhfSwzapA1t2blP4OY7LkSAtTafODYqShAq2iqIoPUS3Gtnd6uF1eZu6RCJX3DA5PIrKxeNwzqRHO8n7bib5JRlyLsG6mz3yvU6SOMVJuuZcHQdAvAGUJNjy60p6ZBBzdR7SOlJaGfQuD+5WIjKvT7kNb2DyvD0vHi+XvFyog6FcDpe5GiWtjonvm3sSuQRbEobpd9K1wwVbz2sWbMlDh/bFPXeCIPK+L5XCDx0zzTTN8yqVgNGnR/Hdj9+NiQPHUBqbAizg9+dx6pXnoVQCTF2s5UNL+fFRx46sEzo/nheWt1IBvJXDyA8PoLznYXgASrVcw8PW2qgxTUNAkzobgPi14LrPXGVSZpcsISzU00pReo8k0VA6HbTqEJXM1v1O7zsetz10sjCN9w1Nqskn5iyXw3XT09E70fOidyUtn5yMhF4u2MoJwLxyPvRY7cthcv9zeODf3omT/vJGTE2F+U5P1+PCV6MJPklQlu9Tet/zGLa8nJQXrIWFiSYvC7zwU41sB25DEJ4HIAg7YFGN2yG885fb89yuAty2kFzmSiPDZbgIAgA1P4xhW46nj9leNT88hnLzMSRu49oXItvMFbKD243WRl7MSm+ggq2iKEoPkWTwSW/UpCG/tIyEAGnE8G2ykCQskUGb5FXIjyVpmFU3hDZZPjLikoZbyW0pPTfcOGnDspcSXDhNEuyTQlYAzcIi34b/dgmiSUY1TzMXSPHYNQEFTyePIWk9LZNpKF9qMFEd0nBLWs73bUzcs5WMcCorN9xbPQPS1nNPIu69ywVM1354BwjdoyT+yg4SOZyTRGASPOn+DYL4pGO1WtTQBIDasXG8sO8ZHPjuczjy0EEcffRlnPXuC7Ds7NUI8n1YvXFdJDAHBlXrN/LjZZaCLZVNPhuojLXB5bj4z38de9//CVgAlcBvGjZK9Sg9gWl/vN74flQEnB/4vUvXZdK5oHtQDo9WFGX+SeqgJ7uZ39980l/+zgPio7SS7EgXSbZ5mp0Zicg2tixpFAl/h9I7h79HucjLxVk6Hh7DtloFvLp4uP6nXo8jTx/D2A9+1MivW7a8q/xUHgDhCBhrlrQ93ikuBxyiqVM4bWY7Zc5RwVZRFGWeyOK1SHAhhHvduYRIWuda32QQ8Q06KH+S6Mb3SyKFSwABmr0s6buMb0nbyn26tmvlAcsFZJdXcNLxpZE0TDrJU26hIQXZpHOQhEvI5N+T8m3VgOHXSJLolbSvduBlkeI1D4nABVMuKsryyuOQ1x4vO3nWUEdMEkkeQTJ8iGx0uo4z7TpNOgbemUP7daVLWpd0HPKc8ePg5aUZqqnOJ18+hi+883+Dtz1Ov/pcvOtPr0PN+jh+PPIsqtUA3wuQq09oQrFrXTFs+W+6Dvjogb6++uRmheggA2saZefXQ9brm363uu/aeWYp7SHfCc64iXW6IWIoijK7SEETSPbGdNkj0qabqWBL7xSXowMJygbhxzMWxWL0zqMQBfRe7O8P30MDA5EtUiyGeebzoWhL27hCIlB5KCSCl6uiZj2cdfUGPLn7BbzywiEUChb5vGm8M2nkCHWgUpiGNGcT2i/lEQTRdgYWxsQnHfOMbdhCMlQZr8t2QiK48uGOCAS/Lly/+XfXBGuxfPxa6GHLbAyZF/xaaDsUZu5hC0THw8smbZuw7pLzU5qxltl4s5C/CrYdwh/cahgritIunT43uHdfq3QuIwZwL59JeVx5SW85Wsbje5ERQcOagbiYk1Qm7t3o8gCmIT/kiQfEPRGl92JsmJnozafjIE8DPvs87Z9+0zCzpPhlVG4eEmK+6VRAThIq0kRA13byWpRD9Un04I0HaVy64qnOZv1KMVUKtrRMelLScvIA53XAPWjJm5R7FVMoA97BQJ0g0uOT8qJ8geianJ6OC6suqJy8IUPLXfulvySS8ntT3qNceKVj48MZ+T1L8Hy5Bz39Jm8hns/E4Qm8/O2ncfi+pwELXPZrb8OG6y5Dfs0KFPs9+HmgVo72Qfelb4KwQejw9pXwa1l6AxO+H53oahAOX5UN/1Zemvx7K5uz3U4mRVGUpQzvNGvVgcbtS3qGcweBpI5gaaMCM39GWwAWJmYTuT4UnoDeo3wS1KRtqJxNy61BLQjDE5A4Vata2Pp3+d5vF/5ObdgfAOA1C7bcNukGrbxOFSWJubhOVLDtkCyigqIoShIzeW5IIUQKgnNZplZevEB8iBUXkVp5PUoPQxKR+HppGFKMSCDu6Vcux7cjI5vidFEcrXy+eVg5F5KsjQRXKYy4YkO56orKNp/I0BWt4GIUF0gJEtTou0SKgLyB5GosENzLWgq2dB5cDQzeqJJlSmtYpZF0jUqhtlKJl5vHQ+NlJ2Qjx9XYoXrinQtc7KRjpeufrm+6bqVgS+upXnknApWbd0jw5Wn3Y9J55GnkJGIuwZZfkzxkCY8tywXcUomO2+Lh3/kKfvRX32ts33/ycmz4qcvRd9LyxtBP6oSh+LgNzxUbj48nz1GS0O26vqpVoGYNyyMaxul54bMGiHdS0JBbXs/kSUzLkjrhaL16dc4edO9kCZGjwrmiLAy4kwE5FUi7w5W2EzsCyDayIvX5wlamibU8DfcWbfWh427yhjUW3oM/hNl2HbB/PYBB4PrrgYkBeMVpmP4poH8KCDyYSh6eF8DLV+D5NXhBmJlX93r1jIUXeOHHC8K/U/3wygXAGngDk/BOLAOevADGr8F719bwXfjkc8gtO7XpXSm9Rj0PgBeEwnIufr64LcmPs1fsc2Vh0bivzOwZXyrYdkjaMChFUZRWzLQhx2NS8kY6NzySDLc0USVpCLNLFCOhhAtjQLiMC0JTU/HGKwl2JGSRcSwNLlmGtKHe8rfsfU/z7OSehHLYP19O+ZC4RZMfyTKSeNmqLlvhEma6QSdCgvRCkdu3KxIlnU+6LrhntMvIJkGUdwBIT9O5ekfLzhPZOKLjoGPh4jbPQ3rPc69iinOaz8dnb6bjpnR0D+Xz4TYkgJI4KGePprLk882NFsIl2NKx9fU1e9jmcs1CsStPeZ8VCs0iMREEUWgCnkexGAlo5aMT2PcHuzHy2X3oX7ccJ7/9XGz4ubfgpHNWYnAwLBM1xsmrv68vCl/geYDxash5QawxKIcOpgm2dFw0a7bnhSfTAPBNrXH+6Hh4g1E2mF31pswv/Prk7zNXGkVRFh9J4QqILHZblue609u0/szJ+njpug35gQ8AgQc7iYaHbbXmoVzzY59qEC4LrEHOCw+2GngwsPC9SLClCcRoPX0Ca1ANPFRqHiwMrDUo1yfoqp6/GbXLXtvUWc7/NqjHu0XGjnvtZFN6FRVs28AYcy2Aa9etO2e+i6IoygKm06FC3IDjYQSIVj3mrnQBDADbMACTvPt4qAAu2JJnKocLakBzXDDuKUjGEZ8ojJCehFQWvh8pjPJYn1wQkhMiSU8DLoBT3rzeaTs+VJ0LtvSbjoEb17KMaUa0HELeibHdytM6S2PBdc6lqJ1VWJJe2FLU5Nc191x2NVha7S+rWOI6hnaI3UNCgJVx1eh652Xk5Xd51kqRmgvXWY+NBFkunJJYSMJh1nxlh4cUl3maNDGLypBzeLyQgEle7JxaLSo79+4NShVUJqs4vPcgHv3093Dwmz/CsrNW4o2/ez1WbTw5FhcPiIveQCRsN66FlPum3REMjfNsDKy1KNXyjRm9+eRpdPzcoxeIP/f4Ml43LvFfmV1cnX8c9XJWlMWB7IgFkj1Zk5wgaB3/niY0pnnMNibHzIjsMObf6Z3DP7Sejr1p0rGf347qT29H5VWg9lvfAv7ha6j85Z2oHs2hOgxUV9U/VaA6CSAHVAcArxC+74wBbK7+zvKBoArYGoA8gCqAUQDjCAXWkwD7IoCfvQuYGAW+9CXAAzAC4PtxO6pbz1sdNa30KirYtoG19h4A95x33uU3zXdZFEVZmHRqDCR5ktL3jkVgkmqZ9yQP+cJFLTmMXf4luDch0Dz5CglFPI6Wy/vQJdhKw1aKbjQknIuwPN4YbcdFW+5pmMvF08s6kOfPJVJxqD75uZIevZykxkBWpGenC27kcm8xXhZ+/K6GiStPKTZS/rVaFJJCxk3joib3XpTL+b5JlOfCOW1DaWnYu/QO9bzoeiSxLglXnUihlTd0+HVOYpzvRx7nvNFF+fO6k50R/Jjo/uACXhBEjSCZLgiicB+03FpgcjI6H1ywdYVESKuH6elwm76+aD0XW+l85/PNzwe676nMdK4KhTBfIN4JRGXM5yOv/kP37ce+T3weky+Nxcq64pw1eO89N6Nq/cRnLW+E8zAm1Spg695CuXJ0DPJcuIR++VyK3Yd1wbZmTSyecSdiq7xOVBhUFEXpDlKgpWe0a5QZiaf0PpC/Zb5kZ2UVbJOe7cagsdLANjoyqSOUj8ChCcloojFrw/csdYC6PrQP34/sFlpOx5XPA149PnvWeLLcGYG3KVq+w6yFqcewJXtdzgPRTaG1VZmkfeSyh9VTV+k2KtgqiqLMIZ0aFkkCHOXXTsOdC61J68j4lEIND4MAABMT9dnQ89EyEoXIyJuYiPIqFuvDl8txo5GEJT6bLJ8wSU6eROWRxnG5HIZg4J54JCBJbwMqNx82TgIebUuiC4+jCTQLhZ4Xxc7lYiIZ35SvDCvgEkulyNsOUnBv5WnbJC6xdZRHJ/vmv2kZGdppwwelYOvysKXzIL006TdvNLm8y3mDKc3TOU345gK+a1+0PJeLzj0PY5AmkNIyfnx85mQZEoEaV1Qv/L7i4i2tNybKh4uQXHhNg65nCi/gEt35cbpCHND2fBtXGAJ+v9D9WStVceibj2Pq4DFccONlWL5+NQKTw5rXnYnTrzgFQHi/0/HQbNOUj9xPLBaeFw7ZdJWFX1tS6Of3EX18vx6KwoSOQQWvhr6+8BlYKkX3AtUhL4+8LmRsPtkRoSiKonQOdS4Dze+zJMFWduCm2dSt7DFue9NoLZeAHNtni0nH6FjonUX2MH8fu/bhsmXkhw7GBtZ5bK7tXKP30sofBAAsYK1p2NVUPxSP3pi4vR4rS5shEbKQVbBNWsfT9LKmaxGvO6C5/pq2WWJCddP1Ww8TkuIv0zEq2HaAejQoijIfuIbsp3lSyqHotCz2kqGQCDbuMci9ZPnkTuTByo0+PnydCyz08uZhCrhBysUdlzEqDWS+DIjHMSV4+biHQNKQryCIvPr4s517MpI4y4/NRZpx5vKm5HXEBRgqc5r3J883zZMwzeuXG7lSaOUNF153ZDBLMZPHL+XXGD8m2g/3NuUiIe2TBD4ulDfEulok9pO4T56QdI3VauE55cIhlZ3ypGHpScMLqWxy+Dm/76wN86Hjpu/Whvun+KjT0+Fy6higY5ICKT+X8ppP+8jGVZrBzIVEOjbe8SHrLKluqPGUVbCVuOLwkihN6/l5qJZqeOFrI3jibx7Ai7ufBAD0r1uGt9z+vsY9HARRxw815EqlqJzlcpiuUok8/Kenw7qgYwpqPmo2+aHK7xu5nHtX076mpsJKDwBMVAqYnAw7tKanQ+GWi94UXoYfu+yoomucYhLLUDJUDnpmL6XGk6IoSifQc53PvZBmw9B6IN6BJzvgaFveiU/I31LU7fbzm/Ljk+vyTnTXh/bvXm/q+dpYbHiyAeWydsM5NKgrm7JjXDomyE/WOnF17GcpUpY0LQVhW2+DOdo3UZpk0TlxGySncbWl5PGE9de+2LWUbI65PlYVbDtgKV2QiqL0BlmGG6UJsy48D1FIBLEvMkC5QUdGq+9Hk+qUSpGnKgmyNIEPTUjU1xcZicUiMDAQCRDk6deJh62cbAqIxLxiEejvjwSNfB4YHIy244YklbuvL/LE4/sjw5WMUIqBSfulMpPgxEUsLnwCzefCNRSeRL9WcINVkpYHH5adlC8Xe+V1ROK1S7Dl5af9U7xOPtyOC7S0HxJyuRcICWt8Ei0KMSAFW7qWSMAjT24uAnLRN5drnsiK1xE1bnidcoGRRFggLF+5HNVNqRReg5UKcOJEuJzCB/DGGxc3+XXGr6NaLcqDyk3HSZ7jdA3T+XJ5rgdBKBbyMvCOkyyCLZVvcjKqe74d92inY7J//imYe/45ulYCL5zYywsQ/Ph7UP7p7bDVKvI5i2d378erD74I3wNQ39fRxw/h5fv2wwbhBZUbLGDNW87Dhp95M8bHw/qhiQ3peKhcpVJ0PCSk5vNR43FqKtqmVgNs4Dd5x7g6Plo1DrkHMyWoBabRWUWxbHmjP0sMW+oUoH3ykBhUVldHEC+z0l3kqAZFURYW8plJ7zP+DKVOMBIieSgtns4lAEqxMS0d2R0k/gLusAUAWoZEIPGU74tsWLKLaQQKf2fRvnlHPJWPyuPlwoddznfvWwq29C7jI0tkB60sexiizMLzTMzOLhTQGK1C705eX1EFWWDfPmDL1fCMBcgDkn33TdDWc9vY0Pu0Ac8zbRnxoQ8B27fXM8u40337gKuvru+cFH3qORC/XVi2o8AL03qRodfQZxtZGZgH98G77FKnmC2v46UIf1bMxXtfBdsOUaNMUZS5RBqFBO/dp9+0zGXgAdGyQiGyF4wBwHrcXT3vJCDIodBcxOTiEBlTFDOLDCzyLAPi4icJc9zwpfLy7/xY+V9+fFRGoFm8kB4E/K/Mk6dr8k4WPdUuL2ESaAiXyMx/Nzz9HOK7JMkLlHuBJBkTsj6SykTinss4kXHEuHcKh9e/HLYmh81R+bnXIQns/DxxcV+K/9zrtFiMzgkfhk/XbKHgrt+kEBxSsKXjJ49HfvzUsKA4rtwrnR8zD93BvSVdAqrrOuXnJNMQQ0RiOQmVVCe0TJLF5uFiYbUcoDJeQlCqYPrvvonjIydQO/VsvDI5iLHpYpiuVIJ9/FlUdv4vTL8yHsvLK/ix67i4ehDrrjgTF/7qO1A8Yw2sNcjlgKGh+OSF/f1RSAiqG3rm0HOPT7hG11ahUBfbvRr6fBN7DnFvVdcy6aHOzy0XbHNe0LgmZKcR5UudX3QeXM896jDj9R42bJM76NoRFJOeN7S92r9x0upLUZTeh78HZcczx/V+bRWXXD6T+b5kGm5nc/unaXIwVrC0dz2VS44wI1stabtMz3iyOYKoLDysg6xPKYhnEbuMQUNIlNslfWJ8+ENUsph4yr+3+z4zxu3o4hJnm5bt2xeKpR8lwZYMdbEd/53hGJL278IztvHhBFI93rQJ+NBPZcpzKTNXNpEKtoqiKAucJDEyyYjhQqt8z7jCLhAkPnJjkwtwRJqByo23ykQFj//jQ0CtiloVGDpzFZ7/yhMNYzQIgDOvPgfnv39jrEytXpCyAU3H5PKU4wY3idFcNJNiLP/uSpO14S6PwdVjLQU7WXaXFx0/H671cl9yfzwf+tt03irN+yEDnV8/dB7K5cgTkIc9kN4p5D3I47GSJyIJUvz6ozR8cijuYcuPicpHHrbcu9F1bSRNcicFWwqtUCpFHrZA+JuE98nJcB15pZLASMdNXrnk9cIn+qD1ExPxNFTnPPwHD2NC9+r4kSm8+sMXMH1gFMeeOoTD9z+H6kQpfi1ZIDfUh9p0JSxXzoeX82ByPvy+HHL9BZicB8/3YHIejO8hMD7yQ31hyIPAArUAlakKSqNhQY8+9CLbwbnh50C05JSrXwt/z/dgMAW8YT0KQwUMnbYCtcDgtK2vxaoNqxrnkocBoOsB4B44kTc/edXzDify6pceylKw9TzA+jUEdTGY3xcuL6rMGAODeGNVdqhRZwbvaOLXHi2ja5incYUooTLyjqCsSA97vrx+OIpA60RRFhbctqF3AZ/QlN7tPA3ZiUAUhgeI3tvkdCA7euW8BiSY8s45LtiWSs3vqZhg2+J4uK1CZeaCLQ9RJu3WzB1QvJcY6aNOkvJsZcvvvW0XzMh+mNeckqFADrZvBz5SF0c9oBGPVX6fCa58kvK+8sr28087hrR9ucoIANV6WqkABo7vM62bJUCsEyKjaN4JKtgqiqIsUFzenoTLcJPr4pnF86R0HNlrzvPiQhwZvtyLLyZ0lSo4vO9lPLnrITz2F3uajmvwlGUwBhg/cAJP3PlDfP3X8vEExmDjhy4BYHD621+DtRetg5cPRaZq4MHzBuD7pknU4B6O3JONDPN61k4PRtqWexMTJPaQJyX95h8+pCxp8i0qKxntrjifnLQwETyvTgRbKaZSudkpiKUnoZt7jNKHHzPPl4dAACIRknsH08QSlA8XbKlcUnylBg8P20DCJnk3kuhH28jjl40iKpsUbCkvEpNJMKWQDBQegE+QQcdD6/kEI7RvKdgeefQQTjx1EHlUUDo4iupECZWJMsrHppDrz6P/pEFUSzVUp6uojE2idOQEgmoNky8ejR1H39rlGDx7LZafc1Jjn5XxMkqvjsPvy6G4ehBBNUBQDWCrNdQmy6iWqrDlALZWha0FsNUA1akKapPT8HI+DAm5nof8siJygwWsumI9hjasw7KzVqHvL3eimKti6M//T3jMQ0X0D/rIf+gz4TVyx/sbIiSdN9e1x69zfm6pHmUaCqGR1InlvL69AHk/aHhf033NxXWg2XufQ9ctefYaLxRsc17Q8P5PEmxlDFuCx7CVz6d2xNisuATg2dhPr5I2qiFLHEZ6DjUN0VUUpSeQ9ze3U+RwfW7v8md3EETvB3oPpDlJSJuJP+u57ccnDqUyOEMimMj2cj2z5Gg4Kgt/97nE1STPW15WWx9mbwMb23c7XrSutLyco/ueB1avxuoPvL0jxwhFmSushU46piiKosRp1YOdJNjy3nbe8LQsDynYtvIeom3I0OIelyRklctA7dg47vnZP8P485GIVFjWh5/5/q/ghfuex8E9L+Hky07BxhsuBgAc/OHLeOqzD8FjHq+vPnoIrzx8EE9+9lFMj07hwU/d31SewnA/Lv/PP47XfnBjQ/yiWLskpvD4pVNT8SFiUpgxJhKSSPSj+KBAJKJMTITbF4tRzFUeI5TXKaeVt3C727Ta3uUZLNfLMnNhiovQ3HuZ1vH0vFHABVwSqGgbLooZE50ryoviIJNISueQBGIgHhJBxl6j88vL3EoQB6JyUX3wMvMOCRLyeQiMgYHok8uFf/l+qDFVLlnUpiuY2n8EsBYThyZQnigjlzfwPINjz47iod/9aqxcxZOG4Pfn4RfzGN8/gWMG8PI5mLyP/GAfBtYOoX/dMthNZ2DgtGGs/4lL0H/KCkxXczAm9ETl3sdcLOT3Pd2//PyT1zSFF6Dzye8Ziik7MADkvvRfEcADzhls1JvvA16+jJr1YPujhjKvT/pNITLo3PHJ8jjSk94lynJxlq4B6oAxBjB+eFJ5fDxXh4ZLVCWaGp/GIDwUm9h41WH1vUWSl3GrdRxnx+gSZCbXtobgUGYTl3ApO+3pnUjXsEuwlZ3z0sOWr+f2Fb13uA1N61Ove3ZD8ZFvLhFavtfJazeLoEq7cgq29fF5tZptlCExhAPineBUt3I9xZkPgnrHdmARnHUGChed14hLTyOZuDc0t8Vc5Z/tZ4i0s+din0rvMBfvKRVsFUVRFghp4h330EvC2fgU613eAXK4FNDcGy7T8Bl3ySgb3fcixp8/ivXXbsSay07Hqo0n4+TNp6B/VRFnvedCnPbOCxsekACw8rUn4w2/eXJswgIunhx+5DBGHz9U9wYMYIMAP/yj7+D4M6P47r/7LNb/+GtRq5nGkHXymKOh9wTNGk+4POlo+JvnRcIg96z0vEj4nZiIBEYyPml/5E1JRj8ZdlwAkh6WcsgzbcMNcILSUl68EULI4f7c+5f2T8cEhEP5SSS1Njw+IDxGOtd8fzwGrzGREU7nkRopPHYrnXfaL52r6enIQKf6qlbD5VQ/pVJUT9QwmZyMn2M+CRl9isXoGIB4TF4epsD33d6/fPIofq7oeHnHCF0DY08ewkv/sh9TL49h+uAxVCfLeOWHLyAot3bbW/9zb8H5P/16DKwqori8EGv48XMHxCdkC4Koc6I2ER5jIwQA81R1CbbU4KNjBqJzRiI1F2xpnbyGZWMmCBDOnyFCaNB25GXExTG6lugajzx93AItj8XN7y8SaYHI054+Xq4Cz9jYBIREkngrafIuKvahb3IaJ8pFpzdRWl7K/JEWZkKOkJCoWBuRVeB2bQeo8KHMDbJjQXqauuLA0nJu50pIWOST91KnJBd6pAdpO9e9q1MSyLYs7UOdpq51xqMe3OzllA4h8iNDa9kgAEz8QUv2M3/+pglmsy2mufLWjqalQZM3unrYKoqiLG3SXv68YSl7zbmBlNbAtBbYP74PH/inK5uGcZLxyF9OZMjJeJxAJBKRmDM1HmDypVGUj44DPw+sufQ05PrzwBhgvh5uI736aL+0zNV4sxaAB9g8APLIvAU4/uIxTL50FH/zh3+LoTNXweRzDSGJtuPijvQQde1Peo1SGi4U0dD8hrcey5vvm58313cpUqV5erm25fUnBVuXt5Nr3xwurHKBlh9TUh78uqHvXPjjdci3ozRUf/LaJaGShF/pySvrnd8DUuTj9SDrqel6Y2kpjaxz7sHrecCJg+OYPDAGWIugSu7AgH9ODn5/DuZNHnLFHPIDBXiFsMBeIQcDwMLCeB6snwPwdXhPNV+jsjy8/rhXM51LWi+3aXW9cfj1KffPr3vPA8xbHg69cb58ZfzeeuvDYV73XtnUaOV5yrLx45bXIL+O6Nqghqe8r6iBGPMwuuIhBNbA/9srnc9Lec+5OslIeD5xIrwGxv9NFZVnX8Rlj1yE96bEIqSGP4+jneQNLxv3itLLuMTvVqjgrXQLl1DI4Z1/fJs0ZwU+AsQldPJ3BHV8kv1Bo0x4mCnKm/7yjsakkAioj9pI6gRstcw1ubDrOGSnbS4HePWy+55tmjzThcuD2bU/6kwtFEIPW883jQ5Uzws72fv64hMW847ruaYXxNkkZx6+fr7LuNjgbcG5qFsVbBVFURYAWV4KUsCJCRGO/ICoc/zqZe+Hnco7BTsuTMlhVy7vTx5j1Fpg/JnDqE6Es0Ate80amEI+NqyZe4u2LdiKv0EA+AP98PInUBqbRGlsEsbz4PcXMHDycuRXDDTS8TLzemklaLoEUVf9SkHLtd4lsMl6aHXeW53jVkJc2vZSpObL0gRbngeJtUnicZpgK0Vevj+X95sUDnk+vC644MvL6hLiZJ5ymUuw5Y2h2vg0gkoVuWIeXs7D4KkrMHDSILycaRY3HaIkEIl7aQai6xqTwr9M6zr+TgRAV5lj+7IWSKhrJFzr8j5zlU02qHmjW54TKU7z7aLnoQk/GTo2kpDPJZPL4dDJL+NBuIeK0r7Igx2IGqE8jTFxby4gGi1AjVwVbxVFUeK4nvucWq0etqsWn+iLe37yZ630COUdbNQJyDtJZUckFymTbG6XB2qz2GxicwGkbccn1+WhBJLy579d7xVTr8xDP3gWfZs2wvO8WD3Ij7TvkgRb6lz1vLAiPN80icoqPkZkqYuZ2HaKG7qPY50exs7axGMq2CqKoiwCpIhDghrvkee9440hwPX07/ufD+O9dj1e87NvwrJ/cxOA6OVOE/cAwPh4OAR9cDA0wkZHw3wGBsJe72oVOHQo3Gbt2rBX/O/v+L/ILRvApf/5J7Hm3GEMDUVDm+llx4du8wl2gCg2KD8GEi146IVCIcznyBEgf43Fq197GAe//TQOfuNJ1CbLjbq5/Pc+hNOuPK8x5JlPUEXxRml4N80+z2cEpp7+qano2D0v3G+1CqxaFQ63LxTCofmVSlhfVGZ+bugY+/oio58PJ48Zr4gbvTKkAR+exz2haV/csKc0fHsgOg9UxxTioVYLj8na8Brw/fCYaL+uic/omiyXo7qi+qN9UTiB/v4ovACdS88Lz02lEsUT5cMTedgEIExDdXr8eJhu+fIwTbkceW9QmIVCoe7FYaOGGvdutDYeS5cLz3Qu6cPDPFD4CIwdhV8p4auf/gqmX53Ajd/6pcZxN+4/L7oX6Hh4g4pCFBw/Hl2PPHQB73jgE/3xugmCsG6CIDx3dJ1zUdBaFlO3HL/XXB76FOKCP1voOCiPajXcT+HT70E18GD/w+djE4H1ffrHEFiD4De/2GiI8XuR6oLK7/tR2BFqfAwNxQV42obOHV2ry5ZF9ZrPh/VYKgHHjoV11bj//vTdKNd8DN3+BWdIBFkXLq8Wyvf++4HhYeCRR4A7nj67sR3/yHPJG6aUXnozc3gDXTb8edna8VZMSqteOoqiLFSSOnmB1h6KlCaLsCr3xUP7cBuMd866hFL+vWkfrCBcAE57Prs8hknIleEe5PuXl7uRtr8fAHDfxz6LS39vCCu3nO2sD7JJuL1O6bgwTnYT2QCNGLbWNMWrVeExoh0Pz27UG+8YX8r2AK+HxrUcePCMnRVxVQVbRVGURQA3ELMYbw1PvbXDwOGxcFjTs3vQ98UjyP/bm2LeXSQskJAGRAIQCZP9/VEc0v7+SMh85h9+iMroCay44NSGWDs0FHkz0LAm/psmeuLCixRKyHDjhhwJtqEYZ3DKhy/BBTdcgkrZYnT/KA5/9WHs+71v4sA/PYBTLhjG8ovWAojHpyXBlsrDhVQp2FJ56TeJohLeGCCxiedJhjzlyWPAyu05JCAmwQ103ljg2/O/9J0LwhSnlYQ47g0tPUtkvgQZ6nReOVy85qIV7YsEaz70LahZnHjmVbzwwHMwnsGpV52P4urBhthP1wJ1APCOCrp+KQ2loxhz0sM2aZhdUkOtWgUmjkzh4T/+Nn70F99ppD/p8rMaITPoeqV7lnu5UP25zgMvF9WdLB9dW3TclJesD76edwqQAMuNcZdgSyK9jH9M9RxrmNnIa5WOxRjAD7xwubhe5DXCr13eGcDhzyjahg/TdHnnSI9bYwCDyEOikwaJ9GSRjSlZDvLQkOu4Z7i8NkjUlUKu9PbuJrOZt6IoynzBhZekkSIu+5omrkzyFqVnND3rKb3rvUPIfSR9+GM4KQ3lLwVhvl/aN3d8kKIu9y6mDvhyGchduhFn/sb1eP63P4PpY6XY/AD04c4C1IlLtgL3ZKbvpVLUYVypALZmEcA08uMdsnRc+k6aO5JGpC01+LHTs8DzMGvetYAKtoqiKIuSVi/Ththzzlbg8N0o/P5vw/93H0d/bhT9/fFJp0is44ItF4D4h9IYA5RHx/EvH/8nAMDyc9fG0pEhSyIbeSfKiYzIsHMJtrEXpSgbzfIeGoMGa85fjXNefyWe+ceHceDrT6E8Oo5r/ve1OOmikwHExSaaUIyLnUlDsbmBnBQPjIRCLnhxsYuMfh5vVXrfuSABhefLjXUp+mbtXZfD/SlfOja6Frj3KYl+LlziHhAdL3m2Ighw9NGX8dw/P4pX9r4Iz/cwcOowVpy/DqhUYKs1HHn0EF765n5UpypsD/dg6IxhXHrT6/HaGy7GwT0H8OL9BzF87hqc9FMbmwRbqhfqLODXFr9veGNM1g9dr7KB5HnA/r+7vyHWvvk/b4W3eiWGzjslFqKA8qe/UpTjYi1fxz11ZH2TNwsX1bkHTRBEE+XJeHrc65pf+7ycvB7kZHqeFy2jzhbaV1ALY0jb+imbmqrXQTW8IGwp7rXMxUEqG3WElMvxDg9ep9QhQHVQrYYe7txbiDoOgiBsHJLHbaNerdeY/bqTYYR0HNwT23V/8jRJz2m5jtcLnSu+D36v8n1xXJ0PSUiBfja8mtp5LnXKUm5YKoqSDrd1+POVP0flX7KHeMcgwW0kHjKMi6g8H05WwTYL/F2UtI5G27lsPlcdxQU7g8LJq8IfQc1ZThJs6X3F64fXGX0nBwj6DmthjGnY1ryDX9anMvvouzSEt7tkSITZQgVbRVGURQg3EpMMTm7MGYTeZXw7PiECGUgkcFGveZKRdugHz+HzH/0rAMBl/+M6rL3qwlj5pOBJxhgXPoF0wVYKRpROzgwPRGLwh7/zy/jyL/0j9v/jI9j1Y5/GR5+7DZ7nxfKlskhvRm5oJw0vk8KG9GxIQoqjJKqlCbZEkmDr8mblx0D7dZWDey64PB6lwEjLuViYZtxFjQOLEy8eww8+/V08/Kc/SD/QOsWTBrH2ijNxwY2bMXX4BB75sx/gxLOjuO8/fQX3/aevxNLu+cRyDL9mFTZ97B048+1nw/Oi0Av8WPgwQBL3uGArrzW+LAiAajnAN351Fw58az8q42Xklxex7du/htWnFXHkSBQGQHpFJkENE2oU8s4ILvRTeQjXtSI9reV+ZANSToTSjoctLafjLBSAQi6sbDsQlcXzgIF8uDzoj/KgeufXEomxQNwDmMJIUPl4uZPqWB4vefQ3RFtjYUzQEPOTjj+p0ZzWwDaO9fw5xeuU38P82UbXkeuZPlui6mwy25673JOtnW2SOrv40OE04WQuhGhFUZrvNfkOdI0AShpVNBtl4/YRX+YaVZP0nTpW5SgpmUbarFzc5BOYkW1Do+O4JzBHjoCi90xjArRC+BD0bBBzyACisFXcWYHeXXw0FDlpVKvRyD2yeay18HMGhULcBuATjnExWFHmmrkSsVWwVRRFWQJww5EbgEHdwCuXAb/mo1zzG0OXqGHKPbnIc47STE3FY19Vq8DE8RoOfHsEQSXAZR9/B5ZtPhdTU1GM0Xw+GvbE41txkZCGjktR0CXYyphb5NlHZaQhXZUKYDwfb7n9fVh2+jD2/eG38enX/g42/qs34bU/czmKK/tjYpGcpZdezHwYPTdQuQcqLeeGrhRaksTVbhkAWRohUjDhjQku6lK9UgxSIDqH3BubzgE1AHw/9GSkOLNAVCcvffc5/PC/fxHHnjrcWHfKWzdg06+9DWe+9SwAwPjxAKOPH8Lqs4bQv3ZZzHuSDPZzPvwGlKeqePGLD8PUqqEX5bqVeGn3E5h6aRQvffsZvHTfsxg4eRmWnTGMoGqx4oKTcfa7L8Cai9bB5H1YP4fCQL5JsKVj4g0iuhcmRkt45ZGX8cznHsbIZx4I0+Z9nPm+S7Hm7RcAxSKmp8Njp/hsdD3yvPnkJvw3j2HMY7smCYl0TdI59Lxo35S2VArz5OeMNyj5cXIvX9mgo3ue8Lx4bDou/AeWLq54p0zOC3ccCM9rWe/WxmMLyzLxMkhcHVe8I4ILpI3nHILMXkwzQTbcZSMeSF7vaqAvVOQogW7SSUPe9UxsR1Tm94CiKLOL6/502btEq2ds0kRcWT+UJ8+bjxJJSp/2XXoBN8puI5sia2cwh3eG8pBQsn6TykS9pLZaS627pOMiEZrCRUjbwdYCmLpDhXSqmIt3tKK0ImZjqodt76Eu4Yqi9CIuEUAaerwxaetiSrVqgcCEkwC1MLR4Tz8ZW3y/D9/xz3j+7x+AyXm48Oa34bkXfQQ1d3n4zLVSOOJCVhbBFohiZ9F3yoMmM/A8IPDzOO9nXo8TLx3D/n94GHt/+2t47M++j0s/diUK/R7Ovno9ymUTCpPriuhb3hcb2kb7rFQiz4CwDuOCXJLRmuX94fLCkLgaB1xkp5hfXGwnXF6j/Fy7vIcpHaV1xT7l+XBvZaI0NoX7fusejL8whtFHDwIA+lb24y2feA9Ovea18At+Y2ItACgUPay99BQMDDSXlUR0zwPyxRzO/6nLGudjYgI47e3nYGgIeO7ep/DMl57ExIFjMDbAS996Bq/88EU8/bd7YvXp9/lYfeEpsLUAr/nxC7Hq4lMxuKqvIRQGgUX5RBnHR14FEODb//6Lse0v+qW34oKPvBVef1/j2uDe4ryOeCxd7kUrBVs6TzSMX4bS4PXBrzspVPJzJie2IuSwSH7d8eH7SUJUoic2CbZBXIStBmEBAuax6Oq4kR7CaeEGOHRdyjpLGo4JhAa3h2DWbDxXozTpWcHTJ92Xi1EUzHJccz0003U/JQkGdJ5aPb91eKmidAfZ6UPvEH5/ue5ZGvXiyss1ioHn086nk2NxjcQIbYKowDRqg9Ynia5Z9kd2ihxll/YstiY8uNHvP42JK8/GwDkrYpOYkT0MuPNxvQOpDJTA801MoKWyLdZnp7S9gGaboFNcnQpJ+1is9TsbSFt3NvoSVLDtEL2QFUXpNbLGQiRDjA+vboggxsYMxTRxhtLQrOuNCcSOHMfAaSvx9j/4AAaXhwIcDV/mEz1xkYoPa5Jeb61CItD2fNg4H4rFRV0y9IZOWYZ3/skHcOI/bsE/ffCvcPyZV/H9//gFAMC3xLG+569/Cmvfci7gR69h6U0ARF6U5XI0dFkarST8kkcBid/ymPiQcClgEdLLMQjinqwk2FLeSYIt5W9t6DFN5aF6Jy9NPhkcHQvPj/7y75Tv4R88i8f/z26MPvQSAKB/zRBO2/panPXjF2HDj2+MTfTGY6hSXFQ+QQUdCwm2U1ORwVSpRJ7fdI2uftN5GNp8XiM+2uSJGo4+9QpOPHUQqFZRLdXw5F98D+Vjkzi890UAwCsPHkAW1r3lHKz/mTdj9UWnIL+siFIVQL0O6VzQpHZUj/wccgGTnyd+bfOOjSSDW4qtfCi465wkwcvBy8ifIfyek+edBPxYI9OjG1uI+3VvBMPCofD8qbFIHrZAvEFKefHnBq8XeibIMAP0m094ElVkAIPmh56se8LVeEoTYGfifSmFTJcXWVLDzlXOXhUMW3m0dhLmoJMyzCZzcQyLAZd40avXrdJbSBE3SbB1ibtEWqeaqxPNtT2PEQ80h1sC4u97ID7JZtOnEt8HvSuziLU8T8+LTw7K/5J9yrfj75qGk0VxALmhPhz+2iN4cs0AVvznH2uMqJqejovBNHEZ2QnkVMAdHsh2BoCDP3wZtmZRC8JJx8ieotjz8hwshmdCLx2DPmezoSERFEVRlLaQ8RlJxHGJDHJZrQog8FANvJhxSKIiGZc8JAIZXDRJFwA8+CffxdHHDmLgjNU46dLTASR7TLV60bXyUpLrWhnQrnIMnrIc1/7zL6E0NgXfszj8vf3wjUW5DDzzpSfxwr1P4os/83c445rzcOnHrsSqC9Yil/Od++ECLBncLg9Bflx8dl55TGTskshL23PhTP4lcYsaIiRqJTVUgiASYkkYpWuH4hTzsBDS04HnR39j622A7912D0Y+uy9clvfwutveiQt+9vUolY3zHPNrolKJysC/V6uR8E37khO+cWIdDEUfK197MtZcfHJD8Nvw4TdGnsgT03j1kZcxdXQKhULo3VELTKN8Q2cMY3DtIKo1D/6ygSbRj8djpnJJ4ZTESHmuXCIo1b1s5PG6p3NGjSEeg5U6S4D4xID8muPnkPYjlxOyY0WWlU8amM8Deb+u7LMOFGOAYq7eUuuPP194A5ruF5eXEr9veDm5By55Obvq1XmtOIa0zcQY50NhgeZGOF0fSQIvX0aeS7yjqNOGaq8LhmlhElzvgrkoA79estZb0nHM1TEsZJIEtKR1itIO3Pag73J0FD2jydYlG4k6mHksfP5Mp3douRx1KNOzmvIh+HuO4KHCXB+Oy25ywYVS2kbeTy4xWpaNbMNCAegbKuCd9/47fPUn/xDHnz6EieeOYPjSkxp1RO9eWTZuD/F1tHz8hVF8+T07wnIP9MWeoWT3yWWL4ZnQ6jhc9k67JNnIrnSLoU5nGw2JoCiKonQMvUQShykLMYZeNtLDluATF3BxiL6fePEY/vmDn8bkoRMAgDOue31MtEwaot1KsG3X06mVOMzrpSFm+z76Vg/B94FzPrgp9MKcBE778U2Y2n8Q//ieT+GFrz6FF776FADgituuwQW/+GYEgRczbMmYJkHbmNAbgMIxkNHPj5t7W0gjmeqIG/tcAJB/k+rZdT75dy4a0uRLZJSTZy2JfFyk4xNA8SH+vMEy/uJxjHx2H4bOXIkr/v0WnP6u1yKfD0VQ1M8BhUDg4iR5z1Kjqa8vLkZSyAE+8USxGAncVLbBwXCbcjnyuiavDj6pG3lE+z7grS1i3Zlno1KJtpExbanBxr00rQ3zIaG7vz8sExBuu2pV1NgqFCJPFlpP4qIMiUDpKxXEwkXw8lDd0HVN3q10/VGcOmpQUl0BzR5AWQRb2geJ/VJcpnvQ95kRKwXs+nLraMzR/ZF0zVO5uYeQvEf4vZTUaUUN40ajGabJw1Y2orI+k7joXN/S+Txu5xnHPaD5sbru7SRxH1DBcKZkEQ4Xa8iKucIlXuh1q3SKy1uWbAwa2UPvSv7upPcIxZHngm25HOXLBVt6d3PPULKz+GgZ6oznz/K0UW2+D+T85vcTkdThR+n4qC1us7pEY7lfIN4pS7ZR30AOxXXDePWB5/CNm/4G7//sT6N42urYPANJHabUWSl/l0cnAAAbP/5OPLf2iphAS2Ixz3spwEfnqJC69FDBVlEUZRHCe6G5gMKHLOdygPHCN7/vWeS8IPywNwMZd1ywJYPJmFD4KRSA0eeOYPLQCZzz/otx/i9fAwyvaKQlEdDlAekSYmQaPvs791aUwjMJjC6Rks+WS+IYiU0kDvI4YWFZDdZceio+MnIbnv3WC3jsz76Hg/eN4P5PfhWTr05h/U+/GUNDg416lWUnI1jO7OvyWJBeBpKsAoH0OHb9pbRULi6yyhiiSTF5uaBGhja/tgDA1mo48N1nAQCXfvwarL92Y6Pu+VB2mozOJdiSINffH+6DD9dLEqWNiWK+ynLJxgKVg9Lwa1RuRyTtl3tFZxEW5DBEuUzmIcVLWR5Kwz06WyG98nmeru+0Dd2HsoOAl6fxaSHYBgneN/IYXeXinRW8THTvyXtL1hW/jus5OUMi8LJlxSWmUiOXOhVcsfnS6lJ2OinzR5oXsJ4fRektuM0lvWdp9EKpFIX44raPFFVdtgTtg96PZKfIiWv5CBVKw0W4pJAwPF+5jNtkSXDbmedB+cgOW/kecnny0vcLP/EhvPz/dmPkrj3469f/IQZPXY43/fYHccobz2wIt3w0GQ/JIG3Ll7/3LPb8x88BAFZsPA12NOecBHkpPV9lnS+lY+9lmjqBNIatoiiK0imuIUfcCwBor4HJBQNjgPLxaRz8zjMAgMt+9U3wTl2ByclmMYsLlWmec1Kg4LEskzzKXMJGlmPgHz5BERnGuRyQKxZw1tUbcMaVGzBxYAyfvfIP8ejO72Di0Dje8B+uxtA5KwCEafv6wg8JM+QNysVgl0EsvSalcezyfnAJsjweLp+VmP7y+pex1KgRQ0Y1b0wQZKBQuZ//6o8wdWQcnrGoTtcwceAY9n/xSVgLjP3oSGO74pqhTOeBys5FNao7LqDyoYnS+xuIPJ2T9iOvv3YNYOlhnraftDy4Z4v0sHaJvvz8uerLtQ+qPyDy4nXFjuaTB/Llrrz5RGqUDzWoaFnkxVxfUYyXteDXgH37ELzrqnA/xsKrT0Qmh5Y1fteilqYXeGEedRqxcusE1sCr+fCMbayL5WsNbOA1RhYE1iB48EFg0yZ3ZaJ1YylJzJfrXd6xrQTbpdJIa+WZ2o6XZVKnh6IoSw9XBx79peVkx1FaGmHER8fQiCLqKCQxNGlEGd8XlYO/f7mN1sqLUnbIpu2T9ivLwQXmIIjPLQHEO65lJ7RLvM4P9eGSf7sVZ7z1LLz4lcew/57H8aM778eyM5Zj4NzhhjNFUuc5F75H9z6LyZfGcMGHN2P1haeg8P14ndN3KTovZvS91XvM9flQwbYNjDHXArh23bpz5rsoiqIomUnyMvM8ALTcoMmzzBVfVA4lfvbzj+CB/+/vYWsWxjPoWz2EaRFjkQ8X42ESKD+eL/8uG9tSxEoqmxTAktJlWS4/g6cO4+ef+Pe46+1/hGc/9xCe/dxDOPXNZ+Hk15+J8QmDNe/YiOE3rItNjiU/3IOShtlx7wH+l2K3Sg9eID5ZAwl/3CjmE53x4+ND3FzwuGXyHAZBWJ7D9/0Id/3Knc7tc/15VKcryPXnkRvIY+tf/QyKZ69rmjiLhEHyKpWx2WTZ+fG3ErJknvI8yriiJKpTXknnn/LmDS3uHSuFpjTxySW60m+XKMW9gqjepFczEKWh79LDO62++HlJE2ypXnlDkdc1xRsOF1Bh4um8628EAg9B3cXWMxY166V6uAYsfkJgTdNvmZaWyXW0zMIAfH+bNgE33JC4/27iEmyzetDzZ91iY7ZCCWQZpaAoysKH24ouW1K+23gnGnVw8ve6C97h6rJ3pYArP/yd31ZYnCBKbBHZdO106nEh1uXJ26oT2hWbNj9YwIafuAiX3HgR/uyi38NzX3gEleNTuPYzP52pTMYAow+9iMPffwZ+fx5X/e61OHw4HgIBaJ5EVFHmA6fHvcaw7Q2stfcAuOe88y6/ab7LoiiKkgUyHjkk5gUBGlpFtQIg8FAJfJTLUUwv6YVJcbsoFusTO/8FJufj5Deegav+4P3Ir1yGE6NxYZaGQnGy9Bi38kLjxyN76XmsVe6NKb0zaXuCi5R8qDqvh0Ihh/f8/UfwyJ/9AAe//iQOfOc5HPjuc4AFjj87itNf98GYYEux0TwvEl/p2Oi3FOq4OEhppDjHRTOqLy5w8vAGJObSMVBjgjdm+GRp9JuLzCRqPv/FR/DUzm8AAC779Xdg/U9chOJQHsYz6B8uAn2F2DUzNRWfeIPKRvmRJyzVEYeL0rJBRPnR9rxuKpUofyAUxul4aLIQapRRWXhM3CCIJtTjdUnQvUH5SQ9p3mCjeMZ8WB/tg/7ye5SLpvxcc2FeXqu8bFKwJVGZrmcqixR+5b5bCbayE4gfQ+yeTxJsf3E78IvbY/uh61WGSWgcTzm+j6CP1ZuwaIMAsBUAPiJrlx9LAJgAMPV4ygjqn3miXS8a2bHCO2QWqiiZ5FmeRpbj5dezoiiLG/mOdAm2sgO3UgnthFIpsh/IzuWd6tL5gOcHxN/R3Js1TVRt1alLomUQRJ6mAODBxiaNTXoOSluBbFCyf3gnNNlN3C6hOuIx96Utx22i93/5o7j3o7tw8LvP4M43/D4G1w3hso9fBb+/gKHTh1E4Y8jZ+Xj/J76CVx54AasvPS0Wn16WRVGWGirYKoqiLFLSeqCNicewJUOSG3RAs8ErDazadAWnbtmIq/7g/Y3JmbjQR8YcN/C4wZiGy9uRI5dL45smhSLRjARBPlEErQuCKO5prRYa7dwbVgrX+eFBXPBLV+Gyj1+FYjFc99l37cSxJw7iuS8/gXOvvaAhjMv6cHk0JJ2rJO9ofn65J4dLuKP1dAxkdNPxUV4Uw41EPaqb6elI5H76/30Pj3/6O6hNlrHhuk245N9cCSAKWRAYoDwdrytqBPEGAS3n8ZKr1WhYPj8uea55GIFWDR3pEeIS9qmsPA2//iRUz/y8ElS/vCFUqYR5UUdIKw/ndsgqzsm64sIsR95Pru3pvMhteQcLn6RExrCV1y/RrscM93BqlUaGwJBp5grZSJXPUxdNXhzCs9wlyLd7fUnRPqncMyHLtcpD32RBvWbbZyYezAu5M0BZWrie+/yvS7Cdng4/XHx0jWjitq20U4F4RxrZl/RcpknIgGjeBdoPbSdjvMrjAsI+Rv6sT7oveT3IdNzukemS8uFitLTFKE3fyn5c/CvvwDOnLseJkSN4+f4X8c8f+utGXlf/0Qew8YaLUK0C469M4cA3foTv/pevoDQ2hTPevRFv/J3rGueAt0X0ea/0Io0RfXXnhNkQV1WwVRRFWaTwYU+uRho3znzPIu/VGpOOccGtWo1iXpIo29cHHHnkZVQnSigM5BqTj1Wr4SRS1kaxpsgzgDwYuWcrnxSKl4v+usIyyGXcW5AMXOkdSuIgeblSGiAuxnLPAu5V6RKGZX0uP/8UvPi5vfjex+7Cw78zjAt/7gqc8t7LkOvrbxw397BME68IKbzIOK20jMrGvSDkjMVUFxTDlI6R4ppSfiT60DkPgtBz+Is3/xUmDxwDALz2X1+DK379rbGJ27iHB79+qD5J1OWerL4fXktA1PihierIE9TaKH+eLxdcgWgiPJ6e1xfNbEzbk9cK1T9fxxslvB7o2Fznhdb19YV1yOPF8nNnTHR8dM3SetdxUtkpDZ+oKunaoeOjvHj5aHt538ntCR7bltbRuXZ1HrQrvM4EOfSVQ/dokhgpRcisHUntMpP8WolrUpAm4bbT/cxWQ7idhrYcVZGEes12RqfnWsUSpZfgoihHPtddz0PuMQvEJx2bnm4eSUbCKx/lROn56ChaT/cX2T40ySTvVHN11vEOT9f7NXYMGesprdOSe8729cXtA26v8jZBEIQ2TX8/MDAQ/aVPf3+4nzPeeibOevuZGBgAnv/qUzj2wgmM/POTeH73j/C1X/l7PHvPIzj88MsYf+l4ozyrNq7Dxl98I/qKBoVCWCZqW8jJZvU5pPQCaZ7z3UQF2w7RB4WiKL0OPadchq1LrJBwAZMLZL4PlEYn8Pfv2gFYoLh6oGm/PCwBF89cgi3lz41VLpxxEdAVZ5Tyov3QZF8ktJH3BJWdBDMqBwmzJC5TGcmQlYZzksF44b//cZz2gTfg2R1fxqHvjOAHn7gX+MS9OH/72/HG266KHbusi6RJx7jgSGImFxQpDTf6udcqF2z5+ZHni4ug9L2vL6q/E0+8hMkDx7D+fRfhvF/disFTlsP3I+FRnkcp2FL9A1EdUxpqyJD3Ma9bKc7z+uGexfJal7g8R7gwz0V/2QDjnta8M4F7kZKgGgRhA4ME21wuauiRJzbVgSRNsKXt6L7iYlWaYEv1QfvjdU77lHXCG2Y8Dd8f7ZPfyy5B11q3h22nHn4c2fhM6/TIKiLPhgdhlpEELg/adrfNkj5LXkTSddWJIJ8krCZ5fqdt0+q91W7abp1zV3iK2eoEmCmddKyoOK70EjPxFKdtud3DbT16X9ZqoR3E36XFYvihUEy5XPTO55253MYhRwZuMxSLkShK6ajTmb97yXamEWA5PzxoeqRkHWXS7Xrktp7LgYGz/l3noVQCNv7M63D4oZfxD+/9U4x86SkAwOApy3H5x9+Gs7aeC7NiRSzclXQC4O+HXnumKkuTWHvXm72XpAq2HdDN4YyKoiizBRdBgbigwgVNAHj493bjgnI+nKiHGUUUo5NEnjDOl8WxH74MWODcj16Fc3/xTQ1PBB4jlMIS0JAwPsyMDzUj4YyQ4htvBLfqyWxlnErBQYaAkGm5gc3L5tqP5xkMrV+Lt3/qZ+CXJvHYp7+Dp//hETz9V9/F9IFRXP1/3o9q1Yvlx4fZUV3wv7SOn0fyeHTFPeWxgnkdcw9bOm4K18DLwodWk1j76Ke+gwd/+14AwOv+wztR7V8WO25X2AxqvNB+KQwCLy9dVyTgkReuxHWO5BA/fi6k6OvqAXc1AqQgwb0yXR0efN+80eQSoXiIBN4g4+mlwMOv1SQR2wU/D7Lh48rXRZpw59o+PT21PqNzTV7QvLxpHpPyGUbk83EPZY5L+E7Le7aIrjvTdL3xWL+u69CVnj9D5aR8/G+aWOn6PR8N4JmILt3aP9Bdwda1TMUFRek+/N0v30H8uZ80wky+V8n7ld4rJORS53Sah2eSwMifMWnPAW4Hkz1Ngi2F9+ITqdLh8DivSZ3VSe9nOrYkW8N1fPQhm4fCZk1ORqOl6Dflnc+H3sjGACvOPxm/OPKbKBSi9gEJ5OPjkb1L7QfeOU/HSLZ5J89VXlfz8lzetw+48sro+6ZN81AIZdb45jdnJVsVbDtgrof8KYqidBt6jtl1J8Oedhpe+f4zWLtmAMCrsXTS0LUWeOHLj+F7H98FAFh58RnI9eedHmJSMCMvAe6Vx4e007IkgYU8Dbh4w4UzMuK49yrfNx9qz/ctvW65p6P0XpDGHj9WPoSsb+UANv/GFgy+9kx879f+Ds99/hH8+ecfwanvOBcbP/o2nPbGM5zeZFJsA6JQASSgcs9geZ5knC/XOeE9wtwTVNar5wHPfukJPPu5B9G3cgBv+K13Ytmpy3DsWLpwntQwSRIcpfiZlFdSA0l6v1Kd8RALJCDzxg8PUeDybuRDA6kxRWXlQiif/I0aE1yAp0YHLTOmWWznIhw/d3RM1LAhT2Zeb/y8ApFQ77o/XPU4l3RLoONCeVLerbx+ukUr0S96ltnEZ2Q7+0rqGJgJ8ymaugSFLJ68nV7H/Lrptteo7BRRoVZR5p+0ZyXvCOPzLdAy6mQkm4LsUO6M4HnhOm6fUb40LwDZEryjWtoV9DeLYMvh78N2njmtbK60ZXzEHQ/VJG1NbpdzUZiPMqLvPCxVX18UeoG8kYMgcjYh+74dZKf9nD+fb7wx/nvTpuZlysJlFs+lCrYdMJ+GraIoShayGiNmeAWKP3cDSv/jd+EZi4Jfa8Sc5ZDBVKsBtbETAIB3fuo6DF1xVmOIGI9hS0O+isXQ4LI2MrxkHFEyeIHkxjoZt66QCHSsfJg39xygOKL0kfsmo5yHQ6DhaxTXi4uCjaFpufCYyKtgcDDcZnAwXA6EQ8HWfOsWPP3pb+Cpv92LA9/8EQ5880cAgEu2vwGrNp2B0962AfllYSZHHjuM8RePYfKVCbz6+GGceHYUlekqBk9djnx/HkefPAw/7zWOf/nZq/DW//leGGOahE2XVykt46NEXGIlABza8zy+dcs9KB2dwpnXXoJzP3hpTKxOE2xd55Pv27VP7snKhVGODO9Bgjo/R0C8YcPPMTWYKC4zefbyNFQe7qHMy0X7dE06RvnxbbkHjEso4sIiX869oakx6Brez+uWD/PkdS3rfL7olseh6/pz5T3bjTKX17arTN3ep+vednU8uK4V1+9uC5dzQSfXknq8KsrSgr97XXYJ2Z+8U59s2SAIbTke3qhYBJYvjzxDyV7kHcFA1IFP8wOQDU37p9/0brc2Hk6B/pKtSXheFBLBg4114LfbScRHB9FoD/Iy5h3PVE+A2/ai3656d40c4XaSnNiNfnMP2yCI6olE806YF5GWs317+FEWJ7N4flWw7RA19hRF6WUaHrQpYgGt8/KhlRjY1g82Y4DadGjFveZd5+HIsWzqDxfV0kIiJAkNfLZYghuC3KNQepvy/ZIRKvct90nGM+/V54Itj1fGPRe5OAaE3wdWFfGW//puXHPHu/H8d17Ent/5Bg7e9wwe2vl9AN9Prbe+4SL8vhwOfnuksWzleSehuLIfB7//Ag7e9wye/JsHsHbzaTj59WfinA9cgnWXntw4Ng43zuXQafo8efdDePofHsaJ58dwbP8RAMDFv341LvjI22KCMPdkpvNG9UH1Tcu51zL95g0litvG1/MGSq0Wj8FKfyktHRM/R9wbmxpOPG8+2Zrvx8VQ6e3Hj5F7yvDrhhpavHElvbW5kOoSTZPEVDpmakzScXIPWy7YyrxcouJ8ilZcWOSkCcm8oe1K26rh6HoOdtPTN9u65pAI0tNcNmyT0vMPD20i8+L5cFyNZ7mO1zF/zrrOU6uGcFID2zWyQC6T+5G/s3RCdCpMu0KhtDoW2k5RlLnFFS6Ino8USsolJNJysusoLyBu69BzttUHyJaO7CUZtogcEyh2Lg9f5vNnXRc6Psl24Z34rZ5fZANJBwouwkp7mwvK3F6Xz3xX6ApjIhue22CqxShLBRVsOyCpsaUoitJLpBkzXLip2vCBVg08lGs+cuVI0JFDtff8/n146I++BQCoebnG8C6KUSoNNh4XVYoM3EjLItjKY0oTPKTnZbuCLZWZe19yD0maIZjyAMK4XdPToecE1e3UVFg3NCnV8EWnY8tf/DRyOWDihVE8c+/TmD46CVsqY/TRQ7DG4Jz3X4wV56zBwNohrDhjOcploFaq4tiPDqNvRRGrz10FADhxeAqP/vn38ewXH8fhvS/h8N6X8NCffBf5ZX3wCz5WrF+NM995Ps6/YRMG1ww2ylmZquL+/3EvSsemMfrEYUy+fBy2FiCoWVROhAe17vVnYejU5bjkl9+CwY1nNeqHx8iVSKE8k4e3EFzkb1cMYRJkyWin4yJRV3qaugRbCgXBr1lqQNE++Tb0mzxm8vlmz1y6Fnw/POfc+yYIIq9taUO0EsNkxwQPi0B1w4dDpnnScmEty/mR4j4vE29YcbGQN8YAwAvIfSaqRzqHPF+eh4SOhYcH4WXhx5eV2W7sNYuJzSER0hr4rmV0rjmuc9SOYJjlfpXCpVzXyi6W29I+5fBeeT+59kPwDoos+3WJAa59uAQfOaojbV9c+FFBQVHmjqTOOT4qIekZwJ+Dntc8WobH4pd2sfxN0Da0XRDEQyJQGrI3uR3B35H0XLIWgCh/J898WTfS+5jnxctF6bkncl9faNv09TWHFfO8KB3lTSIxH+1G68mm8v1odB6NWKP0fX3AwED4V5+vSi8g7YbZ0AhVsJ0B9PDUB4aiKL1IktcTiVA0+22u4KOC0A70jHWKZ/R56VsjyPXnccVvXAnfNw3vA/L8A+LDuHK5eHwq+lD+fCIHKlua9x33vJRCFvX49/WFv4vFyOim2X5JaCOjMQjisU5dXpF8/7xnnwxLXjYuyHGPCRcrXrMKF/zs6wFEIm+Sd5nfl8NJl5waOzf9q/px+b+9Eq//jStROlHGwe8+iwPfew62UsOL39iPQ/e/gEP3v4D7P7EbG953ISyAwrI+HPzuczg2EsYqXnbmMIZOWY5T3nAGjB9W/NnvvRArLzoNhUJYbydOxEMA8HiwUtjghgtvfCR5OEovaAnfF6eVR54UfuR3Onc8DxmLNMn7jxo0Lk8Q7rHLvWi4WCyviayCrfT6TjMO0+4hWVdJZOnw6YSswxJddczjt1IeUrCWebcjJM42MxVs5SQxSYJuVi9m3jEiO0Bc9eYKydFOI4U/E/hvvm3SO2CmHqxZwlMk3ddpgrkrD/48o3LP+3BcRVkCuOxWIPm5yr1rSXSl96sUbCnkgfQOzeot6iof/002NPewpd/kJcxVYemZ28nzRW7Hf8vOYV5+6fXKHSO4eE2TjZFQTfVP4jWFPaC0dFzcTiPxl96BNDpKUeabuXqvq2DbIdxDRQ0wRVEWGiSW5nJAvuhhCsCzYyvx2CsTuLyehozB0rFpfO83d+PIo4fwysMvY83rzsQlN7+paWg8GZWuYatJZXAJomlCQ5IowLchUYwbdCQoc8GMjHUuNEvBVoZEIG8AEtj4JGoDA+GygYHww43+oaEozpncF5As2FLcNH6MZMxzr+SBgQJW/uR5uOB95zXyPH7gBH7w2/+CB/90D/b/06MwvoGtWfh9Pk654nS8/+4PIb9iIHa81Wq4v0olFLjptzGR0N7XF00IwT0nZAOIn5MgCL0kqBHCPWcpBjBtS9cUbUfnQXqHSlHKdc20K5BlRYrNlB8vHz9fsj46QdobMxnqn7RtmgehqyxJghvHMxSnwe0B7PKw5R7yPE/+V97jvYQcUUC0auC3Sp/13Lry4bj2Qd+THBFahR9oR7DleQLx+53S5UQLJel4stxXdG1lqT/XNZpVEOf7k/cq5a0oyvwiBdpyORQLp6bCT6kUiYlkf5XLwCuPHsYTf/JN+F4AC4ONN70V6zaf2ljPJ/zkE4bxycpKpUgALhTC9dTBS7bo+HhkDwHAxESYx/Hnj+JbN/xR/SgMbD3MDnWkdSrYJj3L+Ggl/szN56MRQ+RlS562ZMtSZ3uSAwQXvulZT5MC5/NRnjRPhAw1NRNbSlG6RatRbd1CBdsOoEaCPiwURVnIkJhUKPp47c1vw9Of+gaeGxtuCLYhFs/f+wQe/vMHsPzMFTj1jWdhw09d7mzANrbI4Mk0m7g60lziHn2nyafSBFs+xJV7pXHRlW/LBUkuPiWJM2l/kwQ08hROSj+wdhmu/O334u2feBc8HzA5H9XJCkwhh1x94jLyjqBtXR60JOC4PFeShHY+tNAldPCZhbnoS+eBGi7UUKDhcFSXfGIMfh4J7rEqQyLIPLk3CBeKuOc1P0Z+juVx0m/pCTkTT05+zUnBOsmDJ4sX4Fzco9YCgQ0nxDPI3qCUx+ASbHuV5PrvTbUuLewFT6NEZBFs56IRpyhK+8RCDCB+P/MRY3xUWBAAh775BJ7/0mM46cK1ePXxV2A8A0xdhuHTh7Di/JMbnem1WhR6iY+g4SGXZHm4swP36gUi79WJA8cRlGsILr8CNfw5DAuzQ8eRdLytOmizdNbyjmou1pJQS6ERyJYkO4vmKeB2sSskAndUkHMayGeqdn4pvYKGROhh9EHRgn37gCuvjL5v2jR/ZVEUxQkXmy752NV45a+/hOePD+P3VvwXZ/obvvwLyK1agYmJaBn3yLQ28kjgw8qAuLGaJPjRX1cjN0mokYIZEB/eS8geeS5ScE9JlycbF8dkuiQRVoYP4N4cHB4DjfLgfwG31zJfTuEZeBl4Hl4h1xAN/f6CM42sEynQyt/8XNJ5cXlNSpKG37kaTpQvz5/KmeQFx3GJy0kis1xGdZomVMltSMClZd2yEygfeU2miZdZ9s3zkPDlSfXK17nSN86rsfCMhfHj1+piJWlIbtYYtvNhX7YSINXmVRRlMUECInfCIruRhMhaLRQhG2G8KhV4OQ837/sl/PFFf4RnPv8Ynvn8YwCAs7dsQHHlAE55/Wk4tPcg8gM+3vZf34ni8j6Uy5EITCOKSMgkexmIh0Dw/XBkFhDZ1SeK4cuz77KN8CqA79lGLNckOzGtczcLXNyW9q8MgSDDIpBwyx0D+GgjGfKK/6V8eLxzSq8diEqvwJ1mVLBVFhY33hj/vWlT8zJFUeYVLg7QsP4L1xzG/qOrcGByJYJqgI0/dQkGTx9GblkRa1+7GstOC8VabrjRJEwuAZNeZFKIaDUM2EWSwCiHpqd5rZLRJ4f8cg9T+s4nHUsrs2s4MUeGjaA0rcRGgjwSXMNwu2m4yiHutG+XhykXEJM88uR3GauW1y0NF+R1TeeBOgJo/7RfXofcO5bvU8atJbGQx0yj7Xke5A1D5aT9uwR36qSQHQR8IjsZ21eS9frnXsO8HiS90phpiPN1wbZHHUznlCQvdlrHn2fA3JzLrEP6FrvQrihKb8OfjWnvUv5Mpfc9/5AAKsMWuERHepd/87Yv4dE//wHyQ6EA+4HP/Rxe+dFRjD/7Kvb8r2/i6MhRHBvZjyfufrhRngc/vRcnXXIKzrjqXKzbdArOfd8FTRPs0j54mC4SX7ntCgC2Gi7w8h5QCYMi8Fj8LqRd5+qATQtbxr9zm146YLg6+fn+aZnLGUKWU3Zo8pi2ZE9pJ6LSC9C9MNvXowq2SvfZvj38KIrSs5DARMOaCgXglKETuPzUAyj+y1ca6aanQ0NpYCD8TUYT9xKgIVHkxVoshmnIM0HOENstXEPFCe4VQCItEC3jRiLPT4Z2SPJcTRJSkrzrpBdmu4It31+SUO0qJ8e13CVuk6hExrWcCZlCBbiET+lh63lhzDaK20brXSJ/ELhDWbjquF2yhAlI2ibNIzeLiDVbhlxaI2smHjVK94h58sM0RiRQzEQ+0R7dZ1yspc4M7r2dhSSP2aTfnYqxstMmiVbPoqTnVyf3raIoixOyebI+E0h4Bdz2Bvfk5EItPZ/LZWB6MsDfvvWPMfajIwCAN/6XHws9ZlcOYdUlQ1i7+QxsvHETymXgxW8/ixd2P4mV569FeXQcD//FAxh9/BCOPHQQAHDywx9HftUyZ3l8NgJFCs903LVK+MIwfvQgl6Juu6Q9Y5PWkS3Lw0Ml2dJJo6Fcwm4Wu4Xs516NX68sLWQItNlCBVtFUZQlDhmGFqYRE4uQIqtryLrrkyYmduJhm+RV0Si7jRvgNESM98xLoZPKL5dlwWXIJoVLoIYAF3pddUPLk/KVy7rpXSuF4yxGdJKYyUnytHB5Z1B6OQOw9CylZVngwn07wo+rzpMaUvy4eIOSHysQj3fsyjfNwzEpTZpXjQq280taQ5c8uem5ADSfL+6Rzr29k56j9JcatK6OGdfvtE4emcb1bJotbyceJqWXSPKWd9XPUiHtfdROZ4AK9EorkkL5uGwPEkLlKCceX5VGiclPLgd4QQVP/c1ejP3oCM685hxc9m+vxqmvOwXFYrS/XA6N3+uvPhvnbDkbQJj3G/7d21CpAI/8xQP45m98HiiVUCwua6zncfRpn5VK86S0VG5j6x62uWa1stN7Jy0cTpI9wu09ivnLy0zxfz0vfpx8BBMto+OjegiC5vkk5LwShYLbllKU+aBVSKluoJe7oijKEsIVg6pUCj1pp6p5TFXzMNNR+lIp8qik3zSUDIiMS+mFmeaF6oKMzSSDM+1FKLejlyf3ZgUio1AKtuSByyc3oPqRs5dTPrxcXOSU3gSuiam4SMm3pXTtxh/N4kWXJqSSgc1FcX7s5A0ry08NDL5Pl4ctN7hdnhW87gC3Z3Mrwcm1TB4PX+fqNJD5yZhwLqGMl52XX3qYLDQhwiXApAmAqestxUJxb5tVWEzabxJZ0lIafu66hbxHDCwKhbBxb204MoEarnTN8EY674ziZZTDden+5NtQh5U8TtfvrIIt5SdHIbTTWEkTAPh3+XzoJZKukaXcQdIN4b5XBXplYdPKw1N2ItMzO58HDt/3NO77zS8BAC7/tTdjzWWnxEaNcQGRftM+aJm1wOC6QQDAK/teworXrIKX82IiJHnpeV74nHWV97kvPILv3/q58Hfeb0ziyUdfzPW943KYSPvQNnzbpM5AIPnc6cTvylJDBVtFUZQlgkvUpGVBANQCg2rgxeJ0ykkBuJeXFNik8SU9KGVPOYl5Ls/BrMYYFwbpN/Xc9/WxoWT1WXt5+Wk7EkjIszNJsOWxU2nbtEaA74d58rqgeqfllUq4LRd2qU55nmn10o5gS+Xn4ik1Unhjg8pKZeLCE/eg4OEu+H54/ZKwROdFXgOUB594Q3qRupZR/vSdC+l8PffqcF0n8hzyc87X0XFIT1mqKzqHdM/wGZGp7pOEzlbi4lyKQe0MTUwSWxdajDk6ZingzjRPl5DJl/P7nTxp+TVKQinPh3vsJ000000PfJ6n612QBXl9L7TrQ+I6t+10JixGkjwfiVbv9KVef0p7JHUqujpj0z68A6xSiWLZVqvA9PESAOBnv/tRLDtnXSNEGP8AcUcFbks0bJ+VYUyxL3zkH3HBvc/gLf/tXVi+rh9AFFqKbDPaxtpwHQAcOzCO5770OKy12PTvrsFTq0+CPQzYhHqQ9UT5d/OZSzYCDyNB8fypDiuVyMGDQmZR+yAIou3IpiqX47YvjSxx7Xshvz8UpV1UsFUURVkicCOHvAIKBaC/vx53NldFMVdFsRhtQwYkXwbEhzu5hiyREOja91xB+5TCGeAWbLnALD1GeczVJMFWDvOnNC7vUZfx7PKa7aZgS0aytfF4aS64aOfyEO3kfMpOgna3Szp2z5t/7zYZkkN2asyUubx3pPDiup5kTFVX+oboS5OOpVyn7Z4/7s3eik7SdKu+eWPawjQatfTh6aixyzvR+KQ3vBOFh1ZxlTcp5AqR5I3e7rHRtZ50f8r98TTSC5jS8ePl29D9xJ9jafuWnQ4u73hXvaSlaadOu3n/K4oSJ4tXdxbPTxIWZezachkoT4SKrL9sANPT4Ug0Go1VLoe/+cRlvAOtUIjyXXnJGfiJe/4VPnftp/HEXQ/iibsexBv+v2vw+o+/tSHYkt3M8yXb9Ru/fDeOPPA8Bs8+CRt+7q14/PMAYBpetklktdnk+6KVfUcOGDQHRl9f1J7gnsXURuCd43w0CT235aS8MrwCTys7O5X2SQr5xdcrvYUKtoqiKEsQKYIFARBYE34cDU+XxwL95i93l/fYfJNVXEwbis+PkXvpymHHXGThXnOuenP95fvodv1xEVZ6GrsaMiSM0Hc5FLtSaQ4t4fKwpRmYyVMwSUxy1QWv/zRvTtf6VqKLPHaZ1nVOsiBDY0jv6W4jPWySYmzKDossQmYS8p5KEnjTho9LT81WjQhKu1BCTPCQGEnreYcSNdplSARaTl7tQHyyF/oAyZ1JhOt31rAGrjz5fZ7leuIiqnz+8GN2Qc8PPhFjL4cnmA0vZ0VZavD7yPWebiXYZhkpAjS/w57/0mN4/FP3AQByxRysiXfKJ41soDLFh/MbnP7G0/HTP/jX+M5//xpG/ulRfP8TX8UzX3gMfiGHyz72Nmx417kND9S+vvjzvnx0AmvfcDY2/7f3o1gMJwH2YGFgY84EkizvyaQ0aSOC+DuDxweWjhvynSZHMrkEW7JN5PuGvw/1udo5M7kmlGTkyM1uo4KtoijKEoUMLmvrIlzgNYVEIGGOXkB82BMNfSJRjnsrkIBHeZAh6hLr2unZz0LS0N00AQ+IxFcqOxe16Lh4ufmwZNq+Vovqhy+jOuDeY7yOZAOAN1CSjPEkkZEfj/RAk3lJkZULzVRnvOx0/n0fseuEwjtIbzjfjw9r6/T8yobXTL0BXGJ1N4xY6SXNz+tMr2vX/mUIjaz7yCqwzQauY5DL0oTGrJ618w1vzAKAQeRtVKuFDXLyQCJkfES5nNYVCtG96RJ5qUEsY3C7OlSAbF6yLsGWN7izeNjSvuT5dpVTethykUBuK5e5OivkfSnXS1zbZO2I1AavonQH7kmbJN66PGnJPuVzMNB2MqwB74SuVoFH/mov9vz+fZgencT5N16G/PIiSqVmh4S4KBtf5xoRsfzsVbjqj67Dpl97B/b8j6/A1gK88I0RHLzxTgxvWA3jG5y/7RKsvOhU9A0V4PsWz37lR5g6PI5Vl5yB4trlAOh5aWa9E9iVP69j2YnPP9w+5iNFgLhdTR1xSR3pGhKhu2TpnKV0Sjb4qChABVtFURSli9CwpMYMr14QftibgYwlHr+UTyBFXl6yMZ9kZCWt42lmYigkiVpJBgr32HI16Okvn9iH58PFAi6m0CReLo+BxgzEXjwcA50PINlzLekY5G9uQKQJFPK8kYAvl8lJHmQ9uzxZuCckP/c0bDDpGnHVf5IBRGmziLY8HIVLsKV8kjxsqfEh90XCNZ1DmX+S0JR0LO2Q5uma5mE7n2S5x7MIar2O67nDr1dqwJKnOu/oAcLzRx0kdD2RaMDDKpAXExD9pv3Ia9kl2PL4i0nerXTt8zA3JHzQsaYh851Jp42rYd9qf7QsyZue4CMieB3yDjYSgOR1zJ9rlE875eOoIKEoEfQsTerQoQ5X+ax1iap8ey6wWguUxyax7+a/xNSzhwEA5/38m/Dm//JO1GqR+Ot50bOXngVcqOT75Q4OQPQMHzx7Dbb+xYdRKACP3/UwXvzWCMZfOIqXv/ccvveJrznrYNkFp6BUiuLBmjCC7Yw8TluFPUizu7hN6BKuaWQR2UUyX57OFUrMtZ7WtSq7oswlrjZSt1HBVlEUZQnChzOlDfGSHgUuwZZEX/IYI7HSZcDxCa5cBvZMX3jSw9H1Vxq33CNClsMlHPGhW3JYVxBEdcEFgrQ6pjIlCQkkpsjy8GUuYYZ7AfMGA50bnp57M0jRUg6Z5tcDxyW2kshBdcXFcT7xGU/PDfwsgi01DFznSl5T5PVL17Lr+ku7JpPSAFG+ron6eF1LdHjf0oJfP9Swz9KJlSVm42zRKvzAYrmGXceS1rkDNJ8bLtga075gm7WDR6Iir7IUaNWpK0cZAPG5FqijKQii0Q4N2+ToUUw9exhnXbMBr/sP70L/mWsaIxuoc4p+036SJl+Vk5rSNvx3oQBc/OGLceGHLgYA1KYrOPHCGI69cDyy0fty6D//TFRrYQz0vr5w3gm61Vt1/rSqy7RnRiu7i48eSsuHhz2i55v01KVOTG6vkgcueemmdSoqynwxF+9eFWw7RI0iRVEWMlKw9X2EEwPt2wds2RIlDLzw49dgjIWp+kA1D+SqgLHAiWXhuoFJGK8GY334E/0I4AH9k4AXwJxYDs8E8IfG4ftVeH4AU6srd34NsCb8GBt+2sGSxci2K5Orazk6BmvCssACMOGy+nYm8ODRxEgI68Gr+YA18PxatB9rYKxBzgsa8X5zXtDYLlfqQ1DzkS+UUchVEVgD1HyYmoe8H3ovB9Xwtev5tXA/lXxYDV4NFqaRFx2X5wXwqPz1sslj94yN6sGacBtjwyqxXmy7IPBgrQnrnerGWMALGsdnAHg1v5GvX83B92rw8lV4lTy8Uh+8fAVeXylWHi/w4NW9tMkq94wNt6/68AoVeF5QP16LoEZKZ61+Kjx4JoDxuHJNrTFhpbPz3iizqBuPnVdrvXqRLDw6l17oodK4xun64+dA/ub1VccEPgxs49hMYGCsF6YxFqaWC6+7HIshwTAIixHOINKh8uW6D6wwVLLkzfOReVoDC4MANry2Rd4WJjxOWYZ9+4DLLs18KIsJ7oVqEQ+rQp0HsgNIhjewNt654YoZONOQCEA8vQvqFJETFiZ58aeRJLbQ9zRBJqljptX+XB1ySeWR6ehcAfHOSkrDOyC5CJHUuZP0G+hMkGg3JIqiLCZcnSpAfDg+QWGryuXwHi6VoonGqtXwRtp08xuwfMMaTE/HhUVXrHi+D/K4pfva5WErR1LQqAgA8HJ5DL1mDYpnrIk5Nxw7Fvf+z+dDD1uD5g7puYA/Dwk5+oGHAqOOe+roouPg4ROMQaO+6bjJi5nPC6EdU0qvoYJtD6MPC0VRFgNkXOZyQO4ntsL72nF4ptJYT4IXfZKefY0hotbCN0FDQPNM+Ns3Qer23cbCNESlxmRq1sDr8v7D/aBpP/xj674QBnXxEM2FMCZaz+FCMv2WUJ5ZvNwCa0IxHbWWaWNlY54U8pqQZfWMRSDqv2bD+MisJJHAR/upT6LRbShfXu/d3JfMyxjAg41d/65zywkc10Sv0aq+Eut00ybgxg/NTqF6GJcnOp9wyzXEnxq5QPSbGrOeFwm+fAguEP9LAioXKbhILCfHyBISQcYlJGGSb5cmNCaF5+DHSn95I5+nLZejNNwTNinOomtZq5AIruPgHl9E2jBr/r0TwTbLOgkvc5LHswodymIl6VnAn7MUoqRSiQTaXC4uCtbqgm1gTWMZf27ID9+njGPpEnmzIjvz8mG/fiMsTV9faGNIT/y5FGz5RGLyQ2IzD5nDP660QDQSLZeLPJAbIdvY/tTLVukl0sLudQsVbDtEjR5FURY61Dhu9GB/+CaUP3YT/P7IyGw05uvDu6angelJAMX67wPhutJaIMjXjeGj9XhgqwCbB+xhwOQBrAVQQPjmqTe+UQAQ1D9e/dPWQdT/cqN1AqE720B9QbWeLsfSVdl21brzpImWBXWvh4BNAGTrDpnIRWW2HhoSVXAcqE4DpX4AfZGHANVfUIjiVdq6d1Z5ktUDmj3gglx6SATyeuMTPJDRS7+B6J1Fooftj8fRpIYBeTCQFwgdgy0AXhGoloBgAggGgGB5vN6DaljegHkMwgOCacCWAAyG14ExgEd1CESWSL0+A5En1QOnMTTcY/nE9eDwHHuAydUdYkl4qadvhFKo1j+sEWEM4Nm4ERYEgK2w8tNu+bWEugOuDdN4HuDxaz0J1zG0Q1IdcLLkzfMReRpEwzBl3omG6kyPawFD91XoDRVCDc/YyAZyNBe/aRn3sJXxwtO8UdMaEEnCYlp6KT7PF1LsdpWrHcGWC9jyWcs9w2h9pRIX0bl4zZ+Z5DlHz1wejiVNxOlEjCAPX14/ro6CXjh/ijIbJIXYoucq3X80ksHaUBAsl9m9U7/3rDFOj1r+m4uquVw8dI3vh3lzh4ikkAhcgOS2Rj4flZc6y/J5YGAAGBwEPNb5Nh+dMQ07Sbw7uB0Z6+hP6NACovoDIps2aRQJpVGUpcSSF2yNMTustTe3t83squiKoiizDTeWuPcUH3bF1/HGK1/G/wKRtwJty426uUJ6kbXyrOKeEtxo5LiMdWkgU+PANcGCjPWVJrTIPGkYWdKkXuSdwOO+Uj6ynHSs1BBwCTVJcYu5yNRu40A2nGh/7RjerjrgjYN2SYu96cova6NIRRElC7IRyxv/QPwZJYfhdxoSQcLvf1dIBHmP8DLw52urcAqUlvJLe+61un+k11wWD1t6R0lhRHrqJnnY0l/uNcffi1Kwld7PPG6j9MhrVfYszx3Xu0F27inKQiMptn8re851z3JblNs/sXS18EayME3etGQX8w4RaetJG0zae3ydy/ZKeg5ye67xN2Hfc4Xr+IH4M5LOn4zL7bJ/uZMBH3nC81aUpcqSFmyNMdcB2NIyoQMVbBVFWchQD39fXzTsiD7kCUDpKC0Jg0EAFOsetsViuK5YjEQ98ijq7w/zKxY7E/lmcmxZkUYkF0Hl5FxSuJDHQ4IF1QnFMLQ2GtZFjXgpehQSPGxzueaZywkygilfLoa4vDaA6NwUi3GRgTxsCZpADggFeLouqKHDvUN4nfCJPai89JdfQ3w7qmta7mrA8OOR9T6TxooUz/nHJZy4BCbXMhVIFBL1yuUoRPGe/7kbV33iGpTLJiZwSsGPL+NhDsjznTw4yYuT8iqVoucOEBdskzqZ0kIi0HOPxyPk93XWkAhcsCQPNCAetoEfc9qMy92c5Ix7xSV56MkPH7bretbydwX3rKP1vD7S3lX07siCDK8hSRK3sqKCycJkIU4IyMtMAh7dK/x5Qd+54wAX/WikkAyxQs9k/iwl+4l27HkmUVgl28/3oxFMaWS1T5Li8NJ3Kjftt5UDwWwjPWhlhyM977l9KSedBaL3l3x2yuetoixllqxga4wZ7nxbNV4URVn4kIjGBVsuuHH4cvru8vQyJhSBuUhJaedSsOUGIRA3CuVxuURE2iZJoHMZkDTMLknwI6Rhzv/yfdPfpAZXq0b6TOBigksgTfIOcS2T8cloOc8vrVGZ5KXRTaQnD5AufLQSQPiyTj2AewFXvQDZr7eFfOwzQXqR0+X95Kfvwxt/422omj6nh6aMOysnW0kTbI2JwtvIZxAXPTgkdiQJD0kCAl/WSrDlHUlZrxtX54gse9JzyIXLm4vTqlxpHTsyX/6ckvuSE7a1Emx7wctsoQl+SoQrPEavI8ucNCJJfufLqIMq7Z4l24TC1vT1AfmcxTSAQp9BoRCFo+H2L9kxLiFRhiHh3rl03/PnMz1/KR3pC7IDSI6C4576tN/5EGzp+OVEmFR2eu7n8/HQMknnM2nZQrp+FWU2WLKCLULP2t3zXQhFUZT5hIyqtEaZHCKfhhwWlSY4zjetPJL48CwyqnncREmlEs0SDETxDrmwSvmRFxx5vBK8wcHLwT1WeRnpLxd6XF5fBO2PNwSkMEDHQsfLZzGm+I2ygeGqU9qGH7+sY76di7lolMx2Y2ehdvJ2o8wL9dhnCjVSyTMdAHwTXvBBpdaIZyzvF5dnlYzZSs8jOexe3sf8OwmySYJt0jNNPmN4Y5p72KbBn11S9JUhDYIgesbIMstnpcvDjQse3br22vVS5OeJn1/uOZbUUSeX8bqbb8F2sdzHs+112mvPvNnq5Jxt+PNMdnxQ5zjvIHeJfSQecgcD+k02WEwYJA9b38RiiieJxTxffk/z+1UKt2mCLbfdkmxAsiFpks8sHVazDR+FAUTHRM9nl52d9s7j33u1/aAoc8mCEWyNMZsB3GCtvTUlzRYAWwHsBzAMANbaOxLyUrFWUZQlDXk2cjGRD48Fmg0vGcPW1eDMEu91vskai5R7f2YRq10eHECzN4arQUHLgaheeXgBPpRYpnHlnebFJSfAcHlV84YD9zCpVuMxbamOXJMmybKk1V3S8tlucFL+s9kwSPJU5et78R7JWqbZPD8uj/Ss281XndIQUfI8MmBlsUGsA8z13CC4MADUJzAz8bjS3fJCSutUkQ1pvkw2ul35JtHNcCbcszUpZqL8nsZM6tX1zsgyskIuS6tX1zZpHZCu71lI8s5Oyr+dda3SzYbtMJtep4tN3O4Fku4bHhZAdiyRfVoqRXMq8E6m6enwA0Tfw7RhhoE1LcVg/p3/5stlp9JMOwvoPsznAc/YnrjOqEyyLHTeqAOtHcF2vr2HFaXXWBCCbT3W7KcAfKZFmhustdvYsi3GmHuttVtF8lXW2r0zCYugKIqykCFBgceuTQqJEATJs5PzUAgy726KCd3GJQQmCSUuITPJG83z4vFd6dipLriISt4VQHoMW27Q8nivcyXY0j6ojFywpbzlMGBZlqwx3GRjZqYNa5fHb1onA98/ieQ8vYy5yZfx4+b5ZDkGbZS4mUmd9EKdNoQFmMY1MTUewJrm+y4phi2/diuV6LlBXqjkcUvr00TWpDLyhnI36yyLQJEWu1GWU/52Nfr5c5ULKNKTzZW3zMfzojAUQBRHUgozdK5oP6VSWI/5fPqxLwSynMPZEGxdIXDaFZvT9tPqOufHnfW+6LWYsd2or27SyfMl6+gvl33Vzva+H4qgQOhhyzvRswq23OYlm4mOl9tptI7sRP5cot88riu9RzwvnBtiYIAE2/m/2Mi+lSERjHF7MQPpv2Pno0fbD4oi4XbMbDgw9LRga4y5HcB6AHcBGGmR/FMAXsMXWGt3G2NuNcZst9burOd5nbV216wUWFEUZYHAe8XbaWRw44yMUvJokt4lXCzL2thpt4GRVdCTebfyOErLNy2uJx/yRiERqI7TBFvpoZHkZZXk6Ub58Eauy3ig8kiRQXpAkCjBwzekedQleUoQM/Gim4tteVreSJD3hTxPScuA+ER7C3VY6nyTdA67WZf8fu6W5x3vpDEmHL5Ks3pXpmuwxVDUk6MZgPhkLLSePGt5DFser5YPRaVjaFewdYVNaPXcoU6NJGbLm7FdIRhwP7f4Op4mzePfJS4A8d88/IGrA4v/TiJtu6S0rfLOuu+0vLOWuZ11rnTzLTa6RgopndOJ93FaCCrKS96HXGgtl8M8SDjlI5pcHxJs/ZyJrsM/2Yngns8iKBcQWIMgXwk/1iCo+YCxCPxa+Nt64XEai8ALYGs+ENCNE4Tfa3743a+Fn5oPWBN+jA0/1oRp6HslDw8GuZoHP1eFd2gdzNXjMD0i47hC+9D5Tgo9luZhC8Q7JBWll5kL54DeuNMT4OEPjDG3JaUzxmwHMGqtHXOsvhfAzQB2GmPWA9jb7XIqiqIsRKgXOwhCw7ZUCoeGcbFPTohQKoUfMpC5xxchY5aSwZ3k7UgN+k5eeEnbSRGmE8GW1vHycjHatQ2P5cXjMHIRBYjqr1SKl01OSuPyHksSbLnAmCTYkvhK55XHpeT1wJfLWIyzJdh2O/yB9Pht1/B3XVvckyZpXdJvpfeQ57BbhjeJAzRywQDw62LAw7/3VVx627sxuHoInhf3XC8WmwXbWq0+BNaLnsPFYvTb90OPKyDuncXzcnmB028ew1YKg/IZzjvpqCwkiOQcLQpqcHPPMSB+jLxc/LcME8OhY6RQLNxTmedF55OPcJAjEvhzk4Rr2oZ34tCoBMqXj6Kg8+D7kRcurzNe3yrYZttf2nbdeLa2m0c76Xvt2d8L5SFbr5UQz9dzG0raF/w+TbI7XOIh/eU2S8Nmq9rGfhvhv/7+n+A9/BCqG18PC1MXZqMPgEYIBWvD0RRAurHhyofyovx43vTdWqAWGNSsB+SHgJOG0itzluEjk9Ji2BoT2ZRkC+dyUTp6JlP8cnqm0jnWzhJlqdPTgm0bbEOyB+4IgM318AdbAAyb6M5fDWCVMeYWAHuttZnj2urDQ1GUhY7nhY36vr54PNIk5OQJMvYtT5cmonKRFogMsm49V10ijEuMANpvwKYJijxeLRmgXISUQ2ZIMLc27vlBQ8nodyvB1iVsJAm2JDZIgcMVBoMLHzNt8PF4Zmnea7P1bu1m3rMZA1GZW+bqmgsF2wDLXrMaI/c8itOuOR8nbbsYvh8Ph8KFT7rvuGDb1xeJhUAUnqRYjPY7W4ItNbi5YEt/kwRbmTcXcGU5+HdejiShkD/jkuDvFp4P78SR10Cr51SrfSnZcIWg4aR5Qs+ErHl0sq8s29B1MhfhE+bbS5mQHd3t3Ccu+41sq3bzIBuXxxfn8fh9LyxgLm8aNlHOC5DbfAlyn/0cACA/COT663ZZfcRDjiaWZB3vvg+gDJhK1LEUVAC/Uu9AygFeAfDKgK0BqAHw6p8AoUJD3yfr9VcGajmg9hBgH7oSGJ4/e4Q/W5MmaCN7lt4NPKQXf8/xTjQ6txQ2gjsPKDMnqdNEbdrOmKs6WyyC7eVIjm9LQu7lFBaBqHvcXueamKwVelErirIY4DFouQErh9aTQEDiIXkXFQrx2LdAlFYOB+cfMpxnwxBL8tRME2w7aTglxTyV0PFyI4nXBRcwqCEnPUa40CEFW6DZqJWCLdUJ9xTmHhAuzxT5nWJlZm0EukQSOu/8HToXxnjS9eAizZsti0ikKID08LbwPYtr/uKn8Y/v+H3UStXYyIOk0Qf8/qe/3PuIezTRX9qed6JJwZbfgzz/NMGWPytk+eTzg28v4znP9RBX1+gAXj4OF6Z5/dBffjwuTz4gPnEn/87rN+0Zwp/RSedFQudXdu7JPJM68pKg90SrNk+W43Et5yLBUhAMuGC5VDr+5P2e1e6TNqMUbOX3JHsvaXsZdzWfB3J+WNhCn2nYsQW/Fn7qv8ne5fe0a8QAt/ukjSdtYaqntGOU+XK7rlc7i5KOFf8/e38eJslxnveib2RVL9OzoKaxA8LWAwIEV7BmQNJaKFDolqgFsi12Dyj6SLZsTbdsyTZ9jzwtHPleSff6GJrRuZZsydbphiwvkmjNTMtaoIXiNChqo0RhpjkkJUIEMQUCBBcs01Oz91KVcf7I+qqioiKzMmvN6n5/z1NdXZmRkZGRkZERb3zxBWp5Zvu5Zfuqe8QxmKALimR0emZgGFtFsM0BKMYIQwghxEAENOlYSgdRiBIRgEaxQbYBje4ATNLUwGzVFQPQKEa4RAzzRe4SLMzzh+1vtyEVlt91VoDG/3YHyGxQV/29RXSSBGmgh3WquoltSbAdOsckfSgVWNgqaAzvCJrd5WsbVcFAOvWuZySqA9tM5LW3S1rMdJlxRdGq0BpWn3XKwtYMbx8fdmyzeihMHApLRyu43PQI5ra4Phzt+x8VZ1xBxJw+3uyaWxVsgXDx0lV2kliw9hp7gNKF/T7aDu8k8z7GuX9h7U9XPSeDyC5f/J5nuDUo1QuCsr7Axkbtc/krF3Hlmc8BAEplVd2eLQeNmI2NIF5zhoG5AKGZdjmXnNscMLc/cetVU/wUn+b1g4K9I6zdCDTOvJPrFp/rQjZbc3nhyi85RvLI7E+Q1ohTRzF/k2O/y7vxPG4VwTaKYuV73NyolJpG4Nt2orK42TGt9UqP00YIIX1BXtwjI8GqszL1yLSUBRoXonFZLISJsXKMiBKuMP0kyp+aaxqtfJsNZNtiVaZymS4GTKtlaehLHLIYhqwmbsdrWm7IcbYII77AwoQeM6/NhY1sqy8JKx0suWcuC6+4gm2/7rGrfKWhzJHth1nmsjuCB/2TP/kRlC5fw9c//nCkpZhtUWUu9mh/gNpzbW+vnj9be75ddbnt3zVqwCPMzYBtvesSo1sVbPthoSvY4kjU/QrLF7mPQL0rHBNXxy+OyAy4ffmacZrvhTgirOsdEScdSfZJmuz72sq9bmXKfSfo1GAGSYYIg2EDFlEDWiIWyu9XP3oGG898BpmdIxi5YXdN7PU9eErXCYlmHOagfJhgK+1kl2Brp9G+DvMZjONaqhdIXWjOxJP3lAxAmkYGrm1mPOZH4hgaqs3Wk1mAQH0dRki/oUuELqO1XgKwFDd8ZWGzWQC4+eY7u5UsQgjpCdJQkkaR3VFPGo/pt1Xisf0sujq4/aLZSzaqQWy7LADiXZNL4OhGXpiWd7YlcJiltIl0RMz4zH2D0MmMY0lASLcxnyUNBT08gkd+8f34xE9+FM//5t9g/P6b8MbveVPVmghoXHTMrD/X1mp1rSwUKfuBYL8ItmZcUQM1pqgQJtiaYUR0NF2kSBrMDjxQW3xL4rVdONj1p1itSYfd3Le5WV+3ybVIum3LOlNIkU6+mRbz/Ob1mnkh12C6k1lbq+Wl5KGZp3JfzHwTS1kRyuX67YFMO01mHb4dCZtqGlan90vIiSu+tmLpTNyYrgCiBo/tjxwr39XtpaCifsevz2P3rQpXr1b2qcCdjTzv4hLBbAeGuUQw02IP3LfzXLd7fCewzy/vOhFlZYBKDBJM0Rpwv4ukLhXR1hRszTw226eE9BO6REgZFf+3iwDw5jcfGIDuKiGERGOv7iqrW5tWPxsb9VMi7SlmIuC5/Lma4mDaRL5WLRRcx5kigtmQlM6/iUssMeM2w9nfrm32PtNCVs7TasPenBJr38u0WHo0w2VFLdcQ1nmOEtLNxfZcxwLpzxPSG+TZ07rmEsHzgPu+5y146U++iC/8+mn88f/+O7jzm+7Cjht2xiozZj3bz6nfYS5awt4DUXWXiVmH2mJmt94hdj42swZuhlk32tvM645771ifkO1KmP/pMOvUJBa2jRbdgcqYyap6kVdpZJRf53+/VetoU2Ru5Zk2jSP6XSeYQpXpU9duP9mD51GCLVD/25yRQMh2ZisJtrkm21c7ebJ+V5SEENIO0ogyrY3C6rWoDrqrAWpaKZmj7Vuh3rRHUl3TvlyWHM3olBgRJj6Yv81vVxhz6hnQaDViisBpvq9R5bnTcdph0ponpDeYFkbB86LhKY3h4cANzTcd+S7k7s7hmSeexn954/+FW999J/If+ibclr+1zpJoKDcGz1O1Vcwz9Z1Z00UCUOsEm+GA6Oc+zArNJCyMPWPADO/aHyaChqUrLO3Nzh3nuoFGi2Cg/WfX9LdoDnCaIq1YopkDbba7CbMebjVNrveB6/9mxBWwW9mX5N65jqFrga1L1L1t5767puJDBw9oQ11XqbvtNk+Sc4vwbA62ueo587fpXsC05pftaWpn2DPtBHsGRVj9E5UXablGQsKgD9v4FGD5qDUYN8J0hF6YPhNCSDeRekwEhKGh2lQvV4PLtTCO/XE1rERMkAbmoNPM762dH7aAK9gN1LBpNXbHtNOETSeUfXZa4og7aSFJhyauha3LIiSOwEC2D82m6sr2N/+jAxjdPYTPLH4SX/3Ll/B7H/i1hrhGcqP4Oz/1bXjzBx+EUjWfifZMB7HUNxdmCbNsDbNCS0v9HPbchomP7Qi2YdbxLpcqzURo1zbztykO29a35v8i5npe/GnzLgtD83ytTMV3lZVm50+yz1UGXfubpV2EMFMAbzWtrYRrNc4wK/NOkga3C+agRCtEiZtAvWsUsxxJ29MUPM3f5qCW5wFKa8ALF2xNIVXikRk3Ue07aftGtZ3tY+Q89qKtkh9pqavN90yUsB71LuJgCxlkevUsbhXBdgVNLGw7vaBYWipLQghpBWn0ia9A8WUrH5vh4foO3PBwcOzoaE30tTvB5uJbva4z7Wn87XRcTJEu7rTluOezLZTDBNuo80YJqC5BwfwG3GJ6Gjp6pH2SWiGlYdXyqOcnDelrht05N58vc/vO8VEc+OF34d3/8l14+RMv4pVPvwrPmAK6svAMXv/ca/j4v/xtPPPTH8Pf+/BB7Lz/diilnEKELBQov8U3uZwXCPcb6JpxATTeBzOMWb/aCy2a7wIznYJM6ZWyab87PK+2ErqInZJWM065DvvcEs6s71xpCRN0laq9B2Wf/V4M82ELBO9FIHgvDg/XRHXXgpQu0bgd0iTo9Ar73Rln0CzpwFqS8M3CugYVukm/BxHNWVZRA6LN3lWmO6Z2XSI0CIYJXy6tWNomJUzsTMMzLgMk4lLN9FPucgVmLvBmbjf/N32Pe15NECckrYT13TrNVhFsTwKYD9n3EAJBlxBCSAVzCpNtaRAl8NlCRBotZ7uRnqQCbFzMRr98wqzLXA2CTjRmXaJeu1YxpP/IvUtSRvrdEWx27n6nLy6yINfGRrBYlq+DRcc2NmqLUpmd8FveeRduyN9VN8Phrf/4Iaw+v4qP/ovfxZf/9AX82nv/C258+214789+N/a86+aqsGh26sXiFqivL8wOtC3YSgdb4nIJtrbfcvkuleqtG23BVhYdk2MkHXY9Zwq25iJfpiBqnr+ZYGsvOmZaJ5uCraTHvOaNjeBbBNrNzeB4Cdts0bG1NVQXLJKBTXPxOFkwzs5j+7eZ12b6XM+ALZDYYrgdp33NLkxRq5nAGKV1ddvCdlAGcezyvp0E27jtp6g2kLm/k1TbYL6GSpBRLit8wWwj29vsOtsWlYFwEdp8dvtd5qXtL/WyK03mYKCNXae5MI8184AibnsM+qD4dmSrCLbHARxRSk1orQvWvmmEi7mJUEo9CuDR22+/txPREUJI3zE7EvZoPtDcMkGmcNqLbbnC9aohEGWt2krHJcnoqW1B0szyVba3spBQJ/IyrOFmdgzMTlJYJ4MN6PQRNoU8zQyKIBuFzFwQ0TF4NhR8XRNsRbAzRTkRGc06d+zrxvHt//P78NJHP4+P/uNjeO3TX8HyD/8mvvdjPwidyVYFUxFGNzYarV+BmqDnEuFEyLQX+YqDWW+F7XcJDpJuweyUi0BqW9Xagq1YbSlVE2zlHWMKtlKmZFtcwVZEbNvfbJhgKxbOIsibQq0pitv3J0yotP+Pym9bsDWPlfNJueyGYCtpavYuiUqffZ5m1wTU3k1yn6UdEnVtSa7fJE6cZli73SPb5H8pV90k7rVG0a5IapfxqHZY2GCSXSakHNvtkDDh09WONRfbLZUAv6yhlar+7oR1py3qZjL1ZcDMC5eQa1+TpCcNi47JMyf3S1xFmC7VzGuX9Mq1uGZkyH7JF5k5YpeXrdBO6BdbZVB8uzFIgm0OIX5qtdZFpdQhAAsApmS7UmoaQEFrvdSJBGitnwLw1FvecuAQCzMhZCtgTscH4gm2LnHRbpjaH/s8g0SUJYWJff3m/80EWzuOuOkyG/5J8zZueJd7CZdga4cTwqxIOJJPtiJKBdP5xTf48DCCRWugGwZpwp4t8zegcM+3vxFzX/pxLH/od3H2Nz6N/3Tr/4nsjiG8+Ye+EW/8h+/E2NhoPy419hTmsO1hswma1QuSb7a/17DOvatOlv/Nb3ubPaDW7DptizBbIBJhwyXGxH0/Rs2ICBN7JZ/CRFUXrjq7Fbop2JrHAfXlIWl6bMKswKPiNMPKPTLbS+YghPzfbv5G0Ym4zYEQILmA2w3B1hzgMge9zHOZx5tWoDL4s7kZfESc9UvBqIa5SKBcr6+V85k1n22zLjfPZW6TcPZzbgr6UUj9Ie5i+ol5fnNwIqzOsOuosMEqVxvRLjOttHdJwKD2w9LMtl90TCl1GIFLgzyACQATSqnTCBYQO2YKsVrrJaVUUSl1BMBZ1HzXTjVE3AEGwVKFEEKisBtYcS1sgfDp1rblgP0h3aGVRljUMWFCRtQ9Tdo5TFPDMW4nNKyTAfT/esKspSmM9x6xZqx2rhEULlvAs+ta10wF2ZbJZvG2f/le7H3gFqy/egGfXfxLfPpn/wh//X//Gd7789+D295zL0o663x247hEEIsm1zPtCuP79VP7TfFJ4lhbqxdSbYtW+1vEFKAmcJoii4gaMqtDtokQmWQ2hAvXwKM5SBmGpEnCm1a55n2U+E1ByMwz20rUFjHDMC2oBVsoCnNbEYaZdpfIbRNW/3VTsLXr7U7WddWp8i1YWdqWv+Z2M36gc4JtN98/rqnprZ4rTnlu1oZsNugSFYe5Tyxes9mgjlaegudprK1dwpUrF7GxcRXFJ34MUIB+9VkAwGuvNbZ/XeUkTtlpFkb22+W6XAaOPPQTUAp47rlnO3bfXdfQLIyrTEfNvIizT/bLtX/ta+70sl1DOk0mk8HY2Bj27NmD3bt3QzUpZL0qg6kWbLXWRxOGXwaw3KXkVOl3p4wQQtrFrsOS+rkEap0s048t68fOYQtwLisqM2wrFrNhuCxk5f8wqwfAbQmRdtG+nY65K55+EHVePpP9QZ6R4eHKPTC2ydRRc1q9iLy29SBQC7Pnjuvw1kPvxtgY8MD/th8f/cETKD73KpZ/8BhU1sN3PTWH8TfeVBe/iWvRMUEEDFdZMdNoEmVZb16Daa3WSll01Tf24KDE3U5Zb1YXRM0kMa9d7mU2Gwj2cowsBifhXdOCJf1JBFvBvN+2sCblrh3BNuz+2dbFJuZMEDt+SUdYmQy7JkmL6adX9jfLr7jX32p4Ic77pFM+WcPyv1MWtq7fvXinuHy9ShqitptpbXZcdUBGa0B52L37VVy9egV7945j585bkFUanlLw770PQH35ssujiasesQVJM4zreNkvg1GyfXMTGLrgQSng/hvu74tga4aV9HVasLUHs8xwbNeQTqO1RrlcxuXLl/H666/j2rVruOmmmyJF27D3W6dJtWBLCCGkO0jnXDqQw8OBRYv8bzM8XN+pkk6oKQzIS2urNqKaCZ2m1ZxpJWRbrNnWbbJdwgO1qXN2o9j8FlydBVc4uYZ2BFuzY7hV7rPd2EpiAST/m9/9gJ2X9BJMX9VQSmNkBBgdDSxTs9ngf1PwEwFXLDZNy1JTwBsZAW5+8w34npM/hAsvrOKF3/gUVn7+z/Hxf3oM7/6Jb8PE++5rEGxtdwG24CgWwS7M8m4+/zK93yX+AjUB2hamzW8zvFl3muG1rsVlW6GKKC51p1yzmS6JU+t6AdW8JnOKuutY2yovzILP7MCZ/5sfSaNLQDW/4wq2piAs2AJyu4KtXHdY2Kg448zmkP/j1KuSN50QOztF2PvapFPWtGHxRoninYq7FcHbvO6o8mznoVjSxxVszfUUpH0V5hLB/Hz+Z/8Ar5/8FK7/htuRy13BHXfcBc/LBGlRHgDd4BbCTrf57RJi2zGSkPCm1alGMAiYBuT5tq+x2UBynDjt/zljiHQLpRSy2SxyuRx2796NF198EZcuXcKePXv6nTQKtoQQsh0xO5FxrPPCrIrixLEViHN9tkUE4P6Ospo1hdGk6Ys7BS/OaLBY2tkChqQtzBKPEFJPNgt40FAqEAtFSBWB1Kw/TVHBJfSZwmq5DGSHFMbfcD1u/vH34tq5K/jCb/4N/vRf/w5ePfV2fOP/5xEgGzy0ceuvsHrBrOflGuQY368Jzy4LSK3rrUplv9kJt8Ug22LQtrwKex+Z2+z9dh670mnuN91DmGK66Tsz6l0ooruEN91BuN4Bci5zYaW47wHTAq9bxBkUakcYlHPEFWzDfrsEQTPt3bCwdQ2Emu9Me1u7+RQ3jd0SbNsRzZpdvz2Dx1zMStJi/s5m611+hA2ShNULngdc/NzLGBrfgzt/4ADGx8drYi0AaEBbQm2YVax5Da5tLvcGphAbFo/LVUBaiCPSmmk2RViXmG3mT9qulWwfMpkMxsfHcfHiRQq2gww7qoSQrYDZibGtFYBaY0m2myvr2h3PrUxcodOcxgV0X8wOc5sg/9udoyTWVaY1hykouyx0w4Ro8xhCthMi2JXLgIaC1oFl7dpa8LFFQ1MUNJ8n0zpsba0m9m5sBFNjASCbzeA9//+/i10TN+GZf/tRfPo/fQKf+b//ArvvyFWn8w3tGsZ1d+2FrlRmo3tHMXbDTsDzcO/BPK77ut0N1+D7wKUvFbF+pYSxO66Hl1F19ZkpRroE21Kp3ho1TOgxxSBzdXZzu1mfufJGziXpkfBSd29s1PbJgJOEk3SZopCcX8JIfBKPPVNCwsl9kf+Hhmp5IXHKOaSODRM54mBatzUT3G1hMy5xRcYkcZpplvsu4pxJmEsE8xkxy4mdVlv874Zga4c102Lv3wqCrSmMxjk+bCCm2fniCrZA44CM5wXPnlmvmseYMxB0uYyxiZtxw32j2LFjV911KaWrlqymkCh0yqWF/Tssb6vuAIBUmNiag11h4nNS4TVKxCakV+zatQuvvvpqv5MBgIJtIpRSjwJ49I477qVgSwjZEkiH1hZjBflfGmWbm0En1Oyoel6wXRriZod7O+HqiIR1TEzfbED4t4m9zxRU7TDN4miG2QA3BdpWfYdxyj7ZToSJErb1l1jY2iIF0FhHAOFTgeX/N/2Tv4N7vuMBPP+/PoPLXzoPXQrmB5eubuLSy0Wcf/51aF9j88omrnztInQ5eNBP/czHkR0bakhveb1UDfPOn/x2PPAP3xk6NVl+2/VF2ACPi3YGd8KEYNtS074HZljTx2872C4RbIs/oNGSzGVZ6kqHa3pwGurWOAOagm3NDHR+8NcuexRsOxO3PVgR53i77RJXsJWBj7D6zvzYIr20ac3FHV3H+T6gyz5UxoPnleF5mVDR0UXY7CZ7W70I3DxeMw47fBqed8GsiwjZSmQyGZTNlWD7CAXbBGitnwLw1FvfeuBQv9NCCCGdQKwXzOm5Lisc+TYtFKSDa3ZMgfrOapqI47s1jCghNQxXJ1y221OBhSSCr91wd4UN61TF6WiZHRHT/6Wrw+ASJOzzp608ENItxFozk6m4A1AantIYHQV27AhEBM8DxsbqrQVNC1sRGjY365+jbDY4TvyGax24JBDRYtcbcrj58ffUWZC5LBMlzs/8yqfx6mdfgacQuGs00BqAr3Hml57BX/3kH+Di334VD33o65HJAOP334BsVsH3ay4R7AEk+30Rhi0GhW23LWzlt/hYB2ruIsrlevcNYhlr+tMVq1iJy7Uom4Qxj3PFUyrVtokl9I4dQd6Y8Zv+4G2rQROXv9mw3/2mFX+c3RZ4enEOEo84bRUbc2AjKS4XKvbgTd22sg8v61XCqupxWjdasoa1f6Km/Ye5DYiyIjXbTeZzXj1/n9tTtrVx1DU129bMYpltR9IPohYb6zUUbFskRfeQEEJaRjqRQ0NBR1I6lOZ+oLHjLz4JpZPqWqgsTfVkP6wSpKPgaqi6hNy4HRP7mLDjXFZkrjiaYeedyw9bmu41IWmhbrooVINLGdOVQNh0b6A2+2F9vX5Ww/p6zSq1XK4tZib1ehzB9u6/+3Z83XfWhxfkuPH8XTj1Mx/H3/76Gfztr5+p7h/aNQwoFbhK8IKKQnmVTyYYtdt56x5cd/c4Rsd3hOaTUkFmXX3tKsrrJYzduhvDu0cxNDaE7I4hjN26B7vvuh577rgOo9eNVNNl5qPkgyyEJu+mZoKt1GWZTG0KdZRgu7YWLdiKywvTV7HpkkHy1WU1KNdkhpH7JuUAqC0OZx/jundmPrniDMO2XowSh+0F35phitQSt+1Wo1RqfMfYs0miLLej0pvEGlhoxUo1ySBqJwiLN2rgN6rdEdaGSYqd33EF23baFbZQGybYZjKA9gPB1hUHACjout8N+0MsYV3+WF1uFcKscaO2E0K2DxRsWyBt0xEIIYRE00oHzcQlsEbhshwIS5dpnRHHwtbsyNhTPkW0kPOHLQ7WTgdOxA37XZgWay9C+o09JV6IcoXimvIrcZnbxB+qWOCaU7/D4rCFLNfvKAHszm99I0ZuzqHwW5+pCh1aA+WShl/WyHhBIrSvoct+8K01Ln/lMi69dB7FL7wGXW5eQXjZDDKjWawXr6G8XgIcddH0H/0z7Lgp8LdbLgNDO7IYHs425G/UNGr7+sz6Mip/ouJxfcTS1xRLo9Jnf8v9NbeZZSrsWPv/blqahg1ANqNZmsz9nUz/VrW6beZ6xPVul/LlaiOY281yZw9oNMNun8j/ccKXSjU3XL4ffAvmAEjYgMTGRu1jup+RutP3gWvn11BeL0E5ElXNr8qqY2HtI9uHa8PxIb/tY13Yz0GUVS4hZGtCwbYFWFESQrYSYt0iVjIuH7aC2dCVY8X6y4xvOxPH35j0DUT4lPeKyyJOCOvsmNvD/PaFnd/GFolMTAuRblkIEbIVMAc1TKtDe6AljmArVmCZDDAyEmyTGQ4SZnS0JloktbA1rUPDLGxLJeD2/bfg9v23OK1WxSWCjW3VGobLJYLWGv7aJq6+fgXnn1/F6Z//BF7+4wKW3vufG46//o03IrtjCOMP3IR3/+tvQm5iPLaFrXmdpruCMAtbCR9mYSv3Qyx2TStSc7Ek+W1am5pks+E+ysMG9lx5bNbZSa0czbDN4k4aZ1g7Qa5ZrIld1r1h1sLmfXMdA7RuDZxEnDTTYu/vhoWtWU5cgr45mOsaZHWlx3UtrvqjGZ0QbGVxRXPhPlkrIazeBBqtU20L1Y0rmzj27p9F6coGvNF6H97VmUTGb7tdZOa5LdqG/TaPNd8HLmwxd7tY2IYNInSTlZUVrK6uAgAmJyd7e3JCmkDBtgVoYUsI2SqYjW678Qs0Wu7YgqD92yTK+qcfDbJeEecdYXdwOzUQGMdXnMtFg53eMFF4K4vxcXwecsCWxMXsXMuUWtPqEojnEsGso6MEXimbdh1uHhcl2LowBVtXGBEz5TrC9su5w3AJtoCCNzKMnbcPY8ete3Hjgbvw8h+fxbVXLmLzWpCYjcsbeOXUl+BlPbx48gt45VNfwbMfPoM3fX8ee++7CUNjWWTEnYD2cNe33o9dN42FCrbyv7hWMAVbSWfN/YLGaytfxupzr+La+TXc/NBduPkdt2Jjw6suliQ+4sXaz3X/7LrVlSYzbXZ+uaZj21a5rgHVpC4RwsK4vpthl0GzDMnAo4h0rng7IdgmSat5fJywZlrs/d0QbAVbQG8mlkblQbPB26TXkXSwwHZbIIMbMhMpk6n970qLhDHz3Barr11aR+nKBm77jrfj9n/wHgAvN1ynAgBL7A1zjWD/drlESEKUG4U04LL+3bt3L4rFIiYmJnDPPRPI5XJQClheXkaxWEQ+n8c990zgwoUiVldXsbKyAgD46Z8+gsOHD9eJ1C6xO+7stSQUi0UsLCzg+PHjmJiYwOnTpzsXOSEdgIJti6St0iSEkFYQS6yhoeAT5mvM/LYtSF2N5WYN00Ec+AoTppMQJqT0SsCOshDZzphuKZqFIyQOUlcGi4NpPD++ioO//3DVOswMY3ZOXeVQyp3pw9S2pHd1nuO4ZLHPbeLqPJvhZHuYABMVdxgun41123KAvs444N7KVO2/7+PK1y7h8pcvwC//V+B5R+SfBrI7huBlPGTHhgAoDI0NYWh3sDKYp2peGESo0RqABjIjGWRHMii+cB5r56+hvL4J7RsJewHAcWB41wh23n0jsqPZOqFIxFWXmOO61qj8CrPMMwcATbHDVbaa3Q/bQjBs2rwrXc2w77GZRjuMXbbNY+zzxnmGkr7zkoSPK8h16z1ip9VlAerK46h76xoQEJLkSdyyZ4aRGV3mTCRbxIsS9MQKV46XslQdNCuV8Oo/ehm77roB2a/+HP6vu34CX7rmIbNuJGjn1eC7+PlKxIbVLaqb6ry32PtdYcIzoHZA9RhtRFr5vVa6ih1DY3Fi7Bqu90WxWMQf/uHJBivVH/uxefzMzxzFsWMnMDExUb1vxWIRc3OHcPbs2WqcUeWknWdnZWUF+Xy+YXsul8PCwgJyuRyWl5dbPwEhXYKCbQKUUo8CePSOO+7td1IIIaSjyBTeTsYnH9sCYhCn03dbqJNGqm3947KGCbN+jRPWxmWhFHWOKMHa7NSFTUtMK/a03jhTNgmJQsrU0BAwVbgHf5otw7u7JhqYQqfLksrVaZVjbYsrl2BlHxuWRvP/OOFdomPYcb2cSeFlPey6/Trsuv06aF+jvOnXpe3KK5dRurYJXfZRurqJ9eIayhshpsUhKCjoiqIydsMuwAN23rwb0MC11avYvLKO9QtrGL22gaEd2br8svMOaLy3QLiwFpXHzrSGlJFWrPXiCu6t3Ouw/EiyzXx+wtLqOqbVdLZLL9oTYb+TimD2sZ0a5I0zm8X8uET4ZoSltybq1+9UqA3UxFNXu0DMc49mxzA+Ot715DTDfPaKxSKmp6cxNRXuUuD668frntG9e3N48skncejQodAy1annZWFhAQsLCxFpu74zJyKkw1CwTYDW+ikAT73tbQcO9TsthBDSKWQ6oj0lEwisEMQ6SMLali1RAlcSy6o0Y4rPncBludyOEGhb/yaZ7mm7uHDdrziWwHE7yoRsB8SSy/eB7/7CffgnX/k63PSTx7FjB3D5crB9bCx8OrfLJcK1a8H2kZGgnl5bC7aPjtasxmTqsMyekLgFO944PmzL5WCKuj2wJ9PWxbeuzcZG7R0ShdslQuN2e7q7eZ22awaXD1ug9tvzgItfvojzf/PVqj6SzQJapoKLgOoDa6tXcflL54N3oVa49/1vxw33jVct9+T9eeVLq/jVd/48bjhwN97+o5O47aHbMTYWxLuxEZzT9pNbLgd5OjxcS7eZTrlOV36Zi8+ZcZjxy/9DQ7V7F+e9bLtEcPl8tQfykviFjXKJYOaD5Jd9/S7XHr5f7zPYPsaMt5c+bE3XUd10iRA1AJt0YDfs2CT50SweV3vCdOtw+XJQx+3aFdRx4lZkeLj+foe5lllbC47Ztas2i6xUCurRV5+/gJX/3+/jpZPPIf/T08jtfzNGM8/izp33Y2zMcL/w+nNQSqN86/3VdCUZoDK3NbMUN8O47pPEY8606Ddm+ldXVzE5OZX4uOuuy+Geeya6PrhfKBS6ewJCugQFW0II2cbYlq8uUdK2PpQFcKTzLr7+wuKnYNccuxOXpHMlnUGTuJ0q17GuzrzZEU1ijW13HNNOHLcXYW4two7rpZUhSQdSZ5oDXL5WWF8Pfl+9WhPamgm25vMox29u1gu2Il6IgNEpwVbKru/XhFcRC4Da/2Hl2xwIjKIdwVbSZwu2kkdyTevrQVgRNZUCMrk9uPk9e6rnGx6uF4xc5y6VgjBra7X3W1U03bsH17/tdrx+6ot4+gO/hHf8m+/A2/7JQ1XBVupNM05TbJI8A+ILtqZfTzNfTMFWFgaNK1KacfRbsHWVoUESbEWUs9PbDTot2JrPf1Q8rnaE6xxxhV+p8y5frg1SbWzUC7bi7iCbrQ16SB5LG0UEWxF1zXrzpaefx0snn0PugVuw455bsbkZiMKmVW/1+ir+CFziaq/e7fbMiTTOXBLfta3QbevWxcXFrsZPSDehYEsIIdsY6YiZVkeujqLdAZCOJwXZ/hNlLdWtjuFWpFvW4FvFypzER6mKtaYOxIUd2U3szK5XrS3FGnZ01C3Yhvl+lbpZLMzEl+3oaHcEW7kWU1w2rQZFsA0Tv+IO1LgEW9vFikuwNcVVU/RTKhBnzDww807Y2KgXPySMme8uoU38Yso2sZTNjmbxHb/5g/jET53E2f/xCXzq3/4+nv8ff4H3/+EhZHbsaBDrzOPNQVHz2yZMqDEHm8x8NMX2JNiCbVgY8ztp3HEE2zDxNUywjTrGjDdJWs3j44SV/83rsQcjukHYYKJrX9g22xWBGS5K+G02O6cVS11zIMr+mFbL5v+S7+Zv+/OZX/gTfOY/fhwA8N7//gO4sDaMdcNvrem/WQNQEW4Z7O0ui1qX310zr+14XQK4y09vP7Cvzfydy+Wwb1+jYOtqA9n5MTU16bRObpdisYjjx49jbm6uwa8uIYMCBVtCCCGEbCvC/No1E0tM4gosZHsindRsFhjKagxnfYyO1gRV328UbM2OrW3pCdSLjuVyTfhIKthK3JlMvfVlmPAqwokIUNLZbmatmFSwDRMwXAKf6aZGtomLBnFT0EywFTcPkk5zX9i55ZrNhYzENcHQULDvwONTeNM/eAc++3Mfwxf/4Fl84v/4PRz4sUeQu2cvRkbcFrZxXSKY126LlOb9Ni1sm91fF2mxsB10lwhhltrdwBZOW7GwdYmv7Vrquo6Nk69imb5jR+B2xbSwtcu45wXPs9SL5rM6PFwr/x//0G/h7O8+ix037sY7PvTNGNs7jLXVIJwtLDbz/SuECbPmPld4l7Ar33YcgzDoay4mlpRcLof9+/ejUChgcnISTz75JBYWAqvY5eWTOHnyJIrFImZmZrC6uorx8XGcPHmyevzRo0dx7NgxFItFLCwsVMXZxcVFPPPMM5iYmMCpU6cwMzNTPebIkSOhFsFikVssFvHMM89EhiXbG3tmXjfqdwq2LTIIFSchhMTBtERoNrVepqG5jnUdJ2FYZ5K0ELcTRkgnyGSAjIqnXJod+ShXJ666Oi62dZdsixKSzEEJV7hOCbaSLpdLFlvgE+FY0i5Wr6YPSJdobYqytsVuEsHWzBNJg1g+Dw8DOx+4Ad/0xPtQfO4VPPebf4M9d+/FN/yb92J01GtbsA2zKqVgu70FW7vOaFWwjdrWS8F2aChwZTI8HHzkuDDB1vNq7hEk3mw2GNDC5ib+6t/9MZ478Rnsve8GvO1H3oMHZt6CjY3KftTqk7pBM6Dyp3G/iVlv2YNuJmF+/k2x147H9b9rBsYgMzExgdOnT2NqKvCBe/z4cRw+fBjLy8v4sR+bR6FQwMTEBE6cOIFDhw5hZWWl7vjDhw8jn89Xjze3A8D8/DxWVlZw4sSJpmlZWlrCwYMHkcvlqr/379+P8+fPd+BKyVaiV88fBdsWoSUNIWQrYPvFavbyMRddcPn6anYOQvoNyyPpJZkMkPX8Bl+WYtlqCjpAo4hoYgpkro8MqMkUeBGnwuKS80hawnxT2xa2ccWvVgTbsLTKNZkCDeC2KARqwo2kTfz9dsrC1hRsNzZqQu3Vq0CxGPw/unMP3v/xf45fedNP49TP/hlO/eyf4c7JN8DLeFDZDDLDGWR3DmPH9WN41/w3IzOUGTjB1uVSIm7cLsHWXMgN2N6CbZz2VZz0dFKwdVn+NxNs4/rCtRG/teK2RSxsTVcJElcmEzzPUgYUNP70x/8Ql750AUqX8crpl7F+/hoA4N0/8W244V376p6f0IFcFcRVFWv/1YegPn0mPNGo6rtQQHVBQ/P/sLCAdYD8a23zHGFa4sEHgZ/7uTYj6Sz5fB5LS0t4/PHHAQCTk5M4f/58VTzN5XJ46KGHGgRbCdsuIgzL+STeYrGIlZUV5PP5ts9Btg7moHE3oWDbAuzsEUK2CrZlld2ZCGu82/6noiyztsoAV5wFqZoRZokcZaEctS3uedolaXx2xzWNC2QQ0gs8D/AqThBdPheFuHWAuCIwhQtZCEv2i7hp+6C04xIBxhR6XTQTbMPqh04JtmbabAtbl0Wh/C8fIBB7TMTPbbN02kKbKRxLekRQCvt/8pe/F3/z30/h6peLuPraFfgbZZQ3y/A3yrj0UmC19an/8KfwhoJId92ew8E//mfIDGec1xUm2LrSbJePuNiCretY2zdu3PglXulPmYJtNtt4b7arYGuKna3QacFWnrc47UQhiS9cG3OhMd+v/1/iNa1qpQyUyxqvf+plfO6XP4kdt+zB2I07kdt3PcZu3In3/sL7obND1UUDZbBqc7O26KD5rCgN6MoNqLosCE9y6P62mkC2lW47cQ0Aq6uryOfz1fw2xdNuUywWG0RZOf/q6mrP0kGICQXbFqFgSwjZKoS5NQDcIkLYx45zK9WTW+la+gEHOsl2JZMBMp6uGxwTK0IRl4B6ASNM0BAxQfzUmt+CPUXYjNuMQ8LI/ighSYQQ25pEhMAwy9woAc8UcpoJtkD9Qpdh6W0mmEneSTz21OU4FrZmPkg8IhiKNejoaMXCdjT43PPwXbj13XfB8+r9DXsesH6tjM8u/AXKV4NVj15/9jV88SOfx7Fv+Hl4Qx5UxoNSCiqj4GU9DO8JlrIvb5RR3ijj+jfdjN135HDj227BfY++EQBwdfUavvLnL2LshjHc8tCdDe4G4mALti6B017AK4kIGuZrVeIwBXobc5s9iBB2neb+sHijaGXg2ZWWpO/BTlhv2fkVtT9qG5B88NX17m+WHnOf+RFXB3Z9J+X7b3/1FL526mV89c/O4uorlwEA7/53j+K+b7+36lJBRGDX8x/VTqm6LPjZnwt1iSDXmwS7rRwnnrp3Q5/bVVGLo5nbXH59w3z+TkxM1Pkz7yX0U0vSCAXbBCilHgXw6F133cuOJyFkS2B2mDop2Jrht4J422nB0ew0DpL1adLpP2a4QS8DhLRCNgsMeyVkPb8q0JpCaxLB1ozTrHttv6xhgq3tliGuYGtbLEo40+LORdh7wUyHfY3NrHVbFWyHhhoFWztNYdP+bcHWxBaVzI+d32Z81XuSyeDBH/nG6j28+JXLGLt5F8rXNgFfw/c1/JIP+BrrF9eweXUT2ZEsRvYM4avPfAnnv/A6ymuBcvpXD9wEeArn/uaVavp23b4Hd33r/bjjmycwmht1Z64DrYHxt9yK7NhI7GOSYL9HXMKr+W2SRsE2znt8uw9cutoPUfkqLk1Mdx7yDJsWtsGzpvGJf/P78LIZ7L4zh923X4e3zH09bvumierx8vxK3StxDg3Vt8Xq7pPtEqHJPbT32X7Jm4V3MUhtxDi4fPSajI+PR+4nZLtBwTYBWuunADz19rcfONTvtBBCSKdIamHrWqgmqtG93TspUQxavvBeEpIMzwt82GY83VBf9vpZsp9fs97OZMItZW2xwSUyuwgTX6OO75ZgK+KMKdjGsRANpljX+8+1r8VlYTsyEnyLGCRhbQtbmfov595z2y488u+/K5EP23PPvopnfubj1ZuUu3svhnaPYP38Nbzwh8/hb/7rM/ib//qMO2ObsOPGnbh/+q247+89gOzoEDJDHjIVy1/tedgxPgaV8eBlPYyMhhQgC/u+2y4RzH1JfNiaC06FuUSwy0PStEaFM602wwZNkgjFrRwTdnwnXCLI//azFyedtsAa55iq0OqX4JV8qA0N+Bp6MxjIuHZ+DS997Hm8cuZrgcuZssY7/83DePf/6xvgeYHfanF1IBa2ZpplmywWaLtNibqWpPuitoeJvGkmiTCdZK0MM1y382FpaQnT09PdPQkhHYCCLSGEbFPsRrfLx13Y7yTTvyjyhdPMYjXJVEWbTjZ2e+VYn5CtRHUwTCuUfVXn29S2TBU/slGChukz1vTpaFusNROLbAtbe4EumzDxK45g61o4qZuCre3yQcKIGJNUsHX5z7WvRRZG8v1AJJIFzsT1hZzLFFl9P9hvz0Kx02TniUuwve4NN+Fbf+mgc9GxzaubuPK1y7jy1QuJ3sNf+cuX8MJHnsOrn/oyzvziX+LML/5l02Pu/tY3YOymnc0j18Ceu/Zi4n33BenVwNitOYzsGQYQ3DBzcbc4gm25XP8MhZVZV/5GkUSwta3WXfG0cu5WsctNnPibbYt7jCuMy1I9Kl9LJeDlT7yE333/f23qBHbnrbsD1yDvuKPuWdvcrD378qzKB6j5sDX9d9dN2Td82Fa3JXCJ0MzC1hWn3WYeBAFXaOYSodlCema4pBSLxcj9tg/aQqGQ/CSE9AEKtoQQsk3JZALrn2y20QpICGtUm/4EmyGNz0FqdA46nRbIKboTkgzTUshTuuH5MQdAwqzygMb/49SjrgXNzG22uCSCRTOx1E5TM9HFtbhas+PbEWzN84UJtmY8pngni7nFObd9LSLYynnER6YIsmLtZwvm4trCpJlgK+eMy9DYEPbcvRe5ib2Jjrvt6+9G/kPvQbms8drKyyhdXkN506+4Zwi+1y9uYP3iGq6du4LnTnwGr//1K80jBnD5KxcBAH/57/6obntmJIO//9v/EAoKm6VA1M3etjNUJDS3s33RGeIMzrqePdnejKpgW/Jx4YvnI4859R/+HJ/71U8BAN75r9+Dod2j8DIKXgbQOkjk7tt24/q33orr7riublEyoH5GWBi2mwOzvaoUqi4RYOwPi6fZ9jCht1nbKuk5tzphi5AtLy8DcAu3119/fcP2Xi5mRkg7ULAlhJBtit1ItQVb1zZBLHlMK5hmsEPVOyiwEtJf5BnMZAKXCJ5yV4BJ6sUkMxpMoVSETHO1dpfVXFzBVmgmNoTVQ/b7wp7p0eq7wuXywX6Hmd/mu65da8ZmaekE5uJIvUIphVseuqNOXHZZq379T3xrbDcDV89dw1f+4sVACAOwfnEdK7/wCZz//GtYet8v14W99d13Vl0ueFkPw7tGMDq+AyqbgTeUwWhuFMO7R+oWKQqblg204GbAU5j4jgcwvMuxIp3B6udfw9dOfxm7b9+DO957L1Q2g831TcMXqkJ2x1DMkwZsrpfhb5Rbvt+ltRLOPvU5+OsllEs+dLny8TX8so/SWglrq9cqD13lIK2hEeiTurJdy3YdfCuFYGMlk33jf5hhK/9DA74fbAguReOFj34BuhzvQZ/8T38Pb/7g2+vcZoh1eSZTPzMBqP0vgybiJsP1kfD2s1UVbQ3T3ijfq61a2IbF2Q8L23bqlaj0mvl6/vwq9u7NhcZz4UIRq6urkWk5ePAg5ubmUCwWq6JrsVisWtDalrQAMD09jfn5+eoxKysrOHDgQF2Yc+fOhZ8UzS14CekWSrMHnZi3v/2A/sM/PIVbbul3SgghpHU2N4GrV4PG6shIfUfG7ojbHTTpmK2vB+FGY6xlInF2e1q9a/qv+buf2NNfw9Lm2t6r/OsEzXznpZU4aQ0TLeKKFVuBdiz+tgvmlNvL7/kODGV8jP3JR6rWlkBQ79oiatSUYfu5WlsLvs3611yQJwyXha0IIWHhTcw0xREQk1jYirsIO06z7gyzsDXDmn5ngWiXCCL6NEt/Mwvb4eHgnVosAjt2BPdFxCKxsDV92JoiqD0I6vJh6wprps3lEkF+R+VX2DWb8TQTbO00N4vbjMf3gfUrJbzyzEtQOtj58l+8hFdPfxm6Ys3rl3yUN8q49voV+BsllDfKKF3dDCx+B4Sdt+3BnjtzscLqso+vPfNyV9PjZT0M7xlBZnSoYk0aPHTBlyiJgWgv/0MpQ2RU1WDV7WYcdnyqfvvOm3fj/pm3hqavXAZyb7wFNzxwY1WklbIo7i+kvlOq5iJGfNOurQXHjI3VFh3b2AjavuvrNf/Ily4F3xsbz+L++x+o1staA97zz0EpDf2G+4M8a/IMteISwTzOJfzax8nvtL53JX0rKyv46Z9+AoVCASsrKwACq9YDBw5gYmICCwsL1WMKhQLm5+exvLyMYrGIyclJ5PN5HDlyxHmO5eVlnDhxAvv3769um52drZbVfD6P06dP1x2ztLSEhYUFTE1NIZfLYXZ2FkAgxB46dKju3HNzc5iensbRo0dx7NgxrKysYGJiAvl8HidOnOhYXpF08+yzz+KBBx4I3R/SZ+j4kCoF2xagYEsI2QqUy8C1a8H/5sIecfy/Scdsc7Mm+MahF9ZBaRZsbSEliWALDI7lLAXbrQ0F2+ZsbNT8n159OBBsd/xxTbDVur7eFEHSXjSpFcG2GZ0UbOMg12YLDa5BqLBZG7aFcJQAafudBaIF22Z55qrPzKnjIgINDQWC7YULgWArwpHcc6VQJwZRsK39LpVqFulm3C63EXIffB/YuHANCjp0wMM8xo43DoWPPIdr5642fe9qDey5exznP/8qXvqjs1AZD7u/7jrc8KabAK3xxeWzYrIZG+1r3PTgbdh58674B1lpGt4zgvv//puhoeBlPWSGPXgZD8pT1Txr1q6wXU+4BlOAZO/NOMeUy8FzJYuPmfWUeb8lrs3NyjVHCLabm0G8GxtBOK2BK1cq9fTVZ/HGNz5Q3e4SbDvdBrPz02VFP6iCrTAIbVZCXKRFsN1G3QtCCCEmZgfP7ow166CbnZ1BsfpMA3GnCDfbTghJN3W+C6GdU2tdx7TSubXFzGZ0yiVC0vTFid8VJmygq5V02OeKY7cSNgAl1r6y4JVS9SKqiT2rwvS1a2533QtJp7kwEtAo2JrhOyXYynWZaQ0TbOPeF5d4J9cm+eQ6r2AKtt7OHcG98IOPXKcKacNosaqO2QPe9/4Hg/CZeitIu9xIeu781jfi7f/8PQ15/ubZb6hLRxzaHewUMVZ8KQOAVkDZB2AJ8nHEVrESdV17nLQkOUbKuzlwYD4b5vMT9QzZYcy6SKx07f2C+LCt/o/uiI8u0ZYQQgQKti3C0SJCyKAT5qPW1XC3w7mOI4QQEmBaYGY8jaznV628RBwYNtxixrFAs4VDmRrcbLptv3H5lk1yLND+9dl+fSXOKCFZcAnKUeKdS3gXgdcUveIKtnY6bUHKTlvY9iSYVtF2WsPiTSrY2r/rBjlSNJvE9I/r+p1m7AH1sPZdnGcyygVJ1H5XmGbHSPmTtNkfoHEQRKyzZZaCaZAgda8gvm1FsDZdEZj1aTDYBpiPeJL7HteHbStxE0K2BxRsW4DWZIQQQgghJAoRuko6A5w+A+89k/CUxqafgYKGl6mZTPo66KnL4mT2b3ubrxX8kgcND77nV/f5XnPVzNcqCC/n8j1A6dBjJe4qIQuoxTlvs+N936sLU71+Mw2S9qh0WOfyfAVlzFT0lK6GCVsQzk635LuGQkYZC8n5HrSfgad8eJtD8DaGoYY2Ac+HVoAPDe178JQP5WlorQCtoKHha68ShV93/c57IXkj+3yv/jpleyV+mHnXLL9sdJBbnly75zfkl+fXd4a8GGWvmh7U31sNVWeFXnddrvJnXmPYb/sYoDEPY6RVawXfyD8pD0pZ6Y3K8xhl33XuxMfYaYeG72nns6ehAiWySdlQlXsT+pzEeY4c9zzyGK3g+V7w8Xx4no+M9pBRPrLyrEidVyk/1cETFVyTKmfh+Qre0GYQh9LVODPlDDJeGdAevM2h4Ln72Q9BFZ6HypSDukID6tpVqJ1jQJuDYmFire2zNu45KOwSsn2gYJsApdSjAB696657WVESQgghhBAn0k70PMD7+38XUGUAwXxs20VCEjQUfF0RK5SCZwkpzcRHO41xBQIRRNqhQfhNEMbcLgKNH5GgMAHcDtMsHjsuEbvLSlXjLvsKG34GCh7WSxls+Flky35FPAryreR7gZW19qtxaCiUfA8KuipClSqCYtYhKNr7Sr6Hsvaq1p4ZVROyfK3qrt1TEYJbxDWbArWdpyVLsHWlOSpuiUfrinhohRER17535n2Q63L9to8x05wkrXb+hQ2mROW565g45056TNjxUXHFKRsKOrTvGyedcQak7PAl36s9N5VBqYzykfHcz7TcA3kWNsoZlH2FsvYw5JXhKV2Nc6OcCeKEh7XNTF1Z1tU/gB4bA/aOp2oGAzUIQrYXFGwToLV+CsBTDz544FC/00IIIYQQQtKJTK3NZoHhH5mF9y9mMTxaEXAjFpaqTs+1Fs0CKoaDIhz4tXhUphY+Vsu+4sNSV85b3gR85T7WtPyqTmVvw6dms+P9khXGmkItaRHjwLjnapiu7xlT/hOku+oawDPSqAG1WQmyDmSvAZkdQHa45ocVpdrUbNPdgLIWfPNKqC4+14BVblQZ8Mq16fnmdPNO+LAFjMWXXAvhdWjRMRdRfpnrfNh64b/tYwD3s+dya2Gm1c6/VvwGt+KPthM+bOX4qLjadj8Rp16wwzQ7pvLMoISgXsoG27RXM5K2/UmjHIRRXlAn6rWgbiuPAd5QUMeVy4BfBvQmgKHKY7wWlAvffxbq3nuhs4bLC/m0KNi68jVK/E0anhCy9aFgSwghhBBCSBfx/WCFclmYSrYJpugm4mgcEaUVscUU96qCIhrFHNuvo9CuW7Co401/kmHEdU0WJ54keWf7AjV/m/esusBVhJ9T08exGVcmUxNIw85fJ+KbltxdEGzNczdbdKyTgm2ctLQi2JZCBkvC7pVLsLUFcjuc/LbvSVK/t67zJCGuYNsu3fJhWyoFH3OgI0oEl0X4xD+tUoGf8J07a/db7lOpBAwN1Q9GXL5siL+oPaO2b2VCCOklFGxbhBU2IWSrY/vWIoQQEh/TKtVebApwWH2GbIvCFP2S+D90rUpuC25hlofdFGxFsGwWtlkamrl7aOUaogRbW1Bq9b3Zyfdt3EXVXMQpm51adCxJeHMBtHYEW1f8rjLhWmzNlS47nGshuqSkaeG1QUGpmmArC42J4AvUC+fmomOmRbud571YZI5WtISQMCjYtghfoISQrQwtCgghpHVsi1RTNBBhKMoiMY7VmmmdGWWZ2QyX5WaraWr3eNtq1V4J3hUuyblbOd62VIyyWK26wRiuCUZi0WdaCgoiIJrWm2HijW0daoqEYdaczdLb7JqFNFjYmiJ8py1sw9ITN/9sC1ugZuXZLwbNwjbMDUZcC1thaKg2kGWK++Yx8ozIsxlnAIgQQvoBBVtCCCEN0LKDEEJax5zy3m3LLBEf2rWmbHZsK3GbJLFSG9T3T9J7bgtFUe/epFbUURbBcYgSj9slSVmNIwi63EuY5+oH3cy/ONgWwL04T9wwYRbc5kBDq3ln1oVhgm254vPbtMjtR7s3qYsMQsj2g4ItIYQQQkiFZkKCva/bUyXJYNNtEcAWbFvp1PdKsI0TTzctAXuF1oEgZPrHNK1RW7X2DStHdp0VNVU/Lq4BgE65REhaVsPEPVddbJdl0xWJuT2umBk3/1rN524yiIIt0OhDtlWiRHwRaLPZPHm3wQABAABJREFU4H8ZZOG7nBCSNijYEkIIIYSAfgZJ53GJBnFdEESF6cYiYM2mtPdCTA07x6C4RBgeDr5NC2s53uUSIUla7HJjCvX29rjpbYYdlzlAJRa/YT6QO4V9XtkWZ4p82DV32iWC5EOcc/eKQXOJ4Cq34q4giUsE02WI7Y7GXMhNrGtdi4uZ8P1OCOknFGwJIYQQQpBMfO13Z5xsb8wp750QbDndtjN4Xs2HpvzulGAbJnrZ8biEr1YHlsy4bKtYsV41r68buKxxmwm2USJimK/nOP6im6WzkwMpnaJXInIrA1DN7oM52JW0jnKVeVOc7ZQlLyGEdBMKti3Cip0QQgghhAw6bNN2FhHTw3xptjo9Pa4LAnsqvAhd7bjLcGEKXd0U/Jv59Y0SAV1T4bsl2KbNJcJWohVRNewY20VGO89HO3CQjBASBwq2LcCROEIIIYQQ0m9aXWjMjiMtmK4EouiUG4hWj2nWD5DrMMUgWeiokxa2cVwiJDlHs3O69rXjP7lV4lrYmvfADhO1Leo8UWky6beF7aC7RDDrNlfZsusK+9v0U9vM+pt9e0JIWqFg2wJpatgSQgghhJDtx1YUGHohnCQVuZNYrNoCn/jJ7EbfoRfWrXHTEUdk7wbNLGwFu0wlsbDtd/5uV+y6wFXOXPdfxFmxcpeFxcIwn2/TTUK3aDVuKYdpr/fTnj5CBg0KtglQSj0K4NG7776376OmhBBCCCFk+9JpcTPp4leDSCfyK0qcNK38bGFJzt0pC9uw7b22sBV6WS7iWtjaaUtqYWtaRsexsHVZPPeLNFvYmot/ucLI/6VS8G0v5ueKQ77NRcfCrKOj0pqWgRBCCAEo2CZCa/0UgKfy+QOHokbqCCFkUGlmeST7zGlqHE0nhBAyCLQjcsdZvClscaQ4Im8r6Yja3snFplpZUKoXxBXjWgkjmAvIRWH6LI4TvtukWbAFGp/FKMHd5dKgWz6DKdQSQtIEBdsW6fdLmBBCOk0rnVj6/SKEEEIC+E7sL+Yiby5c25sJf1t1MbF+WOiz/0wIIcmgYNsCbIwRQrYiceo2e+oZIYSQ5piWd/Z3WHi2NTtLqwu02T5sm52j2blbFQDjipC9LDu9XmxMcImy5uJnSQTbOPmVpOykReCNKrculwSdOI/JoPSXJZ3mhxDSGQqFAgqFAorFIiYnJ5HL5fqdpIGDXW5CCNnmmBYpST+cOkYIIdG0IgJQOOgs/czPXp+7V+dLWxkVATLpJ5MJPq3uH8RPLxb2S0v7sFkbN01pHWSOHj2K/fv3QykFpRSmpqYwMzNT/UxNTWFqagqLi4v9TmpX2LdvH+bn5/uahqNHj2Jqaqp6D1ZWVmIdVywWsXfv3up96+R1LC8vY35+HjMzMygUCg3705BvaYcWtoQQso1pt9Getg4bIYSkDVNIAtI5UyGOBWE/LQfTYrXYCs3ek53wYWsLTs0sTeMyyPnuQu5FkjxvtZ2Tluc7ypdxJ9PoWkCs37CN2jsOHz6Mw4cPY//+/SgUCjh58mRDmGKxiJmZGRw5cgSnT5/uurXlysoK8vl8V89hUiwWe3YuF3IP5ufnsbi4iIWFBSwsLDQ97vjx4zhw4EDofWuH2dlZHDx4EHv37g0N0+98SzsUbAkhZBuTtPOSRqHBhdlRTfvUYlenOu1pJoRsHVjXNKeZb1QhbhgRWJPkfVi8piuAsHO164Yh6YJS3UbyOUyQs683arGrbqTNPmc/iFp0rJNpdMXVyvlc6S2Xw9uodpylUv1+aUe57rW9vd/3aisxPj4eKsDlcjmcPHkSe/fuxSOPPILTp093NS1xBctOcPbs2Z6cJw7XX389Zmdnq6JtXLoloEfFm6Z8SysUbAkhZJvj+40N3aiwaW/Y2o3zNFtYhKUrzWkmhGwtktY3aXgH9DINSjWKoc3Ob1pUR8XXSl2f5Nrbne4dV2jrxyBjkrxLQ5ntJ2GD892ysA3b1srCZM2MCqJmLkSVEfM53O7lo9ccPHgQi4uLXbeAdU3B3y7Mzc3h6NGjWFpawvT0dGi4lZUVTE5O4sSJEz1MHUkCBVtCCNnGtDIVM+0N20ESOwcprYQQsh1x1dPtCLbtkFR87dQ7JupaXIJ2rwhLV5SFbbdJo4UtUF8WBsXCNs5xrbqa6YTLENIa+/btAxAIqt0SbLeqr9y4TExMIJ/PY2FhIVKwPXXqFGZnZ3uYMpIUCraEELKNGQQBlhBCSDrol8iRFmGlEy4RWiXK9UG3SEu+k/Yxy04n76srLntbnPOZYWzBNsk5kpyL7qf6g0yD74ZYWywWcfz4cczNzWFycrLj8bsoFAooFotYXV3t2TnjMDc3h7m5ORSLxVC3BOPj471NlEFa8y1tULBtAa4kSQghhBBCthNpETb6aRkXR7AtlwfDfVAc0irYxl0gj7NYSBSu8sF+fncRQXV6ehoTExN1+5aWlrC6uloNBwQLaZkUCgUsLy9XhcbV1VWMj4/jmWeewZEjR7C4uIhnnnkGExMTOHXqFGZmZqrHHjlypOGcR48erYqZZ8+exb59+6oWp4VCATMzMygUCpicnMSTTz5Ztdw9efJkdYGuubk5LC8vI5/PO/3yNruuuOdJysGDBzE3N4fjx487rWiXl5djC6VR+WTHefLkyaoVtaTDRbN8M62kT58+jfn5+br7Z+bbgQMHcPLkyWpeF4vFapmw7/mgQcG2BfjyJ4QQQqIRUYUWLFuTVhZNIoNNGtq//Zx+bxLln7ZZmEEkrdcSxzVFv8ptGvIsDc9Kr0i6iG4r/OGHPoKvffpr3TtBD7nlwVvwvp97X0/PKQKby2fq3Nwc9u/fXycCFgoF7N+/HydOnMDExASKxSLm5+cbjl1cXKz6qxUhdH5+HisrK5G+WaempjA/P18nWopV6sLCAiYmJnD69GlMTU0BAI4fP47Dhw9jeXkZ8/PzKBQKmJiYwMmTJzE/P4/l5eWGc8S5rrjnSUoul8P09DQWFhac4qoIxM1olk/C/Pw8isViw0Jn8/Pzznij8u3o0aN1onaxWMQ999yDEydOVNMh+TYzM4NisYjFxUUcPHiwKiwvLS1h//79OH/+fNNrbBV7ALkb9Q8F2xbpd4OVEEIISSvmOzINIg/pLPb9JaRXpKU+aebTtVmYQSEt/lhtmqUrDenud57FGdwYhEXHmh1nLzLWzjU1rVtSUPcMAoVCoUGkk2n5Tz75ZIMrhMXFRZw6dapB6JuYmMDc3BxmZmZw+vRpnDp1yjmFf3Z21mmhGcXRo0cBoEGwPHLkCPbu3Yu5ublqOvP5PJaWlvD4449Xjzl//nydm4Hrr7++4Rxxr0uIc56kPPbYY1UrVFP0LRaLsdwhxM2n5eVlLC4uOsXRxx57rBqPjSvfCoVC1feupDmXy2F2dhbz8/MN9/qhhx7CE088gfn5+bq8mpycRLFY7Nridr1qi1CwJYQQQkhHSYuoQroD7y8hhITDBa2SE2UhG1ew7Ta9tkgdVHK5HI4cORI7/Pz8fFWktJFp/cvLy5iYmMDx48erVrompuuDuOd0pTGXyyGXy+HUqVN1It/q6mrd7zgiatzrMq+llfNEMT09jVwuh4WFhbrrXV5ejlyMTIibT7YFrkkr1sGrq6sNIvO+ffuwtLTkDF8sFhvOL3kn7ig6Ta/awhRsCSGEEEIIIaRDbBXBTtzapO1a0mxh2+uF4Vqhk/njcnvUyqJjZth2Fh2Lew6Ag49pQBaeChP1RBg8efIkjhw5goMHD2Jqagq5XK76//T0dKJFq8R9wrlz55wC4OTkZIP1aVLRMcl1mWnvhr/VgwcPYnFxsU54jSNiJsmnlZUVPPbYYx1J78TERNVSd2VlBcvLy8jlcjh9+nRougfdT20UFGwJIYQQQgghqSYNwmEcn9xbSQDaStfSKwZFBOyUqNzJ6xWxu9uCrTzH8km7wL6VEVGwmSWphFtYWMDc3ByOHTuGpaUlLC4uIpfL4emnn4497V3impqacgq9LsvTOO4DXOeIe12tnicOc3NzWFxcrFrzyiJdzYibT3GvNQlLS0uYn5/H/Pw8ZmdnkcvlsLS0hOPHj3fsHIMCBVtCCCGEEEJIakmLABZHnBoUwW6QSbOF7SDQKyvgVnzYxomnE+cwn1MKtv1DLCOLxWJoGLFUFV+k8jly5Eh1IbJHHnmk6eJSS0tLdX5Ro87ZLkmuq9vk83lMTExgYWEBk5OTWF5edi5CZhM3nzqdn0tLS1X/vt3wPTto8DWWAKXUo0qpxWLxQr+TQgghhBBCyLZAfFum4UMxlgw6aXqe+Bxvb0Tssy1NBdn+0EMPoVAoYHl5uW6/+GcdHx9viMOePi/7JyYmqu4IwghLT1ySXFcvmJubC/X/GkaSfJqYmMDZs2fbSqPwxBNPYHJyskGste9n0usZVCjYJkBr/ZTWejaXu67fSSGEEEIIIYQQQggZWBYWFrCwsODct7S0hHw+X51+HxYun8/XuRO4/vrrGyw+zSn7R44cCZ1ev7Ky0rZgK2mNe12d5Ny5cw3b5Dxzc3OJ/P3GzaeFhYXQcKdOnYp9PgANi40Jp0+frrun3VpMLG1QsCWEEEIIIYQQQsjAIP5u2/3QJULnWF1dTTw1fnZ2Fvl8HvPz83XbC4UCjh07hhMnTlS3LS8vY2VlpS6cnM8UZKenp6sLfwGBuGj6bZ2dncXk5CSmpqYa4hJfr+a2OOKgfd1JrivJeZrhsjydmJhAPp/HqVOnnGJo2Hnj5tPk5CQOHjyIubm5hnBynWHnsPNN3DaYrKysVNNQLBbr/PC6BOqo+AcNpVlDJWb//gP6L/7iFIaH+50SQgghhPQS2zcifSWSKEQQkGm4AFAqBd9ZriRBSEvQh226afc9aS825qorbT+87d7zz3/+WTzwwAOtHUxw9OhRnDx5siq05fN5HDhwINTC1MXi4iLOnj2L66+/HkAgxD3++ONVIXZ5eRnj4+NYXV2ts4AtFos4fPhwQ3xLS0tYWFjA1NQUcrmc02/r4uIiTp8+jX379mFiYgKrq6vVcIVCAfPz81heXkaxWKxO0z9y5EjduQ8dOlQX5siRI3XT+ZtdV5zzxOHo0aNYWFhAoVCoXq8Zx9LSUt31yTHmfRNx1s7PqHyy8/yZZ57Bvn37qtsmJyervycnJ3Hy5Mmm+TY/P49CoVAVaScmJjA5OYn5+fmqeDs7O9sQx9zcHKanp3H06FEcO3YMKysrVbHaFsib8eyzLdUJHXe2QsG2BSjYEkIIIdsTCrYkCRRsCek8FGzTTS8E22bnTEqL4gwhZIuSFsGWrzFCCCGEEEIIIYQQQghJCRRsCSGEEEIIIYQQQgghJCVQsCWEEEIIIYQQQgghhJCUQMGWEEIIIYQQQgghhBBCUgKXOyCEEEIIIYQQQkhX0Lq2MFgzJJzWgOr4Ej6EEDI4ULAlhBBCCCGEEEJIx2lVdFWKgi0hZHtDwZYQQgghhBBCCCEdh8IrIYS0Bn3YEkIIIYQQQgghhBBCSEqgYEsIIYQQQgghhBBCCCEpgYItIYQQQgghhBBCCCGEpAQKtoQQQgghhBBCCCGEEJISKNgSQgghhBBCCCGEEEJISqBgSwghhBBCCCGEEEIIISmBgi0hhBBCCCGEEEIIIYSkBAq2hBBCCCGEEEIIIYQQkhKy/U4AIYQQQgghhBBCCABoHXyShFeqe+khhJB+QMGWEEIIIYQQQsjAoDXg++H7KN4NLnLvkgi2SvGeE0K2HhRsE6CUehTAoxMT9/Y7KYQQQgghhBCy7WgmzFG8G2zs++fRiSMhZJvC6i8BWuuntNazudx1/U4KIYQQQggZAMQSUD5JrMYIIY0oFYh4UR8KtoT0jqNHj2JqagpKKSilsLKyEuu4YrGIvXv3QimFqakpzM/Pxzpu//79KBaLsdK1f//+arqmpqYwMzNT/UxNTWFqagqLi4uxzktIr1GarcbE7N9/QP/FX5zC8HC/U0IIIYSQXiJTcMXix/5NiInWQLlcP0Vb66C8ZDL9TRshhHSDTr0Xe/l+ffbZZ/HAAw90/0RbnPn5eSwuLuLgwYNYWFhoGn5xcREnTpxAoVDA2bNnY51jZWUF+/fvx8LCAmZnZ2Mds3//fhQKBZw/f75hX7FYxMzMDAqFAk6fPo1cLhcrTrK1abFO6PhQIbsXhBBCCCGEdAGlAmE2k6lZ/sn/hBBCyFbi+uuvx+zsLI4fP57ouCQiaaFQwPT0dCxBWBgfH8f4+HjouU+ePInV1VU88sgjseMkpBewuUgIIYQQQkiXcE3f5nRtQgghW5G5uTkUi0UsLS1FhltZWcHk5GTi+HO5HObm5rCysoJCodBqMhs4ePAgVlZWYrtzIKQXULAlhBBCCCGEEEIIIW0xMTGBfD7f1AL21KlTmJiYSBT38vIyJicnMTk5iVwul8jKthn79u0DgI6KwIS0CwVbQgghhBBCCCGEENI2c3NzWF5ejlwYLMxFQRRmfAcPHmxqxZsE8aGbz+c7Fich7ULBlhBCCCGEEEIIIYS0zcGDBwEg1JetWMomoVgs1vm6nZubQ6FQ6IgLg2KxiOPHj2N6ejqx1S8h3YSCLSGEEEIIIYQQQghpm1wuF7kwWKFQSLTQGNAo8ubz+Y64RSgUCnjkkUcwOTmJEydOtBUXIZ0m2+8EEEIIIYQQQgghhKSVD33kQzjztTP9TkZHePCWB/Fz7/u5rp7jsccew8zMDAqFQp3VarFYbMkdwurqasO22dlZHD16NJZoWygUMD8/X7dNrHaffPJJukIgqYSCLSGEEEIIIYQQQgjpCNPT01UL2CNHjlS3Ly8vY3p6OlFchUIBBw4caNg+NzeHo0ePYmlpqWmcuVyuLh2EDAIUbAkhhBBCCCGEEEJC6LZF6lbk4MGDWFxcrBNKXZayzVhaWsIzzzzTYJm7urpaFYWTisCEDAIUbAkhhBBCEqA14Pu1/5Xqb3oIIYQQQtLG3NwcFhcXq/5nwyxlm5HL5UL9yx49ehTz8/MNi5IRshXgomOEEEIIITFRql6gtX8TQgghhJBgYbCJiYmqj9nl5eXEvmJXVlYiRV6xrD1+/HjrCSUkpVCwJYQQQgiJiVKA59V/KNgSQgghhDQyNzeHpaWllo9vJvJOTEzUicKEbCUo2LYIO2eEEEIIIYQQQkg94jqonY/W/b4KkpRz5841bBML2Lm5OUxOTnblvHNzc1hZWUGhUOhK/IT0Cwq2LULBlhBCCCGEEEIIqdEpV0F0OTR4uCxpJyYmkM/ncerUKUxMTDTsj1qEbH5+PtZ5RQgOs7JdXV1FsViMFRchaYKCLSGEEEIIIYQQQtrG5Tqo1Q8F28Hg6NGj2LdvHwqFAvbu3dsgtD7++OOYm5trOGZqagorKytYWVnB1NQUjh49CiBwg7B///7qgmKy3cXi4iIOHTpUF+fi4mLDOQBg//79DekgJM0ozbkGidm//4D+q786hUym3ykhhBBCCCGEEEJIqzz77LN44IEH+p0MQkhKaLFO6PgQEy1sW4DTMwghhBBCCCGEEEIIId2Agi0hhBBCCCGEEEIIIYSkBAq2hBBCCCGEEEIIIYQQkhIo2BJCCCGEEEIIIYQQQkhKoGBLCCGEEEIIIYQQQgghKYGCLSGEEEIIIYQQQgghhKQECraEEEIIIYQQQgghhBCSEijYEkIIIYQQQgghhBBCSErI9jsB/UApNVv5dx+AHIB5rXWxbwkihBBCCCGEEEIIIYQQbEPBVil1WGt91PwN4EkAM/1LFSGEEEIIIYQQQgghhGxPlwiPK6Umjd8rACbDAhNCCCGEEEIIIWTrorXudxIIISkgTXXBtrOwBbBfa10wfucBnOpXYgghhBBCCCGEENIfMpkMyuUystntKI8QQkzK5TIymUy/kwFggARbpVQewGNa6/mIMJMApgCcReCbFqb7g8rvghE+B+Ax0B0CIYQQQgghhBCy7RgbG8Ply5eRy+X6nRRCSJ+5fPkyxsbG+p0MAAMi2CqlphH4mT3eJMxjWusZY9ukUuqk1nrKCptD4AbhMQCHLItbQgghhBBCCCGEbAP27NmD119/Hbt3706NZR0hpPeUy2Wsrq7ihhtu6HdSAKTch61S6ohS6kTlZzNR9UkAh8wNWuvlSjyz1vai1nqpIu7O2fsJIYQQQgghhBCy9dm9ezd27tyJF198EcViEaVSKVV+LAkh3UNrjVKphGKxiBdffBE7d+7E7t27+50sACm3sDXdHyilHg8LVxFcV7XWRcfukwDmACyGHD4P4LxSapmWtoQQQgghhBBCyPZBKYWbbroJly5dwsWLF/Hqq6+iXC73O1mEkB6RyWQwNjaGG264Abt374ZSqt9JApBywTYBMwi3wC0AyFfcIBwAsKC13ic7tdbFys3IR8RBCCGEEEIIIYSQLYhSCnv27MGePXv6nRRCCAGQcpcICTiAaMFWwgDAUpNwhBBCCCGEEEIIIYQQ0he2imCbA1BsFqbi0/acubHiTmFFa73SnaQRQgghhBBCCCGEEEJIPLaKS4QoipXv8cr3olLqsLF/H4BHepoiQgghhBBCCCGEEEIIcbAdBNs6KguTHU16XMUSdxYA7rzzzg6nihBCCCGEEEIIIYQQQraOS4Suo7Ve1Fof0FofuPHGG/udHEIIIYQQQgghhBBCyBZkKwm2uSbbV3uTDEIIIYQQQgghhBBCCGmNrSLYFlDzUWszboQhhBBCCCGEEEIIIYSQ1LJVBNsVNLGw1Vqv9CoxhBBCCCGEEEIIIYQQ0gpbRbA9CWAiZN9DCARdQgghhBBCCCGEEEIISTVbRbA9DmBcKeUSbacBPNGJkyilHlVKLRaLFzoRHSGEEEIIIYQQQgghhNShtNb9TkMslFJnAaxorWdC9k8DmNNaT0Vt61BaLgH4fCfjJIQMHDcAeL3fiSCE9BXWA4QQ1gOEENYDhJBRrfVbOhlhqgVbpdRhBC4N8qi5PFhBsIDYMa31khV+EsAUgLOo+a492oV0ndJaH+h0vISQwYH1ACGE9QAhhPUAIYT1ACGkG/VAtpORdZqkYqvWehnAcpeSQwghhBBCCCGEEEIIIV1lq/iwJYQQQgghhBBCCCGEkIGHgm1rLPY7AYSQvsN6gBDCeoAQwnqAEMJ6gBDS8Xog1T5sCSGEEEIIIYQQQgghZDtBC1tCCCGEEEIIIYQQQghJCRRsCSGEEEIIIYQQQgghJCVk+52ANKCUmgQwBeAsgBwAaK2P9iseQkjv6WA9MAtgH4CJymdZaz3fuZQSQrpFt97jlXqhoLVebjcuQkh36WQ9oJTKA3gcwKqxeV5rXWwvlYSQbtLBfsE0gIcqP3MAigCeYB1ASPqpvMMfa7Uv34l6ZNsLtpVK9DGt9YyxbVIpdVJrPdXreAghvaeD9cARAAta68XK7xyAE0qp8wDuYeOMkPTSrfd4pR5YADDTJCghpM90sh6oDNTMAXhE3v+V+uBIZTshJIV0uF9w0hR7lFITCPoGM+wXEJJeKvXAkwCOt3F82/UIXSIEN+GQuUEsYCoNrV7HQwjpPW0/v5VK+ZjWumDEUTQq5BMdSishpDt06z3ONgAhg0NH6oGKVc281nq/Jco8CeBgB9JJCOkenegX5M3jjHgKAOYr5yCEpAyl1BGllPTbC5GBo+lIe2JbC7aVjFoNGd06iZij352KhxDSezr4/E5prVdC9h0HMFmxrCGEpIxuvccrHTa6QSBkAOhwPXACgSWtK57F5KkjhPSCDtYDkwCece2o9BfyLSWQENJVtNbzWusZrfVSq3F0sj2xrQVbBNMTw1TzAoB8TIGlU/EQQnpPp57fg0qpkyH7Tle+DyRMGyGkN3TrPT4ZMZBDCEkXHakHKjNucuIeyURrvUi/9oSkmk62B5yiTMUtQjuWe4SQdNOxemS7C7YHEJ2REqZX8RBCek+nnt9TAMZD9uUq36sh+wkh/aXj7/HK6Dot6QgZHDpVDzwWEQ8hJN10qh5YQjC77qRDmDkCtwU+IWRr0LF+xXZfdCyHYKXGZmF6FQ8hpPfk0IHnt4nz8IcqYWhpR0g6yaGD7/FK5yxsKhQhJJ3k0Jl6II9Kh8zyU7cPXB2ekLSTQ2f6BQWl1ByCRUdfUEod0lovVRYiO2b7tiWEbCly6FC/YrsLtlEUK99hFnO9jocQ0nuKle92n99p0NKOkEGlWPlOUg/Maq2PdiEthJD+UKx8x6kHJgCsKKUOm/VAZRr0aaWUvRAZIWQwKFa+Y7UHtNaLSqkCAp/WJ5RSRQCP0ICDkG1NsfIdqx7Z7i4RCCGkqyilFhBY2tBnHSHbgMrq8LScIWR7k0cwJbpKZXX4ZXB1eEK2G4sInv0cAuF2or/JIYQMChRsCSGkS1SEm4MApmhNQ8i2IU/rGUJIRaC1OQlgmosRE7L1qbg/yFVWnZ9CsAjZBICzlT4CIYREQsE23HeEbI+7SFCn4iGE9J5ck+2Jn99KZ2wBwdQnLj5CSPrJNdnetB7gQmOEDDy5JtvjtgfC3vvFyjcXIyYkveSabI/bHjinta5a2mutFxH4si4gsLQNOw8hZPDJNdkeqz2x3QXbAsJ9R4wbYXoVDyGk93Tr+T0BYI6WdoQMBG3XA1xojJCBp5P9gmZwSjQh6aRT9cC8y5d9xYhjf+XnweTJI4QMAB3TF7b7omMraKJ8xxRbOhUPIaT3dPz5rfitPcIVYAkZGDpRDxwEMKWUmrK2S8Ps8cq+otaaPq0JSR+d7Bc0E2RPxU4VIaSXtF0PVAZwi2H7tdZFpdQTCKxtCSFbj47pC9vdwvYkwhtUDyHI6F7GQwjpPR19fpVShwGctMVapdQE/VURklrarge01ota6xmt9Zz5AXCoEuSJyjaKtYSkk061B44hWHTMhcTPmXeEpJNOtAeKCBdrTJ6JnSpCyCDRMX1huwu2xwGMh6zUOA3gCXODUioXIrgkiocQkio6VQ9AKTUNoGD6qzLIgx00QtJKx+oBQsjA0pF6oNIGKFbaBDYzABbpOoWQ1NKp9kChSTthCgBn4hEywPRCH9zWgm2lsXQIwcJAVSJElxMATlaciLcTDyEkJXSqHlBK5RGs/jqulJo1PocrVrePc/ExQtJJp+oBQsjg0uF6YAbAEXNRoUq4CQC0sickpXSwHpA6oE7MqQg84jqt2Mm0E0I6Tg7hvmiBHuiD292HLbTWS0qpolLqCICzqPmUsH3QAYFp8wE4/E4ljIcQkiI6VA88XTkubDSdYi0hKaZT7QGhMojzOGpTo59USs0BWOBALiHppIP9guXK8/6kUmoVQYevoLWmz0pCUk4n6oGKYLNfKXWkUheYK8IfoREHIemkYmj1EIL2+wSACaXUaQR9+WNWG77r+qDSWrdyHYQQQgghhBBCCCGEEEI6zLZ2iUAIIYQQQgghhBBCCCFpgoItIYQQQgghhBBCCCGEpAQKtoQQQgghhBBCCCGEEJISKNgSQgghhBBCCCGEEEJISqBgSwghhBBCCCGEEEIIISkh2+8EEEIIIYQQQgghhBBCSJpQSh0GUASwCqCotV7u1bkp2BJCCCGEEEIIIYQQQkgFpdQJAIe01kWl1ASA0wD29ur8dIlACCGEEEIIIYQQQgghqFrWntRaFwFAa10AsL+nadBa9/J8hBBCCCGEEEIIIYQQkkqUUucB3COCbV/SQMGWEEIIIYQQQgghhBAyyCil8gAe01rPR4SZBDAF4CyAHABorY8a+3MAzgPYByCPwIdt3gzTC+jDlhBCCCGEEEIIIYQQMrAopaYBPAngeJMwj2mtZ4xtk0qpk1rrqcqmAwAKAHJa66VKGCilFrTWc927gnrow5YQQgghhBBCCCGEEDJwKKWOVBYIAwKhNYonARwyN2itlyvxzBqbJ7TWK1aYgxXr255AwZYQQgghhBBCCCGEEDJwaK3ntdYzYg0bRkWQXQ3xS3sSgFjPriJwg2CzisD6tidQsCWEEEIIIYQQQgghhGxlZhBugVsAkK9Y0BZQ8W1rMY5AtO0JFGwJIYQQQgghhBBCCCE9QymVV0qdjuNmQCl1WCl1pM1Tim9aF7L9QMUCt6CUmrADmW4Sug0FW0IIIYQQQgghhBBCSM+oiJ/LAJ6OEm0rQu1jAJ5o85Q5uF0d2GEAYB41FwmyWNlim+dPRLaXJyOEEEIIIYQQQgghhBCt9XxFkH1aKfWI7V+2sm8SQMO+DiNxj1fStaSUGldKHTbT2sXzN0DBlhBCCCGEEEIIIYQQ0nPCRNseirVh6eqpRa0NXSIQQgghhBBCCCGEEEL6QsV6teoeod9ibRqgYEsIIYQQQgghhBBCCOkbhmj7Aron1uaabF/t8PlahoItIYQQQgghhBBCCCFkK1NAxUetg3EjTCqgYEsIIYQQQgghhBBCCOkbhhuEe2C4R+jgKVbQxMJWa73SwfO1BQVbQgghhBBCCCGEEEJIXxCxVmu9X2tdtH3adug0JwFMhOx7CIGgmxoo2BJCCCGEEEIIIYQQQnqOKdaa27sg2h4HMK6Ucom20wCe6MA5OgYFW0IIIYQQQgghhBBCSE8JE2uFFkTbHEL81FYWMDsEYMFKwzSAgtZ6KXbCe4DSWvc7DYQQQgghhBBCCCGEkG2CUioP4IjWeipG2CNAVcC19x1G4NIgj5rLgxUEC4gds4VYpdQkgCkAZ1HzXXu05QvpEhRsCSGEEEIIIYQQQgghJCXQJQIhhBBCCCGEEEIIIYSkBAq2hBBCCCGEEEIIIYQQkhIo2BJCCCGEEEIIIYQQQkhKoGBLCCGEEEIIIYQQQgghKYGCLSGEEEIIIYQQQgghhKQECraEEEIIIYQQQgghhBCSEijYEkIIIYQQQgghhBBCSEqgYEsIIYQQQgghhBBCCCEpgYItIYQQQgghhBBCCCGEpAQKtoQQQgghhBBCCCGEEJISKNgSQgghhBBCCCGEEEJISqBgSwghhBBCCCGEEEIIISkh2+8EDCLve9/79Ec+8pF+J4MQQgghhBBCCCGEENJfVKcjpIVtC7z++uv9TgIhhBBCCCGEEEIIIWQLQsGWEEIIIYQQQgghhBBCUgIF2x5x9OhR7N+/H0opKKUwNTWFmZmZuo+5f+/evf1Oct/Yt28f5ufn+52MWBw9ehRTU1PV+7Zv3z7MzMxgZWWl30kjhBBCCCGEEEIIIQOI0lr3Ow0Dx4EDB/SpU6daOnb//v0oFAo4f/58aJijR49ifn4e2/Xe7Nu3D5OTk1hYWOh3UmIT574SQgghhBBCCCGEkC0HfdgOOuPj403DHD58GPl8HsVisfsJSiFnz54dKLEWiHdfCSGEEEIIIYQQQghpBgXblDI3N4dCodDvZBBCCCGEEEIIIYQQQnoIBduUcuDAAayurvY7GYQQQgghhBBCCCGEkB5CwTYlrKys1C1Ulc/n+5ia/lEoFLCysoLl5eV+J4UQQgghhBBCCCGEkJ6T7XcCSEChUMDExETdtsnJSQCBe4Tl5eWqi4QTJ05genoaAFAsFnHPPfegWCwil8vhyJEjmJycxMzMDAqFAg4cOIATJ05gcXERAHDu3DkUi0XMz883nE+QsABw+vTphrCFQqEu/pMnT2JpaQmrq6soFot45plncOTIkYb4C4UClpeXq/5eV1dXMT4+Xg1vXms+n8fp06cb0ibnkWsHAp+/7aatXzS7nvn5eSwuLqJYLGJiYgILCwvV+7u8vIxisYh8Po8TJ05gYmKirjxMTEzgxIkTLYn/hUIBR44cQS6Xq5ZNuUeEEEIIIYQQQgghpItorflJ+Nm/f79ulcnJSZ3L5ZzbT58+HXns9PR06LELCwvO7fl8vmHf6dOndS6X0ydOnGg45siRI3W/z58/r3O5nD558qQzPXLu8+fPV7efOHGiIZ3nz5/X09PTDXEsLCw0bD98+LDO5/MNYWdnZxuu5ezZszqfz+uzZ8+2nLZOEHZfo4h7PadPn9YAGu7ByZMndfAI13P+/Hln/sVlYWFB5/P5unybnJzUhw8fbjlOQgghhBBCCCGEkC1Kx7VHukToA8ViEXNzc5ibm8PU1BT27t0bywXAiRMnMD4+jrm5ueq2lZUVzMzMYHZ2tiF8Pp9HoVBo2JfP5/H444/j0KFDVatOILCqXFhYqFvsLJfLYXZ2FvPz8w3xP/TQQzh16hQmJiaQy+Wq2ycnJ1EsFutcPJw6dapqWWsyOzvbsP36669vCLe4uIhTp041XMvExATm5uYwMzPTctr6QZLryefzyOfzOHnyZF3YAwcOAAisdG0ef/zxltK1vLyM+fl5PP3003X5NjU1haNHj7YUJyGEEEIIIYQQQgiJDwXbPpDL5bCwsICFhQWcPHkS58+fr7o/aMbJkyexuLiIpaUlFItFHDt2zCnWCmFT/w8fPoxisVjn/gAI3BSYgi0A7Nu3r07YNSkWiw1pF6HPXDRtYmICx48fdwrTttjqYn5+Ho899phz38GDB51+b+OmrR8kvZ7HHnus4V4tLy9jenoaCwsLdduPHz9edZmRFBH/TbHWxC4bhBBCCBlstAZ8v/Mfrft9ZYQQQgghgwsF25TgsmB1IX5MZ2Zm8MQTT7TlV3RiYgLPPPNM3W8Rj1dWVnD06FEsLi7i9OnToQJnXF+wExMTOHjwYNWieG5urmoZ2kysLhQKVZ+sLnK5HHK5XIMFalr81JoUCoWWrmd2drbBMrhQKODxxx+v+rJtF/GVa1pwC2Y5IYQQQsjWQevOi6vdiJMQQgghZDtBwTYl2FP3AYROQZ+dnUU+n4/lRiEKWVDKZGlpCfv27atO15+dncXU1FRb5xEWFhZw+vRpzM7OYnl5GTMzM9i7d29T9wSSxjCrTztcWikWi3WLxyW5nlwuh3w+X7WmlUXm8vl81XpZjmlVqF5YWKjGZyP3KI0iOCGEEELaQynA8zr3UarfV0QIIYQQMthk+52AXqOUmgAwobVuT+3sMC4h7Ny5c86wKysrmJubw5EjRzA/P9+ylW2hUKizbl1aWsLMzAxOnz6NfD7fUpxhrKysVH2x5vN5HDlyBMViEfPz83jkkUdw/vz50GMlb6KsSKMsVtOCiKmtXs/c3Bzm5+exsLCA48eP4+DBgwCA6elpnDhxoiqER7nIiGJlZQWHDx92prtQKLTsZoEQQgghhBBCSHqJOzNCwnEmBek1StV/zG1blW0n2ALIA3hSKZUDUASwDGBea50680yXoCdWmocPH8aBAwewf/9+TE1NxfaBa8ZTLBbx0EMPVbc98cQTmJycbBBrbXcIS0tLicW7QqGA1dXVunSKL1+xOg0TXGV7mAWtbDevJY0cO3YMjz32WMvXc/DgQczNzVVdIIiF7tzcXNXPcKuuEcRa22VNLa4r2nG/QQghhBBCCCEknWxuBp9m4pf4KJfPVhbLSHqQsuZ5QDYbfLQOfmcy/U5d99iWLhG01nsB7NVa79Vaz6RRrF1aWnJOmX/iiSeqVpAyRX5mZiZUqAsTBRcXF5HL5eosKsNE09OnT9fF3+qCXfbiWEI+n8f4+HjTY8OOX1paQj6fT70F6OLiYjV/W7meXC6HyclJHDlypO4+idXu/Px8y5bRJ06cqMZlUiwWq76S027BTAghhBBCCCHEjb3IZLkcfHwfuHYNuHoVKJWiPyLslkq1Y/nhp9ufcjkod+vrwf+eVyvTW5ltKdgCgNa62I/zxhE7l5eXcejQIezbt69u+8zMTIPV5ezsLCYmJvDII4844xofH2/whbuysoInnngCTz/9dN32ycnJBr+4KysrVavLYrGIQqGAAwcOAAh32SDYIvLy8nKDv1oJY4vT9rHit9denK1QKODYsWNVwVFImjYgyF87z+MSdV+LxSKmpqbqrGKTXo+ZxuXl5QaL6rm5ORw/fjyxpbWwvLxcXdDOPt/jjz/udJVACCGEkMHH7sB347PVO1SEEDIIiPAldfPmJrCxEYivV64Egm2z+lyEW9btpB9I+dvqrhCE7egSoS8cPXoUx44dqwqWU1NTDSKl+AoVMVEsGkWkk+2m5eXKykr1mH379iGfz9eJfblcDrOzs1hcXAQQiIdnz57FCy+80HD+EydOYH5+HjMzM1WRdmJiAtPT0zh8+HB1++zsbF2apqamMDc3h+np6ep1AsD8/HxVfMzlcnj66aexurpaTYukR9JbLBZx6NChuniPHDlStRo9ceIEFhcXMT8/j+uvvx5AIMw+/fTT1WtxxdEsbYJY+boE0TCa3ddCoVDd58rvZtdjc/DgQZw9e7Zhf6t+a4GaEH/48GFMTU3h6NGjOHfuHAqFAubn51sWgQkhhBCSfrrth1Di3g4dK0IISTNiUStTyEul4DuTAV57LfjccEN0HGtrQb0+NFSbni7Qr20P+b7vC77f903AUx/rb1pcPPotwD+IoVH82mKs9Jd0BtrX2PQz2JO5gjtzF5H94EFk/ulsXRncaig9IE+UUioP4DGt9XxEmEkAUwDOAsgBgNb6qBVmGoHvWiFvh2nGgQMH9KlTp5Ic0hfm5+exvLyM06dPtx1Xu5XvoIyAiI/gtLtX6CTdXGyOEEIIIelGOuyd7PD4fvDtefX/E0II6Q9aBxa05TIwPBxsW18P+uijo8BHPwq8/DJw7731x9n9+EuXgvfGyEjw26zbxXp3EPr9A8/ffWPwfcs3A187A9zyYD9TU4+kJ8QFZB1zc7HSv17OoORncLXs4brsNRx4/Q+w+11vw9BHfw+7dqVGb+p4CgZCi66IrE8CON4kzGNa6xlj26RS6qTW2lxJaQXAqrhEUErllFJHooRg0p5T8UGyrIha/GyrcvLkSQCgWEsIIYRsQ6SNJ8JqO6Skw0QIIcRC6nmlagN0m5u1vnqhAHz1q8Cdd9YfIws9CRcvBla2Y2ONBl2bm8E5tvIiUOlhR/B1bQdw3d8Bnvi5vqamjg99CLgGoLk30NjpX1sLBhhefRXYtQu455cOwtvYwPBVYMeOoMxtxfZHqgVbpdQRABMAjgEoNAn+JIB7zA1a62Wl1LxSalZrvVjZVrDCLCmlTgCgYGthWtVKI75VwdauzNPaoD916lRb7gUGkSQuIAghhBCytRC/hO1awJode1P87YQQnCbS2oYlhJBmmH1yrQOLWOHFF4Fz54DLl2vbXDMkXnvxGq7++Qp2jNQOVgjqxc3zV+CvrXNGRU/YH3xd2Rl8L/5W31LSQJI0xQxbhofS7nFcveVNWLthHFc2h7FXl6Eri5C53stb4X2dasHWtHpVSj0eFk4pNQvDatbiJIA5AIuOfUJRKZXXWq9EhBk4XAtrJaEdq9pm8QLpfHjazbNBQ/zXzs3N9TsphBBCCOkDIti2i2ugX/5PY5uvFdLchiWEkGaYdbPWNZc4vg9sfuRp3Pm3f4m//Z+VAFZFpyq//bUNAMBlOFBAZs9OeMOplpm2CMH6O/Ar5szPf7FvKWkgSZpihNUaKL1+AQCw49bnceHr34dNPwOlfZRKgWBrDxKYg8iDLNxulSdpBuEWuAUAeaVUDoG17tNa672OcMXuJK33yGJR5sJbrS4eZU+BaGe0TI5Nq6XF0tISDh8+3O9k9JRCoYBcLretfPYSQgghpEanBNswBmS5jFDMjl5a27CEEBIXWSjMnFmRzQKZ176GUmYUt3zH2wCtoQFomWWLoCLXOrDAzdywFxMzgYWnaYW7samgMl7VRy7pIu9/U/B9wzcH37/4/+1fWmz+6T8NvuOkKWbYqxdLOPvEcYw89wXs/f0PY3XHDtyyeQ1Ya3w3m+LsoA+0bhXB9gDC/dsWjDAFAIfMnRUht8FVwiAzMTGBEydO9DsZA8d2FC3z+TzOnz/f72QQQgghpA9oHfgcLJeDFb/bIWyhMdOCa9CsXLQOrkH8MZqdwkG7FkIIkQG6Uqn2LaJtaUPjcvY67PuhKSgV7Jep5qbR1osvBsdlKqKsqtTtmQzgq1q9CQD4vUXgKWsS86N54Du3lwvC7iBKZOU7TW4okqQpZlhvOAs9PYPV//YUrnv1C7iaHcKmzkBvNLr6ALbOO3qrCLY5NLeQzWmtC0op28z0cdB/LSGEEEII2WaID8O6Dnab2DOz5Ld0ngbJt6Hkjc2gW+wQQrYnUbMESiXAKyuMjNQG3sQK16y3h4cDcXZsLPgtom42G4TTGhgZqQT+yCeBV84AX/dg8PvlM8BHNoEZCrbtsxl8DVW+x/qXkgaSpClmWN8HRncPoTS8Ixhs1lmUyh5KFR+2Urbl/WwOtg4yW0WwjaJY+R4HAK31olLqcGX7PgBnZUEyQgghhBBCthNm56YTRAm2ace2yBGr4EESmQkhJArTJYKIrMFvDaWBXC5asL3uuuC9cdNNwW+ZRZHNAmtrwf+jo5XAO68A978B+PX/Evz+wAcAXAFu6sGFbnmuBF87K99pytMkaYoZdnQUeO014IsaADQ0FHyt6qzA5f3tWvR+UNkOgm0DWuujSY+pLGw2CwB33nlnx9NECCGEEEJIr9ncDD7Dw+11cpq5RJAOf1rFT9v9AVCZ9ptpXExtq1juEEIGg8XTi/jwZz/cdjybL30V6vXXkPWCymzT9wAoZD0fzz12HRQ8fOqTv1IN71qA/Nq14HvH67UwAKpuFACjnp/66+D7kw+7f5PW+UevBd+7loPvNOVpkvscM2ypBFy9ChS/fRXZtcvYkdnAzuFN+Kcexs5n69/JrlkwvRg0/vg/+njH49yWgm0rVKxwFwHgwIEDW0SvJ4QQQggh2xXfDzrfa2uB9Yq4SGg1LmDwBFuxqjWn9QI1/75iiaZUrRMoVmmEENILPvzZD+PM187gwVsebC+i11+HvnwF2LMDGgpaK6BOyPKRydRbKtpCVzYbbDfrSqBWjwJG/agqL4NMyG/SBrIiXArzNEmaEoR1DZTag8xbxbJW2EqCba7J9tXeJIMQQgghhJD04/vAxYvBZ2Sk1uE2pxYmiQsYLMFWxAgzndlszVJsczPIF3MbMBjuHQghW4sHb3mwLQs+3wde/fnvhFYerv/EU/D9YIq55wE33gj88MhPIQPg3/+nn6gOVLlcIjz3XPB9333Bt1l3Xr0a1Ks7dlQCT1aWDzq67P5NWudQZaXQb8gH32nK0yT3OWbYixeBz30OOPGfP4LxL34KEztfwVtufg1XH/s1vP3twK5djbOEpBzL/4PIgCa7gQIqPmodjBthCCGEEEII2dZIp6ZcBi5cAC5dAm67rbavHb+tYT5s0yjY2gvwmAujSacvk6l19EqlRjcJhBAyKPgIXCDY9bDn1QxtbYHW9TvsW/6vimOeqGUhv0kbyMhoCvM0SZpihs1mZfBUARrIeBqe0tV3tgwWb7V3c5puazusoImFrdZ6pVeJIYQQQgghJK2I5dTGBnDuXOAWQcRLsbBtJc5m/6cNM21y3aa/2o0NYGioZkG2thZ8tA5cSMj0THuxMkIISSNaAwq6bjFIWXRMqjARxsIsbEWMtS0W5bi6fRRsu8h2FWwrhykNhS2mzjpI021th5MA5kP2PYRA0CWEEEIIIWTbI6Lk5ibw6quBYHvxYrCtXA5EyqSi7SC6RBDftJkMsL4ebBseDj6bm8DlyzVfjUoF+XSlsqD1rl217abPR0IISSu63mEtyuWgHpR6mpDBYOsLtcJWEWyPAziilJrQWtuuD6YRLuYmQin1KIBH77333k5ERwghhBBCSF8Qf7Xnz9cW3BI/rdvFJYLp/kHyo1SqLaojeTE8HITZ2AgEW8kviYMQQgYBu77a3Azqs7W1yn4EdaAMvLlmSLgWIiOkdyhsp+I3SIJtDiF+arXWRaXUIQALAKZku1JqGkBBa73UiQRorZ8C8NSBAwcOdSI+QgghhBBC+oXWgf9a36+5BBBLq6RC5CBa2ErafD+wsBWholwOhIxiMRAmxsaC7ZcvB5bI5sImYaKGCV0mEELSQNlX0MpDqVSzrFWq5hJBg/UZIWki1YKtUuowApcGeQATACaUUqcRLCB2zBRitdZLSqmiUuoIgLOo+a6daoiYtM7iIvDhDyc7RldqdKUbf3/wg8DsbOfSRwghhBBCQhHLUSAQJc+fB/5mdBEf+cSH4a9tYOPSGlD2wzvkSXrqogB4CpmRIWTGRlLV0dcaUJ4HZS1WIqKz+LAdGQkuu1QKtmWzwD+88kH8yN9p3oaVONN03YSQ7UlZe9CojZq5FpmMM1hnvkfMb1rfkm4TSEnbZ2pLqgVbrfXRhOGXASx3KTkECMTaM2eABx9sP64zZ4JvCraEEEIIIT1BrEOVCgTb0t8+jy++4d/jtVdexM1fu7nfyes5Cgoq6wWi8ugwhm/YA2/3aHW/5JVSwf/lMvDFtTM48bfADz0UtGGjXEikedE1Qsj2olRW8JVXnRlw7VpQp12+HOz3EbwXRkbCZw+4hFrzm4It6S7bq4ClWrBNM+Vysqligzh1wLnCr1bA298BfOyPksfjWb8feW9l3kWbCSWpZBDLPCGEELLVMX2zrq8DO7/waXh3r+O24h348Ys/iz35e3HTO+/GzvHhygG1A7Xxfy2+4H+/HPz2lDY67hqlEnDtqxdw+fmvYf3c5VS1DUrrZay9fhnY3MSXfucMdLnWKN31xtux83sfxW1vuhn33RdY1X7lK8Bf/zXw85cehtaBta34uCWEkKSY7lXi0M4AkO8DmzpbZ2G7thboGkAggynUfgv2gFSYX3LP4wKMhHQaCrYtIKPrcU3+XVMNBoFQwRZIJLLaL5Z24iLpwyXMcvofIYQQkk58P7CgUgq4ejX43/eyyN1/G974fd+JtTXAG3aICEo5DVtkk/Jq38rwYetlgJ1334jdEzdWt6UF8eOYzQJ3/fB34cLzr+H8n3wWV89+Fec+eRbr//33sMN/L3DfPQCC9v/6em3qr+kDN0xIcW3noDYhBKif8dALfB+A0tV6WHzYjo0FtlVl1NdZppsYIUqwTVP9TrYw22i1Twq2CVBKPQrg0X377q38jlcpSaOuX1Oiko7cCc7FI3yp3VuLp+53C3FF0ep1ktZxDUbIlEGgtt3umLg6Kuy8EEK2K+28v1h3kqRIectkZLGx7d14knaMl1EYvfMm3PkDj2DHDo2/+pFfwcXPvohXf/svsfb37kE2C1y5Eojc2njmkrbvOahNCDFJYtjVriDqawUfmTqXCEo11mNynqSzignpOkptK6cIFGwToLV+CsBT+/cfOCSVV5xKsxdCYtQ5WnUA7hRsy5ngn43W4qn73UJczc5DR+edI065Ne9tNht0/jyv/h7YHRNXR4WdF0LIdqZVCxvWnaQVzPImVqIaNeOCcjnYVko4oO5sN3q1eGxrrDQgaauJ10G+lMsK+37q+3HmQ/8N6196BV/+g8/grkffhlKpYmE7XFtZvVSKZ1lmt4MJIdsXqYeT1gftukTYKGfgq3rBFqhY2hphTaObKrL4+Op48Ht8tRKxVO4+IP37TMWvQqfWviHEwtcq+Pho+FTDGL+79e7ttuEEBdsW8P2aY27PS8eoU5RYaQumSeKU46oC9eZQsPFqa/HU/W4hriTn6TeDavUk6Y4jgIsPvFKpvvNn3gO5L+LTSI6R0WTXqC4hhGw3WnGdxLqTtIKIBCJQlksAKu/u0dFg+9BQ8H8SBk2wNdsrw8PBp1QKRNiRkeB35s7bUfrjF3Hq//hNvPaJ57Hne78Dvj9aN3tO/ieEkLj0a2boZtlDWdVEro2NoM4bHq4JtqHpksXH7/yW+Cd88EHggx9sL9GENJCOl24vDCco2LaA7wfToaRzlQarziixshOCrQhymR5a2CYVPJtdZy9fjIPqt9hMd1R+mqKu5wX+78wpM2anTDoyYn0r1isjI0GH0DyXi0EVvgkhhJC0UhVry7Vuz/AwcMstQRt3eDjwaZg0TmBwBFsRK4Dgei9fDq49mwV27Qq23fC9U9jznQ/g1cXfwou/+1m85RvfBs+7ty4euuQihLSC2ceRerHb9cl6KYOSGqoKtuvrtYUTZdGxSB58EPil/xX8L1WhzMbIotav50KMpFtUHhpP6eDjhc9ycfle7iS9MJygYNsCWtcWa8hUNEe7AMSpbDtZIfdCsAUA3SMftrbgmXR6ftj+XonrvbT27aSgKdavMjUQcJdtqRR9PwgrqyRLOkSclThFsM1mZaphvLLP6b6EEEJI55F3s9aA9oOXrefVrEzF4jRpnBKP+X/YAjX9xuxoyfVubtbaK9LGH7vv6/BtT07j2HsXsL56BeVsMAPYtLClWy5CSLtELWwufaJ2XSJcKw/BV5lqPby2FtT5G4YBlV23Vc9bcd5tTzGX/iMhpPNQsG0BsbD1vJqwZfugiTudvFONu6SCrS2AugRRl2CbvVoxt3i99bRVf0fE5TomTn6axyTd30mixM5Ojpp22pJXrF+z2fBrkDAivI6MBB0csUgRcXZoKPiIBU82C+zYEezf2Aj27dxZ6xCaIq/A6b6EEEJI55G2iNl+FX+2m5vB72zCXsIgW9gCwf/r6zW//GtrgX/Ha9cAfVPgH+ILR38L+luuQX9jTVwxxW+KFoSQVimXa0ZhzfqzreD7wFppCFrVIl9bC/pgVeMs1PyY+37NTUwUnGFAes42KnQUbFvAFGzFf6c02MRFQrniZzuqUdqKgBgm+CUVbG0B1CWIOgXb9ZHgn4vx0xwq2EbEFXpMG/mZBsG20xYYrVxTlEVu9T5nw8VgcxGSjY3Ax50IsEBN0DX9wZVKwbYdO2rlScLLNYhw6yqDrVwLIYQQQty4FryRAdtMpmZlmoQwwVaIK9j20sWAmSb7Y/rbv+6uHL7559+PP/lXvwXv4oW649kW2d60W163WvnptYuQQco/M29cfRzpM4l1v31s2HFx8X1go1y/OrQsOraxUXOJ4Or/eR4AVZuNYX4PSv6TLYJSzV13bCEo2LaA1sEIvFSm4r9TqUCEEr9gzSovl2VuM8IEv1YEW3Ob/JZ4XRbDAOBrUXiTpdn5OyKu0GNinKcfL+6wc4Z1SjolGicVbKMscs3tmUy96wPz+qojsJVGRzZbs8Zx+aM1zylWtGKFKx+Z/pNEzKa7BEIIIaR1qu9Pw//86GjNJUK/fNj2yr2A79dE6eHh2vRfzwuufXQ0mEU0Ohp83nTwLfizw08BOsiyQRKKSPcwRbikQuWgrnkRRSef32bP2KD1BeL0dcQ1nSnamse0W1Z87UGhNptyY6NmTWsmy56ZSwjpDxRsE6CUehTAo7fcci/W12uNvPX12pRvWYhJBFtXpao14Jd8lDfKKK2Xodc3oGXVh0qNGPgT09VtwWYNvxxsU0rXhffLGlpreKo+PHRlX6kMBR3EqzV8XwO+hoJxvB84bta+Rrms4Zc0/PVNeAooVxremUu7g3+eWnF7JXe8gaovU/FHK8KqxPX7ZxqPqXx7oulWOxPhbzh5CXqenEs17A/iCIkg6du+qm4Hp6omTRnpVfVhGxoWoad072gQ6mPki4mu9DAaLlUpZEay0AgKrZdR0FDwsgrKU/A8BS8bKLcaCpmxYaixHShlRqsDGEBNeBVh1nweTB9va2v1vm1badix8UAIIYS0h660YQBVNztmaKh/Fra9mhHl8mE7PFzz5St5IB8AlbwK2tfiQsJs4zQ7j+t3FBSFBwPzHrWyYPJWwTT4abfcxhGzBzH/XNdkCv7lcq0PJUifSf5vFd8H1jYz8JWHjY3gt7i1GxsLqjcP9X0sLqpI0sn2KZQUbBOgtX4KwFNjd+w+9KN//XDgw/PqBjavrENvlgBoKA1o34cu+0HlpnXwf9lHtYFXKkMPas339yvfl3+rc3Fd6EBcpC94I8PI7ByFt3snsjtHqh0a0yrXtJ7NZoN94jJEOkTf84YP4lB+1mk5HtbgG9RHiBDSW3rR2aCoQgYVaasKIjyK//lWxaew/5PG003sBXVcvxvqDitDulm/DJr1IGndWnarWNhKu70TVsNxFygeVKqLPupaXbu5We9XWzCtljux6Ji4NgBqg07iEgEA8OijwK7LgFbQG8PQygdGNoAzZ4AHH2w9AYR0AA26RCBNKK9t4vLnvxwIr0atqaoqFaAymZolo1LwRodrLS6loLKZivllYMGIOgtJJcYODejKxoaVI+W4sNJr9iYVqlahUty1EQxVu1sEaVOqFuDFF4Lvu++2Tx5KNS779xe/2BiXhLEaqZGNVl33VXeuxmC64w94XdqstDSk184MZ4Txd8SJri58SD5qLdYiUpKC/6vBKhbb1Y5duYzS+Uvw1zfgr28Aqxexkclg1323VefwSEPN9JMnjS8RbMtl4G+LZ1AqAf/gjbMAar5tZb9S7gab6TOanRlCSBjdXgyIogoZZGxLKpNOiE/iWsncHjfOXohYcX3YyvTkoJmvq/vErZN5XNzriWtpTMggIc9M21P3t3j5NwVb6dMIrrq3Uy4RymUFKK8aj8wQKJUAqCFAb9anM6jxgh8PPgh88IPtJYCQdtlm7W0Kti1w87Xb8S/++glkR7Pwdu/A8AP3Ytdb7sbY7gyy2doKjzKlKuqFUyrVVqONg7kolEmnfNjKNDbzd92iY794KPjnySerxzXrCIee6z8HAh0WF+Mf02RajLzw4uZDJ4ha1E1cA3QrDUnjs8NLh8NcIVoaCbL4iOlKQvwcDQ8H/7/2tTI2v/hlXPzjT+HKn52BynrY98Pvwz3T+7Fjp4dsFrh8OXgmLl0Cdu0KFh577bXgnLffDvzTTz5cN63Q9NlkuhYxxxzkXouYS6GEENIN4ljObvVOJdnaaF3r+5hCSxwBMoytJNgClhUtGxyEkA5gW/SLhe2VK7XFxwSZ8QAE/aooototvg9c2hxBRvnV829uGnX/zhugMruBp34CuAWAD+iLgM4AuM6I6PkWL5qQTiDuQbQKPsYMGds9kf2cdZqo2cCdgoJtC+y+ay++/menq2Ls1as13y/iwFuE2C0n2O49H/wz0fy8Tc81vhr8c2+CYwZIsHWlJU2CrSnOisBc9QGsaoKteYwp2K6vA6OjGfh33olLb7sdl+/biy/+8h/h+f/w+/jSf/8jvPcXZ3Dze+7B0FBwjFKBYLtzZ+DDdmMj+F8GOUZGav7jBEnH0FD9aLM0ZNhvIoTEoRUrWFrOkm2F3gQ+8xlgchJqcxieV4Y3vAFPOaa4uPjgB4EfDAbiUyvYLi4CH/5w7bdW8MqVWUGZMryN4eCjdHDtl3bDe+lOqN2XgDtfArQCrrwLOP1XwFu/COiRDieQELJdMI1PpM+4uRl8RkcbZyrGMVCJ027Z0Bko7dUJtplM0P9SSkN5jTMvbBGMxjKkX8jsdQAo+wol36vqArJ4nulOpReCbWViPYDuDDRTsG2BbBYYH6+JsaOjW0+wlYLeINiOrgX/5JqfN+pcWgNqpLJS1Z54x8Q5DwXb+OGlkZDJ1I9ImXHZgm02WxNsPS8o+74PbIxlcPMPvAf3fevd+LN/9b9w9asX8If/4Ffwfaf+OUZye6sNgaGh2iIeUvZNcbhuYQ8jvWwUEELaJen07n5azsbxi8l6kXQOHXwqplsK2nCOFYMzZ4LvimDrPIOO/0x17dn7tf8JnPl01QejWOeY/9u/G9xEVP+7Cpy70qWEkkGkFX/Gccr6IC361KwvlgTpe3YirrQifSBzNuHQUKApjI4GYcTliohCY2Ph8TXrF/o+UEbgklHELfk202OKtGFiF9sgpB8Egm3wv6d08HHMjHE9C52uR8zBlG5CwbZFzI6fa+qYWWAE1w1Nqvib4c34Oi3Ylkr1U/qr0zJ8MXFsft6wc1XTbcUVdUzaBVt7pHEQBFtxNyCirC3YipsCl4Wt1sH/m5u1/zc2gNvefiemfvdf4Eu/eQor//YP8D/y/xFDe0bx4Pz7kHv47VW3B6VScKzEJWlzTWMwv83tg9J4JYSQpDSzpmH9R7rCrl3wPrYM7yqgsgDGAMRpXzz8sHOzdPqTdmq6JthqBbz9HcDTH6uex68s8OMPA/7l4AMP8HcB5S8D5T8H/K8D/G+spOvuo8DEm6ExBo2rbI9sA5qVXbtvloQ4Zd3Vz0grdju+E3GZhk1bbYFP0yJWZj+a1oJmH0sMbVyLkglxBNt1KCjohv5fqRQkSHmq4Xh7wNu0KGyJM2dC3xuERGHWsS7BFqh392gan8U1kIyLGDl2YpHFKCjYtkgcwdYO57IWtI9rhhl/WHzNjo3aZqc/m7UsLj0p8cFXK4JtlUzFGc8wGhgkwTZMiE8s2C4uAk89Vfv96KPAbLi1StP4moQ3rbVtwVZGV81yZrpOyGRqH9M6NrAo93DfB/LYfeMoXv7Yc/jiR5/Dq598AXve8/aGxmyrnZxBsjYghJBWiGoA9tP6lzQS9k7aauJCEszrtvOhby4RxL2Dw+LGbsu7DC8qkdT9Yntk65Nk4cpOLNTXTph+00kLW6Dej+t2cFNUKgWCrCwEJkKq+K8Fot//zdoGgYWthoda/0/rWj9O1hq312BxLUjZ8n3gomWkRWrlLj2VAC1sU4ZS6lEAj951170N4myYYGsuoBRmmp3EJYIppNpCmh131HnjWNjKeerFvco/lWkaph/UMELTNlRZhdIxtaMVwdb0wdpLwdZFS4LtR5eAZ88EU/XOnAFG1oEf7Y9g6xoYEAvbjY1AmF1bC2ZPymjvzp2Bj9pAuM3i5u9/Gw7847dh4c3/EUppDA8H++QF306Dy7TaIYQQQvqJS9DZDuJCFFEd+kERbF3t+6CfqCuTivW2vb/bjWZ9HbZHu4O5EOJWGaiU/pbMNCyXa32rYjFYpHlsrNbXkdmNnbKw3QCg4eHq1do56t0i1C/iZIrFQluC7exsU4MkEpNtZqVsug4JfieveDs9kN6LNgAF2wRorZ8C8NSDDx44JCNRvl/ve9MUUgG3P06XVWtSE+1uC7bmeaIsbIHmBT80bY644qQviigBOfWCrecD+bcByx8FJicB+E2f0HYEWyGJYCthpKxnMo3TeRo+GQWUfXhe44htO9CqhRBCSFqw2x6DJi7wdRoPpRQzK0X0oi0Yx2rRnBprLnhjp8/+3dZMxTbpRt510sJ2czPISzH4cPWX7XszCLMaJM0ilpbLtTJjDv55ntuytV1r7DI8ePCr8YlxWSCE1QahXINZceInpNvoioVts0fdXjCv0+4LemU8RsG2Bcwp4FtVsDUXgjIr6WyEG4MweinYxgnXy5dMWIPFmQbT8sNhBdLsPK2my1UeXfvCLE6ksjJFX7MCU54H7fsdbxi6Vi1thUFo3BFCkmH7eA+rJ9Ly/Id14sMwBQGg+TsgyXWmJU9I70i0wFgYZ84A731vJUIrPm0VqGZWMRK+BeuZUDo1DbdiYUvSQRJ3Bb3CTJOdvjSlN01pcWG+F+Ms0j1IsxrkWqS/NDQULDI2MhLMYBwZCX6LH1vpcykVCNhhxLGwBXxo1OLxN8vY+cJf41NPbiKzcQ1qR6Prx0HIU7L9CPNhC9S7dzS3xSWObiGDLabP3G7oTBRse4i5CqTgKmBRhAlprv/Djo3aZhdqO31eQiEx8vwx4opKX6JztRBHJ9gOgq1rn1nWvawH7adz2uAgNe4IIfGJ0xFN0/OfdEArSUc7yXWmKU/IACFiaFp1zDNnOhcXLWxTR6cXfGlmFWtjW9jKMUBtOrltgJKWOjZO3iUZxDPzod17InEMDdV8ukbdB9d9StMApGlRK64Orl6tLTAGABcvBm4Rrruu5qpgba1eGLp8OfwccQTbNShkUDvn8MsF5P7ot/CxPwKGAJRu3d2hKyakS1Se6bL2UPK9uoX6gEajh1aMu6S+iao/ZCH1bmtLFGxboFULWznWvvGdsLBN6gqgmYWt+btu+nyEVWwYabGwHQiXCECQHzHzud8uEcKeAXF94HmAyijoiksE16cTPm3DiOuugxCy9QgbIBXS9vy73uFhdbs9qBb1DkjynkhbnpABQXwSSvmxy5pdrpqVxbB4WqXjfv6o2G5lwqxi4yD1uNnZj1O3x6mfu9V/iYo3zlolNp16j4hgaS7AlXRgE0iXYGuWJRF7ZJ95jZlMTRsQlwXm7Ncw4gi2m9C4FcB/feu/BwCMrwZryrz/Dw/hZ//LHlzBzjaukpBeIC4R3BVC0llrLuIOrskz2019iYJtC5iVqlnZmqq+/N/s5okqH7cgmeewX6KmObadXruwRY08uKaPym9fpqklKPih1xYRV6sjI1HhetkRDZuCG5kGMz9i5nPSa7Lvs3ybn2bHNPvYjSkv40GXmye0Gy4TgNYaaq2kJU2j+ISQRlctJnxWCSFJkPpEfNhqBH70mrWhgPqOH+uewcD2IZpk0TEpK+ZxaRNs47Zxk7aHzeeg3fKudc39T1Q8rsFZSUvakDyRjxi4lEr1+eUybOlYGhCsHX7dxA3YdUcOKyuAv3MXbn/oVmR/Q2H4WuMxZpmW36zLSL+QopfxfGQ9v85oTDB1Mnsgw65Lo+q5ZrO2pZ6iS4SUYa9Y6XQdEMPqRfa34xIhzsuQDUTSSVz+as0BjHI5aIBUG22eQnmjjHJJw/cbOzemn8moRqHtT8nlmsGknYZaUr9eaRvFJ4SEd6BNqyc+s4SQZtTVFQotjS6n3V9ot2h1MD4t9bPrvrmst6T9K/tFgAPq26mtzCCMMzU3KXFdF7Qyk0+Mi+yFq+Mi917SGGW91osFfzqNvSCduEfIZoPv9fVgwTVZdE2meksZaMc4yfdrYtc7//k7ce93vRF/+q+D+DcDQ9uqRa+cUz5yXyXtvXQxSIhJ1a5Nq+BjDZrGtY6txtfG+9leU4eCbUowXSIAgW+d4eHaKpYyrRyIdgwO1F7icV0iSLxJXSg0iy/qd50Q3aIP27S+ULvdIAwTE50Ps+3D9swZ4Fsejj7BBz4IzM4G8S0uAh/+cHT4Sg3nKQ3P9ypp8YPtWkFrDxqouKMP0uEbi3/osgddzsL3fPjfNQ3/u2YbBFtppFbLzFAWX/2zAq7+k1/Ge3/1n9T5mTEbA7b/GaB+qpA5ymyLvt24j0mmgKVxFJ8QUt/xs6eqyv5u0IpVkuvbJC0CBtl6dGTRsSYkeSY6/k61Fz2zZhiZ/7t+16XbegijLPmrp7P2tTtrbJDqglY6wmkbBLetZF1igMtwR4SvdgRb06jB9o/b7vXYabPPa54niQjRLO4o7Nmj9jOZ1v5kUsxBY7HQs4Vq0xVEJ+vEwINtGUOjmaobO6VqWoZSgbYh6TTLsdCqGE9IZwgqw7Ih2LpmvZsGlvJbvs1BNlc9HEeALZWCARbRMTqlz9lQsG0BGQmTKQwbG8F20xeoKTrZmA2tpI6Ko+JNQlSDwdWobsclgu2zp7ZDBaLkw9/SmD5rhWD7d5UPfCDwm2al04W9rxW/THFp2yXCBz5YEVEjwp85A9/3gB+sXP+v/U/gzKeBBx8MT5fRaZH/ZXRKawBaQ0NBozEcgNr2M2eAUhb4rlreC3ZHIv/4FE79nx/F+c+/2nJDSxpp2WxjA367Wq0QQqIxrWrNgVTZ16w+alVUkQ5YJ+ultAkYpB6znWMKLEB0G8N+Xw6SEJeETglN/aJBNDGuwxZWwo6XjmEzCzn7OFebR+IZFPrlA7WT2O8ToPEemEYHpVK90CXvhaSCrcvKtJ13i3lslMGDtLulvLVqYSvXHRczPy5cCBbcGh4OBMTNzSBO00K1XK4JMnI9gyYmSl6LcCp+e+W56fSz7lU68T48bGzU8lzyWcRbEZ8kz808lbQS0k+ubQ7h6uYQrl4NFuOT92wcwXZjo35WsGy33/euukTqzc1N4NIlYNcuYMeO4JhuiLYUbFvAtgYU0TWuD1vzxd0vwdZ+2XezcRTaAfngByoCbPib3LME2rrfZ84Ex/9Qo2jYzN8IkM4GYRVZwCOK97438KMmDUCtgLe/A3j6Y6GHVK/ZA3wpr8YCdgqAeas8D1Vx3vMArwSodQDf/q1ASFm0XYTcnP863PzOu3Du0y/jtWdewM6H77bO0hy5RrNhZjbYosTxrdoBJtuHOOIiy3kj/RA2zPuURKQIc6PUifeVq/ywvHQWM4/jiil2+eyrENdlIdUub0mfi/YTYF2gEW+UqyVzAVX5KKVgZpiEk5l3pqhmT5tPiqveb9XFQL9o5bqTHNONtrxtDS2CqQiCLtFVLK3EIlH6a2GuFMzp8BJXmMGMfb52pu6KoGFep+t9YOdrK4KtxJEkvZLHmUwg1l65UsvXUin6fpt5OijvN0mv3PdyORCStA7EUxFyy2UNf7MMeMD665dC4/N9IDuaxfD4Duf+cllXxR+VzVTvl+gYpmW4ef9s2IYg/aRWF9Zb2MpAh11PhNV1mUwwOGHWsXY9Y9d9psGfOcOmm4NEFGxbwPNq0wbkxiZxieAaVU2qxndCvTcLrWsUwSyQ7bpEcPJDs06xNUiQlR7XKMfDDwPQzrTEEWzDfg9SY1hBJ9U+Qwm7brPSqjaGHD5joj6jN+2GLmt8YvZ/IPf7/wx69MaW0idpsX3lujAbQFGWCwAbHiTdNLPWHESLq15hDyCFuf2JIom4lMaBQLtuZ3npDvY04ziWc+b+NJadVggbRAVat1pvmyYuEWxDDJku6WwLxnxuOmFlb4t6kuZBopOCbdQMQDGGSZrftmBmxymzKkVAcz3bvh9YWq2v1ywPXX0o17ntOsNlUGNb2EZZxkYRdpwrjWGCbd09WFwEnnoKQNAfUaoyK6/ici3r1SKxDXDCKGsPChpZz0fmyk7otRHo3Zeg3/+dKH//oWo+mO1704rOtLQF0vWeM8UdoDaFe3MzKGObm4FIfe1a8C3Wr1/71Fdx+qd+F68+9CUAwP/4kX/f9Fy7br8O2bGhhu2XX76AOyoDTrvGhzA2JoJwzSrcVUbsAehBsmAmWw/lBQX0wvooMi99GmM//APYefOr2DFUgqc0SuL2UWl4FfeOGgoZ5cNTwVzibDkQ04Yz5epsYvtY1zvcDOuVshi+PIah4U0M774c1HN/Em441yoUbBOglHoUwKMTE/c6R+LrhM0Qaxl7W1gnMgypSLvlI8Plu2Mr4+pYDFJnVilAyT1LIKbbZdWeqmWGs/8PLEhqqzKK+b987N/ZLPDA9z2Eq9cUnv2Z34de30RmZ22fNAxcKzya6RHr2iTTg6I6jqZVE10qkLQTZa25HerqdjE7SlFTl03i5usg1B+2T0BCTDrlwzbtz4ELV5ojB+4TzPG2RfxBzJ80EdVeS9J2dxms2CKVa1aC3V8z/zcFQvNeR7VDw9IWJp66+o8mcQ1OXIZDcQXbOlH5934b+MwZ6AffAYWaMCK0ItjCD+qjjKeRUT6yGR/Dnz2NkdF1lH7gUDV/bJFdsK2Y04TL6l4EW1lgTERbEelXn30FfzX/G7j0wjngISA3cT2+6eh3hZ5j8+omvvZXL8HLuB+EvfffhDO/+yyuAhh/863VaeFiVWi6P7A1AduAh/UZ6QdKAdduncDl3bcCl76KS7cewDDK8OGhrD0Afl09BBiGZipTbe+sl7PV/8t+IOh6SmOz7EFDQUEHA0iqvo1kCrZXS8O4sBFYs6+VAgFjTxeumYJtArTWTwF4Kp8/cEgqN9shuN0ZjHpJxw1Xn4Zk4ePiim+rV8Zh1yaNtk5ce5gY7xReklov2+HbEGwFVwPNtjQILMgDwdZeUCHsk8kqjN2aCwIbrRUzn12DF/K/K0zYYEnUtQpStpP4kiOEDC7d6rhxwIeQGnHbTkms1jtChEsEacfYg8Zh7Yyg8yYfHVuI7VS7UuLphoXbIMwwa/fa7TpbZmzZ9zFOPkhc0ieURXfFKtYUcZvde5mxaU+tNV0MSNmUMC6RNep9ZE/dbVWwrf72PeBtefi/+VR1W51LhGzj8WFIHomVZzkDbH4NKF0C/B/5bgCbDQOvYVP1TYvbNGOWRc8LrrvqhgVlfOkPnsXJud8AALzhgwdw67s+hkxW4cHv2R8ap+8D+OF3Rw7wf+TGn4IHBV978Es1cdhcNMkcaHDlI2cmkn7heUD5plvx0v2TeNOpX4H+8R+Huu8uqLcCahTwsoBn+bCFHzQD6twhVNajyg4DKNXcj/gbRj1arj2TglkHblwG9MuAvg7w7ureNVOwbRGpqOoq1x5Y2PaSrV4Zb/Xr6zYy/Sl2eLE28IMWVpKOgWtaczuCbdobcYSQziEdj24JHJ2Yrmx3jML8b7l+8z1GSC9RMH3Yxm1LNrPQdGH3Jexp4J3GtDbtNEnSa08dl23if7WZoUEU5pR5EQjLVqfcFHGB2uLSEr8rXevrwVR2mca+sVGbRWZ3+F14Xu1Ye6aZ7RM2SrCNyoOuCLYA/FK9xXIrxkhyPzY3g21KBfmxvg6UfK+2OLJxTJS/316RpC8jQr6UY/nftA73PEDBx8u/dQqfPfIRAED+f38Yb/rBr8d//rOfgecBo6PR5wCiy8AQEFgTVsJIeRseBnbvrqXFvk47b9n2IL2m7j1aKYDlTV21VLcHjezBG/O5EPdHMlgm8duzLqKM75K8z9uBgm0LmCNhQH8E224VijQKx4NMos68mO/HbWzY4WMc70pLs/TZ+30f8HUGm36mYfE90/+bWQmWSkC5kr6SUbFK41TrWuPWLIPSSJbK1vdrizmYC/aZz5BpORuW33ZjmxCydRkEqzEg2qLF9TvBzGxCSBvUCYgK0H4g2Wqo6kw7sbL0vEZx0RTKwjqPJqaYaGLH02mapQtIXp/GidNGRFTb4lXqvTDBVsRRE1tQN/PQdmNgi5JxsGfliYsvEV49r/bt8pdrW40CjXnl6lOa6XXdkziCZqcsJ5uVh2ZuIcx9164F9350tF6wLWuv+qzJtYX5+zXzs9uiopkOl794836b/STp96yv1/6X3+d/9Q/wtT8/BS/r4f1/+IMYuuMWlCvrhgD1Awg2cQTbzYoj7qtXa2Fl8aVduxrrGJe1clqNzcjWxtTf/MpUmfKmj42NYIHCUinwNS7PmOlCRY4XNioWtsPDgSahdVBX29qDrU1IvZLJAJcuARcvBmHW1oJwY2Odv24KtoR0ia1qwRtUWj6ATJOQ9SjDoZdtPSG/pcMjmCNk0uiRkTOXYCt+l2QxMmm4mRWtKXLYDT7XPYvTOWnWuN+qZYGQQWCQBNu47hXsOsy2CCCEtIb5TJniUK3NUrOwNZ9Daa+Y7Q+zsxhXsDU7mWkQbF1+N5O4gWlVsDVF1SR1omtb1PGu9qi0MUUYkM6/XIfd5iuVAqFtbS3ouA8P1wwSJLxp+WXmnylEi1Bgi6rNXCKY5dRMo7SJbevXMAtbl8AhOC1sy0EGldZr6TPLvjkAGXUfzXNdvYqqX1URQy5tjEAp4Mql+ja+6Ws1mw3EXjmXmY523v/Nyp+ZH/azIWmQ85uDO0AgEpni7cZGUIY2z13A6C05fMt//LvYde+tuHCh/j2/thYvPeH7NRS8apiRkdqCeiMjtfSZeWDXObKmDiG9RAbEslnU/DRrXa2rbZco9gBfmNGk7XrRDGuXfbOeBGrnsYXdTkLBtgVcL3dCbKL8bDm3p8CHrSuc/X9QSZZR8j0MD9dGp4aGwhcdA4DMUFAbZjyNoaGgoWIuOmauTGpWnOa32ThwuUmQhpFtZWFaIZjxmyPfYQ37dn1UxukwkO1H0ml0AgW5eHkni3dIx219vb7zaHdUXcQRGqQOkZk2YZ3cZohAIcc0s7A1rfekLrQbkfaxYda7wnYvV9ub7duQNQVZW5y1rSEB2B4RqsfYUypbaTfYlrmtCratDlKZdZCdLxKvOTgU5xztCrYuy1eXha1ZF0ed285DEQdFsPL92gJQ0n6V90c2W/GvWq6/9lIpiGd1tdYONmeNybeIry5LYEmLmW75P45ga8dlv5vsa7fzxx5ISCTYGum2zyHlxBRFopDrFWvT9XVgvZTBejaLjY369WPCLJXNbc2se6MIe6eaSFlwDcSYaZR7Ls+4aXxSLqN6bdfOXYF/+SqGb9yDm991d4MYL/GG0exafR/IwMMI/KprhbGxWl9OLJtNXPeNbVESizNngIcfBj74QWB2tu3oRBgdGgK8oeBB80vhhT6uYGtqHHY9GCbEynvSrJO6BQXbFrEFW7uB16xjZMcR9yZ3qzA0i7cdwaqrSEUgiFsA12qkUfs6Tdi5otJw5gzw4IPdTFUDdkPGVQ7s/b4PoLLaoogi8pEGlvkcrK3JKqjBtW+s6+pIsukSYb0yQm9WnLaFreyT80klalsqhHVmXI0es/MRRrMGm+AK080KnAwurQwEUPwPkOfWlQ+meCLTnaSDJAKIS7ANmz4qYQB3B0U6a3aHTcLHxfRrF9bxM3+b4pDpBgZotHwRgSCscw80lkV2xsh2QMq5WbfaVjX2c6CUgtoIGiwaqsFa0rbOtUUslyWeYFoFmoKtPdgkVoZhz2ir7wq7veea4m3+H/YOM49rpQ1kC2+u9NnbXO25sPCu6zTTbgv2pkBr3j8bM0yUQOlqU0YZUkgZLV3dQOnqBvySH6xa7vvQvsbll4tYe+0SyhslnP/rL0MB8Ms6WDOiWig1fL+yrfLtl32Ur20EM+BUcCIFQGUUgNo2QKzZgm1KKShPAV+6Ixi/+NcnAKggjFK49vrlIG1lH/A1ymubKF3bCI5RCirjQXkqiCcT/B7eMwpvOIuyzmBk7w689Ue/DaXSMAAEixx7upo3Q0O1eyD9gOHhmnAyPFwvsgwPu+9DM+IONogw7npvm4KubJPf8gyb5ebFH1sAzl9C9s774T+5CP93/gD++kjgw3fqb6CVRvkXvxsa7sJlrmAftn8IdyKL62sGNZXBg42N+raM1D+2exKAbQQSgw9+MPg+cyb47pBgK4NgQ8M1a6ykfSlT/7D1OKfugfpt8i3aBwXblGK/WLd6pZXKilkqgq3Cgw/29JravZ/m6shSgboW4at+KlMXbMtYexqCq9Eq3xK/uRqveX7TsiUMuyMh096SWH8Q0gniDgSQeszOjUtQMH9LZ8ic4mc21KTeiFrMJsp61RSATaFVwmdjtrLMBp8rPaYQIdMnTYaH3RZVQM3SWDqtYVZnJuZgmFm/m9tS1yYgLbNdb6VpnS7YgmuD6Do6hMwXvgD1nkD8WFurWfSbU55N0dQeTDYHnUyx13TjFCXYAs0HpptZ4bow47atSMMIG6iWOrDXgm27fTJpF5p1utwHl3htnkvuvS0e1wl4mz4unH0FG69fRHltE7oipgIa185dQ+nyOryMBjQCUdUHzn3qS7jw7FdQurIe6xqGdo8iMzYciKKVD5T871V/w1PIjGShMsFDEAi8AFD7X5vm1TpwaRb8D+j1EQAK+rlXoXUgIV5+8Vw1HTe88x54nkJ21yh27hqB5ynoilistQ4EXa1RXith49IG/M2rWL+wjmtfOQ/f1/Aefg+uDeewVspiaNPHlSvAjh01P6vyXMm7SZ5BuV+m0UcUrvdZHKtS10CPfT67HSHhxUpwaCjYJtat5UtXod70Rjzwo9+B4X/7Qfif/TSGH3gXfK3gKQ1PaYxky9BQgWhvEUewHcWNyL771obrEGtC26IwzFKZbQASyexs8DEN6zpEJiMDSwB0UDDtgTYXYYOrrnesPeNFMGe+mItN2jNiOgkF2xYQ6x37hWA2rFwvCbuibyYs9ZJmlW4qO2dSEZjIy8T1co7a12nCztXLNDTB7IiHETqNQOmqawOta+4Q5Lf48JJPMPodFKChrEZmNCj/o6O1RsyOHYHvJNlmnlMaYtLIyWZrPmztxlNcwda0wKAVLCGDhdRdYRbyStXqDKDW6HIJqM0s823L2WbpalWkMOvjZvWzKZwCtWlcruto1fLAnMYqdaZthUvqsQcEmUfpxyzXtoAqz4JY0ZRKwH0/9j145v/9O1AAyr7CxYv1opE5pRKoF+vM+kGOqS6gYlnjiWArfQ4JY5axMLHUrAdcswfCMOtTWYQlTv8ganZCmJVimPWuUvFdIpjnllkKptgk4U1rZDt/ZKaXtFVlppgMcvl+zWdoqVSz5DRdG8iMjitXKgLc+VVceP51rH1lFeuvXsDGq0WUr6yjdHUdFz73legMdWYy4A1lMPH9X48dN18HL5sBvOAF4WUVoDzsuudGZHeOIDM6hB037nK+D8yBR5f477pvgssiGB/4QLDw3q/+OwBB3q9fXMe1c1cxcsNuDO3INrzTTFzvyVdfuIJT//Dn8fJvfwr47U/B+4Z348L6KMrI4Ny52rlFGBc3FaOjgc9bKRNy76Lex+Zzb75T7XIfNmgrdYNt0W2WP9tVir0omvksZ7OA9n1kbr4Re27fjdFsCf6Bt2Dj108E9/KPHobnAaP/9vec98SVBtf+HT9VP7Ar15fNouomwXRpl83WWwkDbgt/s+3Adx+pw54R7dofc5ZxzYAgKJAv/eqf4vYdu7H5dbdXy7IptJoz2Ey3MlLPA/VGEOb/pVLjAIbU/WI8ce1a8JFFx7oBBdsW0Lo2HRuoTbU0K2BTqRfsBoQ9eh+HXghLcUYVyeBijijZNNtWPa7iEiHMAsX8iOVJyQ8KULmkUbZWSjUtS8w4zUU8pPPg+zV3CtLRkWfLbgiZnQ9baDA7MmkZOBlEovKP9QbpBWHCprnd84KOtHRG7E6NDACZgm4c0UGEBfHHLRau8kzEtbAVkce0gnUJFYJ0EmW/dE5dgq00PuNY2Eoc0kEzO6KtWOxtN8z6MMl7pVk7sPt16fZ9CZqzfkRANUVTEU7Fknbothuhc+PV46MsdEzstpQ5hTJsdlCz9nizAfeoQa1mmPnSDFugiVN32sKOdKhNATtKsLWfMxHn7DTbQps9y8us88zfgaFB/f0UIwQz/83OfPkrr+CLv/A7uPKFelF2ZHwndt45jpHrduC2qTfDG87g7u9+G3bctDuwbvUUMhkFX2UwdvNuZIcC20ldaWdLW9ic2i/5Z07FN62rXe8Dl5gmhhD2lP4owbYab6YMBQ1dWRU9EPxGsHN8pGFAQs7lKicme27diUc+Oo+v/u4Knv2lP0P5uS9gZHgTo5nNqnGI+V414zP91rueJxPXzBx7INi89rD3prkAcpRgK79FPApcxQWi0eZmsNjapUuBtfVmSeHyZeDyxjB8HfxvDuhcvtyYFjtPw9pEQO1+Sz6aYV1tFtcAsh2/XabY9idV4swejjnLWKmgLT8yAmB8L0bfvA+XP3cWxb94FvqR26vP3OZmEF7qNXPQU9rq8uy63t+Xv3Qe5//6y7j66hVsXrwCzyjPZR8Y2bsTuXv24sLVIfjZO+B5WS46ljaUCgrKyEitwh8aqvnMkRcZUP9ydTVWWu0EdatAsJLd2oSNhgrm/7awW9cA9D2UfK/O0bbrY4qxZakMy9o5umx3euxpy5J+eV7MBoQ0CqUilgad2aB1WRS48qRVwjrczQZZBv2Zsy2Wze3AYF8bGXzk+QoTH1zWYa44bEsUl7ASJrp0AzMN3XrG+AyHY5cBVz3fbEDeJeC58tpl2TXo7420YtcVYrknIl31PmTkZjTeBNPKzLZSF6QDac7WMwUZl8WjhDHTKuKyHbfZt4gScGzM+KUz61oQVq5T0mF+J8Es12Y6zfrWVW+HDbi76nmXYG23Je1t9nnt+9dgHexrXHlpFa/8rz/HlS98BXvfdgdu/a534IZ33Imx267Djl01S1N7ATHzmqplQdfXH6aYYF+XjUtYC7uOsDxzvSdN4bXqIqKJMxUzLa56zA4r7XfPU5g4uB9f/POXcemTn8PLo9fhLTterc7kk+dRBPNMJpilNzRUE/4l30wL27B6s1f1qdxPMfQS4ba6yNq14Ob48ALDlHIGvlZVK3C5HhmEjRJsXWXWvNfiBxioDdDK/60Q1c4i2xzXjOgWkZkPo6PA0M5hfN3j/xte+KEj8K+tQ2kfr/7FC9ClMkrlwD/20JAKBsC8DMbfehsyI0PVZ339lSJee+aL8K9cw2d+4U+qfrU3r6zD3yjXn9dQbLVfX4nueP/7sHnXu0IHazsBBdsWMKdOuKYJusJHvaTSJNiSrY1ZVqOECte+usZcxY+S2dh1WdnWxVEJKL5v7cayq2FuNiDMhoU00EzhNuwZtK13zU6BNJRabaDY5zEus2vHpBFX/datl1YnaNWqmiJJ+jA77aY4Vi7Xpif5fjBdyV7UyxRZwyxsZcBHkGPl3W/7sDWtbYBaR8gWFexyZHbI5NwuyzJBpnKZYoopEJlpsF00hVkKSRySDnPxo2Yd3u2AeR/NMmDOBjHLoe1/1MY5GOpoD9r3S+6xvcp8EkyxsJt+1wYNKe/m8yrPmDwTpRKMm9T4IonzfjGfWXtwO2ogQMLaz6ttDd9sMCEMlyBol0eJ27aIjYrHNXBhx2+Ww7guEcxtYVaVZh/M1d6UfB8ZqVnLyse0sNU6CDM0BGxeXsf6ly9ClUu48tI5/Pm/+o3q+Yb27sR7f/UHsLmp6hbEkjRLvRol2LqsOIFGC1ug0QWHvBeaGQXZ7WH73WYaT9jprc6Oy0jC6tMicZnWsFH3zhQTJc+yWWDnG+/EpU9+Di9d2It79642zGCQZ1J+m++vBlHdaG+bhgZh7XDz2Qob+DDLtUusMUVWM41yPqnHfT/4HsoGEXhZDzt3AruGN4LZjLtqYTKZwIevnRY7T818tfN/9+4gHnPqt9y7sMUM7WfYZahBSC/wvGCARtwvZsdG8Nrvn8Jv/f6ppsfe8o374A1n4WU8vHzy2bp9Nxy4G9fde0NgYFbWuH7/Xdj1hltx3T3jyA571fK+tqZx6fnXkMEmPv59v4y1Z/4ar7/5Zmy8+e6O6AkuKNgmQCn1KIBH77nn3gZRyiVWAbUXl/xv0ooSzwqSdIqojrfdoLLLnQi2ZkMjdLGxqjAbRGCPTAm2JYGcW77t/6OePdezaHZuzPilw+o6b9JnrdnAjE2aRc1BplmH2VWm48QZdn+3s4jVb+wOnCl8iKipdSDemh1IsyNr1y+CSwCwO24yvdGcxuuyRGvWOYx7nabIbA+YRZV5V9m1O55mus3rdKVhO2Jfvylmm/cFaLQSjCLMGi4sXNzFoJKwLW6prFQd4ifPFGjkN1AbIDYHh1XlZnhKBwsFlQMhzxRipZyYK8Gbz47t0gmot750iURSBs1wLsHWPG+Y8OrCfOYbBrF+eRF46g+qixqV/CDCrOdX86Iaj64N0Je1B1+rIG9E4H702+B//2xduuTbvHaXsGpfi5lmqYtNl3UuwxqzzSrnMd8N5mAVABQ/92W8cPwULp19Df5mCeeffaUh765/8A7c/D1fj5vfdTdGRpRhLVov2Ep9YQvdYXWG2Y+MI9jK8WZexamDTEMkE1c7tfreiY62AVcb3Pw20+37wK73vAMjl7NY//D/QlmrUMOQcrnmKk3csJnxmnlkD5DZz4eUNXnOZNDWDGe/36X8uJ49cdMg8W1u1p4t6X/ItvJGEIFWXkfq+LD3vlgjy3MyNla771KP2fG4Bl2iRO7t2k4g3UWeNZnpPjwMvOFHvxtf/G8fx/qXXoXyPHzjLzyGEjLQZY1sJlhz52//2ydx9ZWL2Dh/FddevQStNa67/xbc+t77cf/35uFnhzG8ZxSjo24ftvXuDhSG33QTRkeBPW+9CxfOvIBzv/FxjM79Iwq2aUBr/RSAp97xjgOHGve5R3bN/fY+WniRQaCZ9biMEDcVbL3oFl5Sq0cJa5/H3GYSZqER1pBt1QqT9J84wlKUuO4iTFxvVYAjncO8l64Op2mNH0VcQdKsb0wLGjmHmR5bjAsTT8LC/z/svXecHNd1JXxeVXfPYDAABgADCGYwU4EgCUqWrEBJpCXZpoJNUrKcg0DZn70O6yWt3bU/b/RK3nVa2ytS/hzXlhisYEm2ZFKkrWRLJEGAlBhFMFMMIDBIEzrU+/6oPl23br+q7p4c7vn9eqa76tVL9cJ95953nx63JHHE8kqSqKhcvaCtR4uUZ1ycyrwQq0E+6VXGfohz/fyghG2/ir5eSlk9b65oSN94BX7yZP8n6Ue/17S+BNqERiWttGYSdQiiiYn0vrSU5OEkof5Nv/zymrS+LBsvNGFbpDQA5pCwveV24KEHkJx9YafsQDFhe7heQ6MVo5lEaLQi1FsxAAf/4tPA87vh618HEg84DyQerWb6vINvu87ycN6jNTENeN+ltCLkuEVyjeJm4oHhLRuw7vRjMHLsKNadtQVJki7yOX41GpmCr1IBJg428OK938GhR55D48WDeGnP09h/z5Od9La+6RysPfUYjJ52DMbOOR7DY8NYc9ImuA3r8eKLDs1K2hbq9bStkOzr9T5ku9GErT7cWsZTRNjSZZk8XEpCEmuhcUCTqWGitf2Qypc2ggDCY6MkXIE0L3wPSZJ+b7oqAOChl47FphcOo7l+XXB3QKORvUv2O+ZB5kcSskDeDQnv63LqcoTKIwlkSchrwxLmTxK2fFeHn9ifPuNcej2J4OFy83GIONV12us6xzb27eHh7H6IsA21H91mVpssYFgcRFHaRteuTeflkRFgzWu2YeyibTjhhGzurNfTNlirpeFP+K5TO88TPExSkrRSKcbwmrBlnx4eBi7+/R/DP//MXwGteu7Q9LmGEbYzgJ7cpNBLf1IhK4sQyqy2DIalgOACU7hEGJSwbbU8oLTjQLfCo2irEb9TKy2FUbmNTj8XEpalD17TCK8s9DOuzmTcLVrUGJYOOGbRsoXbWmkNK4kQoHssktay+v3KRTJ/d7ZJI7PICS36ZLra4o4uEYgO8SDGNm2VxbQlcRwCF8N6i36IKJLlJgkUgia3F1pxsRgKNW3JJ+uLv7n4D1lta3kv1AZ7pSt/l409Mq3+Fs8rXDtZ4kNPvhNpnSn9ZUpyo1oForVrAABHGjVMvngElbHRThuQBy3R0i+sIPZIpptA5OETD9/yaNYTNA9NIK44xFUH7x1c5BBVHFwUpXKUc2glDpWRGqJaminvPSInSFPvEfn0umuh3Vl8J2z7RKv2ZY9Wo4XG0Tpa9QS+2ULSTPDcV76NqecPZm3n+eOBsbciOe/NmNp3BM2pJnwrQfPQJI4+vT+3e8o3yybG44EXAfyvz5eEEe8ndoiHq32F1Wgered+R7UYm15+Io7dcTI2nb8F8MD+B17AS998ttNXvvPlR3PPVEZq2HDuCTjjR74LZ/3AK1AbcjnLyUolO5SO7YU+VoeG2lvdq+WErR4bpDJMEraDWth6333CuX5eKxn1fT3n5e7V2vU7ms8L50HZb0LQFuOMm8+tXw8cPP041CsNPHdkHdbe+yDWX3QJ1q9P50zpimbdutT1UaORkjmc94GU1NFzL+tJztmcd1n3WjGi60e+S2mdzXFEPkMra5aP7YS+ZBtPPYd/+pXr08BDQ+nayaX9Vh/c1svgRCKkGOCuAV3vzWb3QXF8RreRIoWt8RmG+YZzKVk6PJz2dbpHGB7Oxju2RSpbQwpS9k85rvYibCU3wf6LKIJvJXkF5xzDCNsZooiw1QtBg2ElQ1qW87vcrkktV6MBtJJ0Zn/4Y3djy48fA2zalPnB8uEDOCgQA3nLA03WUrgYlLClRp7f2YdZBkkIFPl10umE7hWhjBAxGAy9ockx9t1mM7VyqlTSPjY5mT8BnuME52w5FmlLUy3gJUlei0+ylQsgLjYZt1YGybGS16UwKfPBtOVYKAlaqUAuUhRra6MiqyEKuYwjtACTBzzKdBZa7unXGnq+IOtdktWsDym0l/lw1L/LlPx6kV62MJYkMfNWBt5ejfORJLT1O9UKaYYfvvx1cI8A39nyHH7+3rciGq7mrN2BNI7pg1M4/Ni+nFkeSVK/HLbwrAOialvAejfZq8/CbYkQV1NTVucAV4kRD2lntg61dUOAI+kcIapEwIMPprfPOy8N1akvB+jdAs4FFQ6hdsqxVo5jScujOdlA0kwwfeAopg9MolVvAnUAu8XDZwO10aH0+wVAPFLD8Ka1qK0bgotcuz/9DaJ/zhOpQH4RTzmSvstlm+kHRf1VtsdBMds+XZqn774v/fH3l3bCyDm0X0tL2RWkVfrhw8D0MDD6Mw/gwNQa1KKbse6OjRgejXPpkGhtNDJCVM9bvXagSCVqSBEZej5UTvmudF1IeUVa2CYJMH14EhM/8Txqx21Cffh2fHaPw0i7fpu3XwrvgYcO7sYrjt0+a8J2ZCRPykq/wWvWhPublgWMmDUsFmiIQaK22tbncUcD+5YkWzk/6HbP/2UKMEnYyjVBR16LIvh6Mq99wgjbGUCSS1LzCWQvk1YvvWDbBgzLFQ4+uC1XC2y8P3LCBoyctBHf+aeHUT11K46/+o0dMoVWCkUHFPAarQVCH2rFkqTthFxou6XgrK3dpHBPaBKoSFiebf9dDus1g2EpQpKenG+dy5+4fPRoOha0WsDBg9m4UETYAt3fNWErlVOSsAUyq16StlxAcvzRZCwtX4G8zyxJClNRxPskbqVPXgqnQF55TOgDykILShkXieDQoWNLaZEmF5CLYXFLaOKgyMK2yFKW3+fSwjZkcScR2rJsSCHndFpHUlbpkC+VCi6473x4AEenx7H2pI2IhypoTTUx+fxBtBot1McnO6Rsbf0aVNa0T6d2rs2Qu/ap1FmiHkAUR4giB8Bnbdp3/rTbmO+2YmW03T9UubrvwaXppgRp+75LCdeo7f4B3/xm+v/lL+/kg/GGlFIhOAcgat+s5htl7pk+Cb/cO1HyqPeAi1JLZOeA4bFh4PSUxE3qzXS8PlpH0vKobRhGZaiSI9WAfL/RMq5MT9/X5H2/cqIOr+Xoonh6Ka9C9/Q7KiKJQ2VgeqHXHLK6HBRddQsggkf9wBEcdR5rzju2Z92U/S4iocvyW1Y/sl3o/GsSWNdPFmH6LxoZArwTFrbZHPzyY7bjvS97X2e9U2Q5Leek0NpnZCT/rFQwaAtDWV69C8j4C8NioVrNfNhyJ8PQUN7wCuiWiaUyne4/tIWt7M9RlIajEkj2AVr5RpX0xvDw/JXXCNsZgIuEIgtbINPIl1nlGQzLFl/6ZzjEiN79TkStGPHUMCpD06iOHkHSjOHhUI1bqFUbqE2MwLcqGDk8isvXNvB37jz4ZisXnVzgysWo/l60KC/qk9ISIqRlpvWM1J5J4UaSx5oE0VvYZJwhFAlWC4GyerPxybBcoC35Sa6SYNQWLLR8bbVSC1sgvSaVNdrCllp5oJuwlf1IW9iSMK3XM42/dK2gCVteJ6T/LKbLsUme5sxxbXo6sySS9xmeaZPs5S4C7c+QxLEsJwlwucVbK74WCkVjV4ggWogFpGyDBOcm3g/NZfK/fE5+n0/CVkO6AjLiNg89lpC0Zb/i4u2779uO1927HUcbQ9h25XYk9RYe/7v7OvEcs/1EDG0exTk/fAnOeOsZAPL9h+4S5DjBPiq3T+vngPxWbT7L9q/v6d8hhNpAlw/bj35/GvaDn+2KV47Bofik9RJuuCL98cHPBMtEBRTHpNCWfq14BzL/pdwWy51YkojiWC+V+pwnKAfSvUEUZb49Jyay3/I5GW+9Duzbl4bZtCl/EF014NFBlollzdUT8rKv3mYfMj7QcZcp2nopdWQ62jKNaP7J29Mv/+kfOvlmHZPoKBuT2WZlWvv2Ze4Cdu0CnnwSuOjPfxjratP4++m3YN3W9XjPb/xw533z+XXrgOefT9/VMcekpCQhXSLoepHtTiouqbSU5dL1I/tAqF3QvzV/s20dPpz+PnQIeOmlNM9P3/YgHv3zG3Hyf92JJ+on4O2XAOf+9dsAAOO//Hk0m8DYWHdZNEJkv4a2QJaK7BBvEXqHtn4wLCY4HnIdD+TX8dJ6VlvQAtmYxrD6Pvs/XZzIftFlYesiJM0kt36YaxhhOwO4hx9G5fvfhkqlmZ6EmkSoREn6iVuda5HzcNEKk4R37y48YddgAACf2t52frv2FQDAQ7vh3DlIFGHbz6SvF+4kGuSih6SLto7ViwkdpyR8NfFLaDJ2OS1yQ2RGkYXBckIRmdPr3czk3fVLpgAmyM4XZN9utYrDSWtSCnUhqynd1zlOhJQ7QJ6Y65XPonDMv1yk8rq8LxVUJJJlnlkH0uemtqphn5fCJskDCrkkiVqtjCTiqbiaECDJt5AoImKLLKrmm1CWdRL6SCsq2bYWezeFri+5qE/LZNs9JKTSQy4M2W+GhoBK1MRrTnkGt714Afbesrvz7JuvvwonvuVcuCjC5GSY7AHy4xnHAypeuPCTRKxEiLAtIv102ND41BdhW0/NkJIj3fFqpXYpYdtos5cT+TDSon8mhC3PJGA6dHnFMZDP6R0UJGz54Q4NOdbq3/Ia65QEMRV5zE9R/9eKM47HupxFdSnbxSDySeheSHEjyVTe0+0w8cxAPr96x0GvPMj/bHdsB80m0GhFiCOPeGQYjalmV/1yLSBdq8n3rC3j2OekH1f5bjle6nlZ5123Jd0uZFvimqVeTxWuQNZGm02g1UgTcHGUKVLb9SvjD+VlUFBhwb5NcrtWyx9ARrA+FlphazCEwLbI/sY+REVbFKV9TJK5cjc80D2uS6MIeSZFvZ4fH5MkO6wMSL+3EKF14Ai+eN0XEDng+/7grXNeZiNsZwCPdBCVH9+1v2iFYvv2whN2DasQn/40UAf8ASBZByRbgIQD2TCAEcDtB6I6ED0LuJ98L6KHPdBMcgtcbkngB8gvAKT/mWo1FWTkdmEiJBzK7cshwpYaNC3MSaGIAtxyhha2lhPhXIQQmSOFaG3RKMPwfr+Qz4QsiUKEjWHuId+nbNNFWz5JtnCMGR1NP3pRFjokRZIg8jfQbWHLcYsCIBdDHGNIADEdvTgPWdgCWVwUGllmCqmVSrYdjPHSQo9jJssgLYg5dpKI1YtkIN+P5MFq0qIrZMk1qMKCZSrbirqUFopy8arrQM4nerEvfRbzuvw+X6RuaJwM5b8den4yofLTa/5Z7O227EMkMHhwCT+pxW0TsUvw9s/+HI585zAiB4xuGcXGU9Z1HeZTRtgCeVJP10+/9aC3QMuxUSu7ZVrMo4Ym0yDII/lfuqVhmvIsg65nWu0VtHADI7eOs6/0kzf5XVq/63FNEo8h4ksrXfrZSal/S4utIiWOfJdafuVOBqB7DpLpScg4tYGBRNn4qduHvifz1xUPjZKUz97C8H1A1h3JlpZPSUxXizHx7AE8duu3sfUNZ3YIebohmppKiRrudJGkjhxTOBZrZWgROd4vYcv4mA4JHykvUmbgXNtqAVMvHsbBux7JKg7tNihcIoTG637qN9QWuHWcZQpZD8pxaLHHY4NBgm14aKhYppK78IAwYcv5QSp4Qt9Dh0ByvJueBpItW+Eeehj3/dkuwAjbJYSzzwb+4R9SQioB0ARcDXBVANXsGiJYDRtWJPxbLkfSjDta7enpTFii5okC4NGj6f2jR4GkXoUDUJ9qYWIi3QbEQXViolsIlxYeMl4KZVI47wycSVgz3rX4QF6o14RFaODXCxA5gJdZOJigM3/QZI7e3i3JCr1gmsliopelgb3r+YUkJeQ70ItsSQCQYBkeTi1JRka6rZO4dZaWJ7zei7DVPrRJDsvtq1xMVqvFp073Q9jqa6Ht01rJJa/Jbd6SDAmNf7L+ellJhd7PICST7J9zAWmZPJckqB7nZX3RTzDnDrldVz5bpDQjQRWqgzISoSyv8rskU+Q75b0OqVReBbNGv+94MXcpUMnCfkE5R5JBrVZaV94DQ5tGEa0b7fR76SKFFj8cU/T718pDTawWzTVcQJYdaKeVWaF4ZB/X9S3HkjTRlE30Q1lbZzgqpZgGF7TSkruT32p7W9RI/p7Mk/Q/2K+FLeU5ntwtD6WtVotdIuhxldaPVIbJvitdIrB+OPY3m2l4piXrTm6z5zvRfpHl/TLCtqjfz5Sw7SUHyXdXRNi6ttE0FZFaoVcEPZYlSV4xQh+V6Q5Wj9FTNuHpXY/h1p+5ET+99z8E/VTKQwJZj9VqfgwMuQlh3cprsuyhcZjxSWtVKl9Cbgd0+fh54bPfwIHbd6MyUsXw5rWI2wemVtr1q7d3l40Num5DStU1azIymddk/kM7Mky2NSwVcKfY8HDeyEKPAXMl/2mlt1TaOQe4174GZ//Ea/C2t81NeiEYnThDhLS0UmO32NvfDIb5gnOA+8cvwE0D8YvZoNhoZJpjChIkFaan24RrswrA46U77kOjthYbf+GNnb5z5EieKA0Rtt6n8U9Npb6f5LYeXueWI0l80LpOWrVFURqeRLE+XZLXuDDRFnHs7xQEiwRUeSDSQgo9chzSguZKFrz04oJll4ReaHGr4+i1ZZTvVAvDqxVF8958tHn5LmWa8hoJFraDgwfTdzTk6pioNTvhvQeev+tpTB9u4PjXnI4NJ4x0+n2IsOUCkYsxbmnk++eWWLlw5X1pzaPJv9ChY0DeQkhem57OiAdpBVOGMhJTW1xy3JUWykB+wSgJmlD/6Adlyq6ZQhO2CzHe6fFf/g+R53wGyOqRi/kyckqiX5+kMl05PkpCa6GmhKW+8NfW3p36cfn7lQqQxA4t73LjAuUN7dM61MZDbT9Exuv3TkJTk79F/vO0ZXeovPwuxwY5FqQBfLqbMGB9CoTbrlaqxTE6xC/EbipZNjlnD0rYAtmYRcUT45HjlfRrqN9Dv0qnMitc6VNR1g3HJPncXKwXNXk3l4Qt74d8m0bO5+pL56HfeUCnJ/tftQrU4haqUQsv/7Xvw7pjh/HAR7+KWtWDI1eSZAcAAYLoFfWvFWa8LtOVhK18V0WErYxHk+xyF4vMQ4iwRauFaKiKH7rnWtx7fwXV58oJW6D3WNoPYStdIsj89Eu4GwyLhc7Y0N4FQ//lnXkGeSMMOfYD+f4wPJzdHx7OW9hSKUclHHf48vrISNqfuHtvvmCE7TxAC3wGw0qCFH5Jgo6OZtouIBsA16xJSROGGarWcdaml/BwawxTex7C0NAbO0Istx0WuUSg8ESCggOotHDjooXXaB3TS4mirfbkwlaSrXqB1I9yRlo36Tjmk0woIitWgzJJL6RCKNuWq63OeE0/H7q/1AmJ+UKovQ1qbdlPGtx+S4SsQ48eTRVAhw5lY8L+/cDk3u/g6//+o0BS3AmGNo5gzbFrMXrSGOAchjaNYM3mtTj1bedh0yu2IknyhaHvLPmbSizmlxZ5zAtQbGGrCQSOf5qwnZxMr9ECjGOWVFTwwzGYi0dJHiRJtjOBYWgdSsG0Uslv9SexI4Xg2RK2sr/KPtRLuSLjYbiZKqjkeC4tA3VeQ2mzTQ7a1udCwd9rzOECRtaNPGyzUsHCMbZLHNI6vlLJrPIp35DsWLcOaFSaqEZJZyEn3ZHIMaFSyRZyWobQ7ZuW/pJI0kSqVmbzviRsqVBh3FQu83kJnSd9r5OXKEldwAn/vgxTpGzQ8k4ZNCk+yFxaFJZjnJw3QgY3kvTl/N8LmgSWbUDWPf+znmbS36VMU1RWaVEWIuk0+h1bZfwakfNIslMq5gSyfHp8dM6hMpouNJJGC1GUdRStcCxSoOn/RffkuwrJiyE5sRfkrkD58YmHix2iWmWg3SxlYcsIZm2BzDHMYFgO4DxNeZUuTzjvyvNt2K7lGTdAZkyhd1qEvstr2oXY9HQqj3P3TW7OnEMYYTsDUPCRC66c4Iu5txgxGJYqeACH3HJGzROvOQesXQsM1+q4YMvzeH7sUhx9cl/Hkk1a/EjCQRK2hPQVSatYSdhqbRgQ1hbzGU36SuKHeQLCg7DW2IdIwiLBU1rJkASZD0tEnb+VMDbJ7bwaenItEqh7kYm9tpuV5Ws1ErZAWKkxW8h+Q0EpZCkjF/lcSJE8qVaB+rcewYFP/iOQeFz0y2/A8KaRXN9sthyOPHUAUy8expGnxzH14mE0jtbx9Bf3AwC++ZGvAgBGjh9FPFTBcdu3AlGE4c2jGDl5E05/+zkYOX4dksTlFu7Smiq0OCTKrutxheWUBDb7gyQ6+aGFnVxwy4Uj61Ra5EsLY+2XlenNxbsOWbfNxHKd+Q+RqoOQxyHCVtepjNe5bHeHnLuklZKsP/nuJFnN7yHSS9e3JP1DW2Mlwcf+o3ccNJvZ7pKpKawOTd4AkP1J+yWtVFISt1mtY7jS7Fj3UB6Rrk/4TnmoTz+ELZCRqzI/sh1qX9RA3l9r2fbvsv4hfcd2HTrGg5bXpOnKBbFuu/IAMVle5wCnXCJo4ov1IhXluk/IemNafIZyHetJvkM+I13WyPcgLQz1d9aF7NtFhO1MZa2QcYCMW5LacqzqtXuobAzsNT4WzU1AStiGrK4ZfiYkoFSYsC6lTBVV04ns67/9JVzw869HZU21kIQPkTD8XXRdyo5Szgz5IJfjLP/niFhlfcw2qmUCh6zDLoTSn/70qSiWfb7sQFeDYSmAPFy1ms5DR49m1zn3cbcv1/LShQ+QEbZARvryPueNXmOJlI9pvDFfig8jbGeI1bogNxikQELhnoIMTz+V/WNqKtuejGa6wvRxBY1Dk3jxm8934qI7A7lAkINikbWoXmeGhCEg/10KtbxWtF6VwpP8HhJiQwJqmfZeloPxL1eECOnZlqfIgoDtoeieFJY1sSSfL1xQ3HAD8LGPdQ58SDNTUJgf+iFg585OvIa5hdaIs11xYazJSvoTlf4mvQcO3fkQms8dwIlvfyW2/cQbENfi3Lunj2yptEkSoFlP8NI9T+KJz94HADj6zEFMPHcQL37rBUzvn8D0gfSo8zt/8+8BAK4SYe3Jm3DeT78G5773wszCtgL4RFgAtBf9L9z9JJ7952/jqdsexuEnXuoqvxOdyHuP6ugQzv3xV+OMn3g9ksR1af4laS1JTElqyPGPVgnyhHPmkXXdz7ib5rV7fCwCw0rScqaEAyEXw4M+WwY5ZmvClv+16wjek9Z2ui77nUN0ncj/eh6RpL3MM6+xv8iT1FezkqkIrEtJ2sg+FUVAhPyAz/erx6yQEkHe0+kWzUtadigidjTpV0a46esy7i5lEefDqHd7Kcsb51UXZ/UVsmTvkFmBuCSZrt3MdG03R/55bYWq64IfSeqGCFuZRz4rCVvZ9/XOh5CcK8srt/QWtQn5XNHYUvS733vyfihc7NJMJLqtIJznfqDl9zhGThbbcPbxqK6t4q7f+TKO/67TcNLrtw2eSA+w3vPWveHyyHChZ3hdx5PrX96n1sOKqO516Fg/CLUFHjpGDAm/1FR225xgWMqo1dKdLmvWZPOIlL9y40eUyWdSMcixVRvbyDW5VCDJOVjOB0WKxbmEEbYGg6FvyAmcA588kEsubqiplYd3NJMIiIHq2Aha40dw1/tvgP+DVFCRCx19mqM8hVgvnORAqS0y5ACqDwHS5dLPaIFdWzLNlrCV4VeCYCQnvLmyNC2Lp4gc0vUcIpZ6biX7648h2X0vogsvyK6FCNvdu9OVyk/tzC3EQlsHdd5nCkkGLIQlxlKBtKDl+5OHHjqHjq9rHmh49GhbA//sC2g++yLijevxsl9/N1oAWvV8u5G+t/NkYoSNF56GjReeBiBviZUkwJEXJvD8N57A1NP7kNSbePa2B3DksRdx53/8DO78j58ZqIwjWzfg1O97edY+ve/kqdUCXrzrSey/92ns+d07sOd378Cr/ujHsPW7T++MI9qat4hwkhZE/M9xmoo3jutAWoeSGJfWoqxDaVHXq03KsbTI8qnodxEkKT1ThNIKkW8Ey875jW2GxDcPYpIEj+6zrEcZt14sl9VByLouVAZtARYiFQDAw+WsLFcbtCwgSTdZb0kCNH2Mlo+6FNhsAyRAgG7rHsahyXg+F4JcLMq2zvcrt2nK8INa2LIOuqyFkiidB8XJ2uzLcv4LpcF8xjEQtWJ4OLjp8AK3qK9I0AqQ7lr4HMcuqbiT4yOQHVirx0XGNz2d9WH2Y7q60eSwrG+5UyEkE7M8bFMhwjaksApZ0UvMJ0nQC84BETwwj4RtpQJUo1Z68FgF2Pq6bfiBT/84brzsT+DrzVx7n608LcdSbR3LNDR0W9cKE4Yp+/hWAkRuweQ57m5kHkdGst/cKRBS1GoF4WqRPw1LDyRs163L1gV0yxjH6TgeRflDeSXkziOp2OMuXv7m7tsywlYrCOcDRtjOEJIwMhhWC6QALU8nlxO83AYsrQ2oLa7GCbbtfAsaSYz9n/kafJIAcRy0CgKygbYuCBZa8so+GEXZQTx8hlt+mB8uLJpiwcH7ui+HLEY1sSDzWbZYXi1CTUjYHRSy3iUxOZeQC7VQ2vWkguSVO1D5xy907gXf7+WXAwmAZn6RWVZ+3R6KFjQh8itkJbRU2laoD0nLvtlC1wfHIqlZlwthCljVKvDo/7oFePJF1M49FRs2dPuTdC5d2DuXaeuZf0lC8BqQkXCjoyPYdNJ5nbFw6lffhInnD+HJT+/uHMhCZZM+9JCk7MlvOhPrzzkBcS3OHZYIZFus6/U2OX2kjgc+8mXs/sOv4Plb78WWVxyL4c2jHeUZy12rZeSFPLE8SbLFmjzdPIoyYZfjpSSPevVnqdTiOykLyzrQxIe0nNNhmY8iy3p5yJBEv6RBqI9LoqWIsKUPMxK3eiuefKdauagJW00CAVm55G9ZF7Lu+Ly2JNEKT0kkeY+cC9t+ifeViBBhy/fHOutsefeZhbt01UJiz7n84YBAb8KW2zLlO5b5ks9JBZaUa/olbIuIJamMzykfFWEriX1djjIlQ8J46uG+KceSIlBpJMdUEuV8T9yiSgsohuO70f2OpDfHWpkfxtuLsJX1wbqUhC3raCH7lpZd5fX5ykdRmhpafg6SmQHlkqukDbM53eoKGyLiOQbKNkBoZQrbdkgJUUTCSnJfHiAKZPMw05qaynb0cCdQ0koNV+ThzY1G28gFmHMlmrQKBLLDmign6H7Zy2jCYFhoVCrZuTeyHQPZb8lThMYjHh4syVYZH+V0yWMARtguG+jJwwYsw2qF1shysQLkfVB1iFvnUYkSDI9WMXzSMQAA7z0il/mF5oArFwDyw4UPfQbSR6UcLOV3CjohX2MsQ4hgC1ml9SJsQxrp1UDYahIlRIb2C7lYK4qjfDHYm0gPCfgybQrJQI8xXmwR7QVJ0PSCbDeasJUkjA6/kNB5K1J6zFfaWiEkibGhocyn5PAw4KfrqF1wLs799XfnTnKV4wHJzDVrwsQIoQlbjjUkQQFg+NT12PKrb+jkp17v9m0pFVtAtsiT5B7HrZzGf10Nr/r3b8YDf303nvjUbky9cAiX/Z8fxPCmkZ6LXSDftjim0l+mPPCRbVX6EJTPsN4k6S3/zwYhazJNBIXSkfNE6NleKBorNCEaylOtlrW7SiW1+mg2szYYIlMZp1RySVKHIHEuCXaGCeVPxu99puxk+5Pto1Zrt3luU4fv+Htb6fNWv6AsQRcsPBm6VWnCRS5nSan7CNDbQk9el/+l4qNIESHbIBUdobhkOTS5KsF7ofkHSNuHi7IxU85HZYcQ5srZPrwMAWKoV/5kGNl3eM257kU888W8sl/KsZYfKRcyDEGCgCSxlitp2Svjpp9p6ddWz+GMK0Tgd+o9IDuEZEt9rawPz9f6dbbxBmVv7zq7nJxDx49t42g91+f0YYps8yRmNCTBIkkeOW+GlCAaWuGo+zyv6/VMthbxQJQpgDp+z8XOrrkk+vUuMCm/hOZQ4zoMSw3sO2yvWtbV/a0oDh1Gfy+ay3T8890/jLAdAM65KwBcsW3bmV1WPgbDaoMUOvVCgQIHLY46Aql36QEFAKIaTajSUVYOeiGiJyTEFS0q9HNa6y630MnT26XlrVwUS+sZaU0hB3KpvZd102yGD05YSZhrYloTNr0Il1DYoueLhO8c+RilL5JW44WTdkT2rnuxJRcCciEvF8S8XtbegWIiiWB77peYmi2KrHtD1lrzkTatVoHM9YpegNAaqtVKtxtGa9cgGqqVksiMV9Z7EWHL70xDjgtAfgHHvNLqEsi7eQEywlaPcc5lFje0uqlUHN7ytz+Lr//ap/D81/biry/4bWx53Zm48DffgfUnrstZ2CZJti2YRByJljXtw4OOHs2PZ3QxMTmZEhR8jqRftZqVne2X+WefKbM0kP1EE5lFfsw1EaTbOvMTmkNmQtjKOaOMsPU+radDhzJilhaVPIFYkqR6LJKkk7QsluFosaut/DRBIPMn4+L27lotbzk2MZHGNTmJzinvq90lAtA99rIupYX68DDQiusYipu57cXa193wcNqHtJKIcev2LBU3Re1WtiXZ3kk4atK/yMI2pCiQ5ea4ynh8tZkqmUbybY9p903YVhtI7tkDvOt78n7iWT7vgCuvRPSBneFIVB3IPE9P54lW5ov1wv5TRNhKI4OQEQDrQ+7sku+p8mcfRfyZTyKqNuDgUIlaSLxD5Dwi5+FCcpJ3AByc84gYb6BeNNKn8ubx+ppD7vbMQAV2FHipu/cAF1yYz1cfCooQ9A6NEGHLeq+sTbWMd/ybT2H64BRe8TOvLo1bxtsrD7pNAN1jP69xHpfKAMr8UtZjHkKEbRSlgaS/+pBsRflEu3QrQtncKecHoDdhazAsNbC9yrN05Lhcr+cPiAzNSfJgTSmDU0kuZTR+6G6Hc0rHGl5wCPMBI2wHgPf+MwA+c/HFO95vhK1htYPaLblop1Ajrcg4mNXrgG9VMNmo4OhRoJGkAteLu5/FhrOPw9RUptnWCxn6owHSxc/0dEoy1Gp5IaxezwgJIH8KKq3IOBhz4UpygoM7B2SSHYyX1nAcpLnQkaAAp4lrliPTpq8saDJCC7f9WGMyXL+Qcc6WsNVkc8fabI7Gdm3Fy/+SsGVaobrpRdhqZcJ8Yz6I2H4hiTTmRSuIeIBWZ7thM4FD1CFXOwokMcZo4lXGHSJseY9jjlywaWtzeU0utiTRrEk4Ob6QEKVQ6D0Qb1iHs//dO/Hc3+/Cc5/fjee+8m38w2W/g80XnoytbzgT2//NGzpEoRQipdsAxjc1lR83aZFJX4+SsJXW77L/MF+6voreoSSIZHvSAq9edFIoLyNsdRqDErZ6PtPku1wUkPiUpDfrknMK55IywpaLfr4DGY5zFIlyOaeE6pLXGBcJ26GhPBFx5Eg6h/KEZaIfRehKRdCqVBB9fP8p4eERuyS3mJO+SYFMwRF6ryHClr9D25L1c6F1yEzemSTYJPnPhWwnbyQfxQFaMs+hOUjXZxQB+KGrkDgPIAkSk61de+CdR/RzxYRtLj6RVs4Fl3ovocW3LD8JW5ZJW6rK50LyHwDg05+G37Mb/lUvT62R4SEpU+eKyNi0Lfl2ov0QtksC27cD73nvrKOR7bfLlVqEDuHN3+tP3oDL/vc78eVf/0fc+aHbcfDx/fie33l7F9mqFRD8XeQSgTKAdolQJAtIYw6OEZwLea3RyIeVcXfmlFY6qEgljKyTIsJppqDFMRUbw8PdaxyDYSlDzlVy/TQXbZdxFylZtIwo121G2C4x6InbYFhtkIIVFySc/HlAA7eJcrFZjVqII484Bka3n4GhH30DPP4M4w8/j2/+we3Yce2bcwe0AFn8HCAZH10h1GrZR1qBcSsaB099+Av7rrQI0xYivCbdKkgLC+8zIlhaY8o4NImwEhESZomQNWbIIneQuimy8JwptCUEt6FpUrQ7I2RK8kRJvwhZouhFfBHxLK9RgFhp0Mob/V2HDbWhOE4DR5Uot3gv2vIoyZYywlYfJCUtuuTYIcexEEmgLVGl1ZcWGKUbhnodwLb1OO7fXIrvuu4NuOdDt+Lg3pfwnX9+BC/d8xQe+vN/AQCsP30zNr5sKza9bAvO/aGL0Gh0L9aoxJL+vzg+cpzlonZoKLMklduFa7VsvA2VS78nmYYch6XFg6xv1hv9Acrt2LIMsi+ElDdFkFbbui/KvMqDliQBxPrjon39+oyw1S4RCPm8toKU4aSVnwTLKv39kgyQhC2VlkNDWZ8iEV+rAZs2AXGUWefJAzhWG/SYTHmC16WP7CRuoRa3OtawlHOkdax02cQ4iSLCtp95RC5WtTJQY5B5qWihmt70uXrRCF2Xi1v+xgd2Ajt3Zr8VkksvK7yny6XzHlpc63JI61nth1eOO3oc4nvUMqKU72pxC9HFr0T1js93+qYv8C2cFbid/wjwfIfztOifEUhuhsb0RHxmAUlQUs7OvU9aKHfascM5792O6WmP3X/wZTx56yNIknLCth8ZU7bTfmVSthPOSdoiX753OXdo8sfFLu9CTpRb7ryQ7adMsVakDGJ+pdJaxj1fhJPBMFdgH9MKUenSBsjm6iKuLiSvMrw2qJH9I7TeJ+aLEzTCdoYILRzltbncHmwwLFVI0kGSpBxMh4ZSX2/VKv83MFJtYHQUqB9Xw9ZfehM2feFYHHz8AJ78+29i08lrcd6V5wMJ4NoCVnXDEEZHax0rJR6qMzGRLYZJ2HLBumZNJkhTIOdCSh5WweskXDhQS/JGEiiSdOFiifUQXOBg8Qi1kFWn/k70sqYqIsMY3yAEY680JKGjBU6CVoJycmb+pqe7t7XrPNHSQVpi5+NPb1SmsmeCk3A7HKaydqYFd+ZBlnMuNcCDCthl77JfaOuj+UJZXvWWVEmm5LbxesC3EiSIOpYuRdbd2jpOEqfymRBRIEnCsvvymoxPyxF6vNELfuY1ioDaUIRX/8ZbUa8Dk0/tw7c/fhccPJ7+8mOYfP4wXrrvLviWRzJVx6k/cDHc2mouvjIBU1o0yxPk9TOhMaDIWlyWjVtK+bsXYUtrYL1lPEmyU4G1W4F++ocuH985FXWSsJVxSguLUJ/QW2xD6fJ/rz4lFw5Afgwg9I4OfpdWs3wnbENyO+xMxpSVDknSksCtVoFWnHROridCfbWUrEP+OttuPztxdD8MzXX8r4l9/bzOF9vJXBC2Ms6y+51rzgNCcRCCVMbrOpDKMunLlOXV/k2LSCv93voh0aUlqGFmKJJHHXzXvHnmVRfi+buewlO3PxIka+W4qudp/tffJRkj1zhFylsgT+brZ+R/5qML3nf8Ycvyye96Lg0ZPuj7RfdC8ohxFoblAmkwVmQMNJt1Ti9jojLl4HzBCNt5gg1+htUEvX1HLgRphcVDx6gl50J2zTFrMX14GoceP4AvffDz+NIHP5+Lu7q2ip0P/gowPNwh4ur17NAxaek2NZWRAQxHopfXuAWYwtPkZDrIcnswSQO9TaqIfJCnb4fqY7HQLzGnrVWLylkk/PVSXoXA+EKLoH7yLYlyPsNrJGxl2CLCls/wXfO9dQ4dU9vUuzMSpYuIJCOeGE+IEAuR0aGyFZFhhIxH3u9Hs9uvBVcZ2OYXwr2HJqXku9TW8dy6z/pptYCJZ8eRNFqAj3Lb9vUWJrYBSd7LutLvkPHILZFA1g74fuRv6ddOxp8k3T6zpOsGOSbx+c6hJEk+72tPPQaX/Prbcj5sn/invfinn/wr3Pmfv4A9//vLOPcnX4PjX30aRo8fwbpTNuVORNeQZK0cH3W/kmVmGUJtjfll35euKPohbNm/pRsKvh/pq1e2j34JW5ZJk7Zc9GvClkSodMVB/2bDw9lOE0na6rGI1/j+Q/6op6by13R5ZF3Rz60kpNgO+J7ZD6an0++pS4RZanFWGDTRLj9yJ0YziToulOQ8xHZC62b+14SPbt8hf9yzxUzlEW2B1zn4qWC+76UY1s8UIbTDZSb51h+d17J7IRkkpFjrFY6/i+7pcpqxT9jKnQcW6x11zSZQW1vF9P4J/OM1f4tL/tu7UKvFHct2juNyt4tE6NAxEq+cP+TzvQhbSQiHCFvOeVJmiWMP5xO4yHWe02OAJKjKFKL6mTLCVtezlI1Wexs0LH3IPirBdq1dqxTF0Uupyn4v0+I12Y+lzDUfMMJ2hihi1k2ralht0ASG3j4gB01NsHHhuO6UTfiR+67FE194AJFPOvG89MALeOAv7sQfn/phwAG19cOoH55GZbiC1/zpz2DjWcd2rHqBbGFKNwWS5AiRsXyGQlRIcJeEizxcgPe40CYhw4U9F+NMV08G+t58jB+arOgn/iKtfRnxEbJW0OmFntUToPwvBezQBEpSgr8lAUTLa3lP5iNkYSvbbbOSHq4S17JnQnXiKy04eMRrMr+p2qJHlqkoP0X1U1SfRQvFftEviVWExTyUSI43QDdhOT2dElyNBjD90hE89Bu/D3jA1Wqdvsz8y/ZVRNjyfhl5EFr4SOKSi6MQ8cz/HCPZ7os0+HxGE4rMb4hYPfZV2/Dub/wavvL/fAwv3vkE7v2dL3byHg9XsOVN5+Hs978RQ6/YDCAdE+mfnPFLX72h7ZRSqSWVEqG2putDL0bLCFteowsG1p1U4nCxqy3dyyAJVTkWyPcn86GttuScJhU3/aQ9E0JN9wH+71dJx3BaYQdBdq3WRXsvS+lO/xYWp5z3ZTggTGbKOENpz6TeQ5bR8nso3n5kg1ycs7SwnS/o/jkX7TZUXyGCTPb/Tji4nLwgx7uZpLtcoOeifhAir4P9p31gsSbjvQdO/Z5z8PSX9uKhW76J8z7wRgydeEzuveg+KdPtNV4WPc845AHG/SgHQund88Gb8fwdD2DklGM6YTpp+qwx6Pm+H4TmCV6X7Ux/X65t0LB6IAnTXnL1bAhbXlvsPmGErcFgmDG0ICoJW02I0MKW25r09uOhsTU4730XdfwlJgkweaiOkePXIZlu4OiLE5h84QimXjyMF/c8iy9d/ce48Ne/D6/4yR1dPsmk/yi9NQ7If4+i/BZ6DSmsSasuKXxJS72ZYKaWJBpFi/iQoNorL3O96AnVjd52ErJgKcujjouTrrQ+1WlLsktvf++QPVGCxLuchYWOEwC8Sxl8WtFJS8FeQoL+Pghhq++XxVGE2SykF1pwkX2QfZV17X1m3UbSnORh8+gU4IGT1h3Es1+8Hck9n4Q78WnEw5MAssVQ5DwqzQo8HKJYMLbiPsTCycMBSK/5ViXtc5X0Od+K4X0EuASIW0ASwXkHFyXwDkgSruJ9mn77f9KK0+9xerBPelaNR+La/1sxkiRKw0ZJ+r1eQ/L9b0Lzp1N/kCSbOQbQ2jJJgMraIbz5L38Ch79zFIcfewGtI1N46a7H8NBf3Yln/uE+PPMP9+Gi//A2nPNjr84pQDTpoN8HIZVZclzUC0MSytJSSJK3UtEnSTBt6SQVOvwufY2G+mu/kMSz7NNsd5rknJ5Od2oAwFOf/xZe/MrDiJvT8AB8s4VNLzsBrXoLUy8dRRQ7uEoMF0eIq2nE1ZEqho4fw4azjsPaY9bAw6VxO8A51zlwM4rQGW+q64dRGRnqlJ95kbsLCG0RrdtJ66Vx1JKp9GgkW7h3zVuyrRKSsJV+9vUCsdcYLRUcug/0gp4bdF9bCLIUKM93rzwE5z1BDA+SByBbvM/EJYJU4jJ9/R6l3MrwUqEn20Ro/CzrTwv1vuYDczlWhOTAxLvcmCx3NGx57Tbs+LXLcNtPfxzPfu1xnPj9G9FqxV1yr/4tFYuhcHLuKQLDy8NDpSEG1w38Lw1biMOPPIfRM4/H6Tsv71zr9Cnhw3YuleTaUAIYbOwxGBYbq00+McLWYDDkMIgGV1vX6i27zmXWblNTQNSMUXEVTE9np57z2cnJdNFD4sW3reJe/rOvR62WuTsYHva4/y/vxjf+26144euPYfrKV6JarQW12b0+QJZv6RJBbm8HsnJJQkKeGM2PPginCHohMNeErbYskNuVi9Jifoos2nhNT5K6LuW1QbSSvbZ3lT0jyye3BDMvemHLMMybJDScQ2frZxRQPuTTjlLert1+5GnwMj5ZLl7X9SzrX95je5QElIw/irq3h/daYMwWsi8sBELtQpNmutzeA0m7D48cfgQeFwE+PYm7EqWVIAnbWpRWYi3OOj6tehx8J6yDbxO2aG+JTpC0CbZOnoSvPe/b7SlJM0l3G1GbqOX/ZhJ1FmeddNsRRs6jkcRoJa6Tj2YSofnwvfCfjpD8ZErY6nZDy9MoSsfWOAbWnbAW67eejjgGzvuB83DJr70FX/svX8Tej9+JXf/t87j/+i/jkv/3e3HK5ecAQ3HXmEYign1CL/D02CAPweK4SV+zss5IspAgJamrFX9FY5kk8WVd9NtOQ+MY0O1eRVrPEixDffwovvWbt6T1NFzB8HHrcfTJ/Xj+K98GHFAbG0FcjZG0EvhmgqSVIKk3kdQDLGsfGNq0FmtP2ojqumFE1QgujuAqMbZcei5OvuwcDI2mW004LjGv3FXCcfK+X/5TrJs4nHOKQMJgNS2IiiBJW34qFaASJV1kCrczs761n2BNhuixXFp3F0H2h9B3me9e5eoVNte/Syxs5a6CfvNQNN/PpM3NJZk1GziXjv+y3L1k6l6k4HJAyMIbGIz8k4o5ea3VSue7lo+6LF5Zr8PHjgIAvvEbn8NFPsbmn74wt1tGrk3kbz2/yHUA1wb8rmXJJMncylBhSMJW+ovm+Mtn6/VsDnz6a0+ifnASx114OjbuOCM3d9PIJY58ziXDbAlVxi/7zGojvwzLH6utzRphazAYOhh08AtZXWlyc3o6I7Ncq4LYeUxNZVuXuaDnIWKayHUuFYRI2DabDie9awfu/f/uxDP/eD9u/Mf7AQAX/eqbMLJtC8ZecRLcSSMdv3ITE/kFvvZhOzWVhavV0vRarWxbsExbWmbwtHIKcsyvPPiI6cnDsUKE6FxCL7T1oq5oW1+ZoC1JaYYvQ9EWsl7PFlnk6rxJQpoCPS2rKaRLxYG2IuDhUwTbbMdKom3JiGaWtq6ztHxt8q1N2Go/pKGFWIgU6o43f027INBhpLVpPxYhswWVMZowm0/hSVphAhlpQqtL6V6j01ZJeG4+Bfg3/wnJaUDyWiDZlOUZaBvPttp9u5alqS3Wdd0mSXowXZKk7jOSBIjqKa8RRQBiAI3U2DbiwU6S8CPB2H4uioColj6fs953gGsCaAKtRhpvswm03v0juXJwccl+IH2q0lUIrZGda7d7DOGsX/xenPje1+PR//33ePaLD+LLv3Az4IBNF52GqBLhlHdcgHUvPxWVsXUYHok6yio5JnLMlv2P/Yy+BKVyrKMcSbJ3yLE3tEuAdSaVZCRPuZit17MFrTzIrKgtScgFuW7Xcv5gH5dufpwDfKOJF+5I56Kz/u0VuPj9F8I5B99opm2zGsN71zWuNZtA49AEXrjnGUwfmECVUrn32Xtq+JRM9YD3Hr7exOEnD+Dgo/tQPzSN5uGJ9GC9ZoLxh17AM1/4Fu7+IHD6u16JrW84A25oCBtfdiJqJ47mFHgsR/PQBPad8HIIfmPVLYbKoC1IOfZUoxbiyHfdk9aU8tT3sjqVFnkLURamKdMvy1f6cKasmot8FCHCPFfCPKK9cT/73Uc/sr6WV7xq+VXWTagvRhFw7AVbcfVt78dNl30U9YOTXSR5SGbS471UREpLXqkE1G68pPyvyxN6p1JGmXjhCP75x/8MADB0zLocGS3LrQ9bmwvo+KwNGpYbtJW4Xv9opU5obtVGRvp76LlQ2IVQGBphO0PwJdkAZ1hJGHTSJunJQZIHAZDQqdUy4WPNGiCqNLCm0sDISLq4HhnJBKA1a9LvtVpmaSUJWyD9PTSU3tv+W1fj4L1P4sA3HsEztz6AXf/zDgDAid9zPt78f67qGqy1Vl5el9DEpLaGlZZhIYsAPXhrslMSA1J7z/hn+i4Yd+i7LIu2PCuy6NGErXwmdE+iiLAtIxPLJkUNbXEqCVvms8g6TL9P+Z8L60RZEkkrwBxUOJJlvZzPFxHnRWB5pNWwtLaQh4Cxz/RqO7NRGITiXgwLJ9k/JaErLVSAtiWcWuBphK7LepTWoBL6YCvmRR8OIklLgm1WvsuaIIxlmlw80jKn0QBalSaiKB1HmddKJR0juVWXacoDGvXBVs4B1U3rcMn/fA/2734Sj33iHkzvO4yJ7xzE0cf3Yd/X96bhqjHO/9XvxbYrL+o6HEkfzMh2KRfOcrxkncmxRVtWyfFCKwfZ50n6lo3j+jrjmwkYr24r+750P+7/0N8DANadvhlr1qRW126k0vH5Ky2Agew9rjl+BGsvPwtA5nubaZFYl9BWXrLtfmf3c9jzh1/Bs19+FI996l489ql7O2HHztiMy/7kPVh78jFwLiWPh4c8fKOFxobNcEDOOtDk22I4B8QuQey6xxaOPxyzO2PBDTcAH/tYPiLv0o/zbU0NG3zJgCrDhL53MpmPo+PKRd4vSk/nC4DbvRvugosK62OQ9lIaPuIg0n98nUcD70KP+2VzQb/P6Oud51U9FhHkhjxke5CkaOdgrijdfaLfAZWESeKw4ezjAQDN6WaQdClS0ofkby3DhuZNvZ7o5yPnvNZkehLhWT/7Fpx09Wsx3cjLtpUKcgc1zyWMsDUsd1DW5pontM4uImwZVipk5IGymviVCI0L0niLccw1jLCdJWyQM6xmkCAgoUqylYJJrZYKRI0GMDoKVIamMVJtYHIsDb9hQyacrV+fHRYlB0DGw9PBh4fbpPAFm3HK9s0Y+cCFiFt1NPYfxt/92C1oHTyKTZvQOSV9eDgdfNesyU6RZz69B9atS6+tX59+pGa9UslOpJWkBxdk9XpKjnCg1ifRSnJikHFitqRCL0iyhGSHJlVkXihAatKKE560LCURLbfpz0dZ5EKIBBm3nWrCXUISfNqHLRfXLUXEFk7CKlwRkamtY4Hig7ukxlZagGjiUBLvMry2zpgpelmDyf8MP98oUrpoQUlapjBv7LNDQ9mYoLe7F5G5RWC9e999SB7HCXnAnSZs5ZgRImw1MUeFVRS1dwAM1RG7BCPr0ms8qXp4OBvrWq107JSWsCz3yEia96GhNMzoKHDMZafg1Nefgmo1DXv0yZfw/J1P4f4//zrGH3gO3/qtz+BlP3AOqhvXdtwsaMtdIFPesYyyX7IMzmVWuJLY4j1JeIeUZ1phFlqE6vdZpATSz8m4ZLrMI+c2ALjnd+7A/X/8JQDApZ/4eQxv3dzlC7MsXTkOS/+yHCMajXz4MsJ2zWlb8Jr/dSWqVWDiuYOoH5rGM195DN/8yFcw/uhLuOVNfwxXiXDK974cW99wBh792J3pg5XKHNlOrnx0xiFEHd+afeFjHwN27wa2b5/H3BXDe3RZyCaa5BXXu+5tvxB4z3u7ws5ExjEYiiAV7tI1gAbv0Y1BqxoBDnj2tgfw1CVbcfrlZ3bCasJWEiy9LOu0HBjKq/7oMsh42FeSRjoRj2zdiKgSIWplRiucI+cT2grZ+q9hOYFrPmmcIfuMNJ6R/VevoSiv8zdlNxlOrw14Te7u0/1prmGErcFgmBW0pRQhF6Gda3BI7tmD5Or3IpkaRrL2KPCWewHvkFx/RXqYTqUJT+sOWnjELfhmBUkSIak0kSQR/MQInPNAtYFqpYnRSgujT52HJw5uxB9s/E1871kPY/3QFDYMTSGOgKFKA9U4QaMVIWlWUWkfLFU5uAFIIlR+5FJUrt3ZyXO/lhmawKTQx8W2PLSGcei4CKm5D5EN/SKU5yJrM03QhizdtGaSSJKMFJITIssvSd4iS14Zl/4dstCVpAbj7xwy1XZ34X0q9IaEbOeyMCyLJJYqFaDerKRtYyqNQ75LmT/fjNMy1VPCql7vLg/bk9TWRlG3r92Q1QaFfdmP5LuhoMJDiVhHRVvBZb4k2a3JqSICbDEg2x/bG/+zbZOEJHE4NZX6xOZBUFPNSuc3/Wezjer3MihhK60fpRWOVIAUQVtfFY0HErkxyHl4F3Xcrsi2oy37y/JA5ZUki6nUWveyzTjuvM046+rtePST9+Irv/JJPPrX/4oLfu67sXbdcEdoZXuWz8t+JetEnurLtKUiLLeoFe2V9/iuqBSSZZcL5JCle5HyRT4vFSSyzqfHJzG5fxoTz45j/+4nETng/r+6C5MvTWDNlg14+c9fitFTNne5XGG7kNYcjJdlkGMYkJ9LqBCTz7F+pGITyMI6BwwftwG1Y4DTTzoOJ7/7Yuy/cy+e+eKD+PZN9+CJv7sXT/zdvQCA0TOPx9TWMwpaiEEip4QVCqG+x8rt24E77sh+J+1P1P6w3ZSNQzKM+p7r872UFULp0ZWezpdOW2Apk7UhS0nZH6UvU3mgpbSG14pqw/yD9d3ZsYEkZ2nKeYuGGM4BQ0MOJ156Nr7zlUfxwP/3NZx3RUbYDg+HZUxel3KTfu+cC6XMAeTn+uHhbM7jmE4DAsoJlEn5venTCKpr4o47tuHhbIfMQoJzipZXDYalCsp6RTI75yU5B+i1WNE6DQhzGP2kM18wwnYOsJSFFYNhIVBE8DmX96WYfO/bUXEtNI9G6aE5SZSSuHCYblXQbD9I6w55KM9Us9I5sKeZRJhqVjrbhfjMece8iCP1Gl6aXIvPPXJOJ0/nHfMC3nz6Y2j5FuqtGJPNKqpRqxNv69E9qH/yKOq/tLMjXMlDCkjwyO2+DCOFtpDGnpZnIWtESeroOpxrFJE30kJAkjx6a4mMR+ZfW7OGrE0l2VlESOltv4xfhtNWaBx7SRbxvWjBe7bQiz6ABEuEuMTfnu4L+p78hOYRSejJupb1otvboOWSeZPxlrVBTWjNJ2RbLBKg5CJcKkt8ko0N0nKefVsSXZr46geSsGW7bDazHQd8P3Lc0O9Iko2MsygtSSbU60C9FSPxDq2JNB765m618gegcIFIq1m99WtyMn2GhC0VD7KepqeBNaccAwC4+/e+grt/7ys45pUn4MTXnYazrjgPo6duxvCmNXDthiGti2UZGG9o0cv/2po2ZCkhxxptpXzwkRew9+8fxNS+I93t1APxmgo2nDIGD8AnaTs5/PRBHHpiHFMHJtJ8NNODwVqNFib3HYVvJpjcdzT4bjaeezy27XwLTr7srI5fdqkMaLUyH9fSjQR9DcsxQFs88aPnD0lMs77lPa20qwxVcNKbz8Ypl52Ns3/uMhx+Yj9qNWDt5mHU1x+D3X9YzhGuZugFH9Cu//YBhiRXpHI29Om4HShRxMjfvaDDhyyH+nm+126KIsXRIHldDBSVK3RdzjP6vrSWNMw/ZDvujJ3tQzc593HXCM+8qNfT+esNH/kh3P7Tf43nvvE4/upVf4hXvP+7cM57tyOKKrmxVR4Exr4dx3minudU1KcSJJPTmDgwhXUnrkd1KB14aSAgCVmO/d5n7oumprJ5OIrS+fbgi9N4/O8eAABMNyNMT2cyhDQMmM86ln1bEsTGaRiWC6jIl7/1/X4NUAaZL3QalKWNsF2CCFnDGJYGijqNaQ3nD3IBKQc3LqSdS4UZ/9M74X5uJ6IXAHcA8McA/uuXppYhv/xJtBzQHMqTE84BqAGNtkuE1hogaQHJPgARkIwAfg2AIWDTQeCtAKr1ozjy5H48eMs38fQ/78WDjzu8dNrFeOff/DDc8BCSOuCGgcgD7gnAve9HEbmDQWs3ORhrUpJEApAJY9T80zIztDAI1Z8cT+Zr0NcWfQTTLiIXJQmryWddF7IM0m+mDB/6rqG3mDNOIH/YkMyPJHXKxme+T10X0nIx9ztQZ0kCeHS3Cflh2w8RLvwfst7RVqVS+ysXGLMhTkPPaRJT+pKTKDp0TP5nOeZizGW55WFJuk1y/OEWJbaFFoChuImhodQaZ3g4s6phWaWF4yD5lc/TylRu09IWkKzXfixfy+qh0y/ENlE5ZtLCkwtZSbxy4QhkfWxyMv0/NJReLyJsR87Yivfc/+t4+P/7Ch795L3Yd+93sO/e72DPH/8LAKC6bgibzt8C30rwsh/fAcQVJB6oxEBUixDVqmgcmUY0Moyh9UN47l8ex/SROtZu3YCT33Qm1p24HvV6Nzmr899qpX5XX3rwRUw+fwjOJ6isHcLz9zyLvZ/Yg4OP7uvUy/DGNbk6bNVbaBytI4TahmGMnjSG1nQTB7+dxjGyZR2O23EKautq8C2PdWdtQXVtDRvPORbHvuIEJN5hcjrCgQNpHcmPHDcajXwb47ssU9iE3n8RkcRFC9udrD9+eG3tsSMY3jTS2Xr70ktp33CNcLqrGUXvJeReYLEh8zrI+BIaj7SCUl4PfQ/FudjydmhuBrr9zMu5gO6v5Bhp67yFhSQ/OrsqkBp4yEOKq9Vsx8zERHr96FHghHdcgolnxjH+6D58+dc+h6/++j9g08tOQGuqiQMPPg8XObg4QnXDGhy7/SR471NZCh4+AQAPJOm1yRcP49DDz+fyt+60zYhqMeLhKoaOH0O8ppbKHRXg1Le/HMfsOAWuUum0HU3YThxu4oE//Rc8csOXgMjBj6bznnNpeQZVHM8EIRlfy6kGw3JHWZvm+kmvXbWrPCC85uWnWk3lKLokmy8YYWtYUSgTEE1rOL8IbXuXQjJ9vUpyTx7YMzSUEbtycc5rQGa9Rj9PHGxlfEkCrD1uLdafsBbHXXwynrnzWdz+szfjhbuewke3/Q9sPv94vHT/81h/2kb80Nd+HlEUwbvsQAOZb/nRTsWln12SV5pAk5Y5ocWN3OoqJwTt/3WQdyCtukhKkiyQ+ZCLefkdKD7ROkQ+FpGVRaRpEWFbFC5kfSj/k6CS1txR1H2gm4R2R6AtAZtJ6psQIi4tRKd1mlo4JvXM6kOSI7J+Nek8PZ21G7YT+e60FaJ00yG3cfJZSV72Qj+EYchdxiCY7fMhSEsYnY5sb5llYlrIOPKoVjOBKvRuSP4Pmh+mx3GJvq/Zh2Tb0QQa0J0X7ftUpsVr3L5ZqdXTso9mdUCyThLG2npdjq9JkpG6krDlfeaPlkRxHOHcnW/AmT/1BkS+hfH7v4PDj7+Ixz93P5qTDRx+ahwTzx7EC3c9NVBdfh3ApR+5GqjVsOXik1DZNJTlt9HCoScPII6Bb/7F3Xjob3YVkq4AcMJrT8NZV1+I0952DtZsGMrdazaB6YNT8M0mWi2XlqniEA9XEA/XOu+ocWQaPvGojA7nyM+pqey9RRGABHD1fPvTCwBNFGmSVYYpc+FA8oLtlNbUfOcyvHYJ433mF5FzFwnbkZFUiREZYdsFTfoB2ftbqlgKeVtK8nZIAdrPh+Hl/6VSppUKOS4mSTqvDg8Dw3Hq0oxyP8/O4FhYr2fK0hPfdDbOf9fZSCam8K//8XOoH5xEFKdhR45bi2NevgUv3Pc8Jp4/jKNP7wfgkJ64mL5cFzk4lzo8qQ5XsPmVW3Hq95yDyX0TqB+aQqveRKvewuEnD+A7t34rl/9Hb7oHAHD6FS/DG/7nFRgeHerIbMPDQFJv4qu//ik8/rlvIR6q4LJ/+BU0KmswNJSN0SMj6Pzu7DZM5nbnnZbljag1LDdwLC5SHBatu+V9uYaaqdEJSVuedzNfMMLWsKKwlITE1YReda4JFWqkhoezBeiaNXkLBxIGUZSG49YnEr9r12ZkLq3maDknDxg7+dVbcdU//zwe/r9fx9d+8za8dH+qLT/0+AG0phpwbqjjWqGIsNUnuesFW0YQ9SYu+1n0zUQw0wSZ3kouJyZCT1Ka1CW07y5JPtJ3q6yfZjO7puMrImnLSCUgIzedyywAeb/RyIglbYEZqifGF3onUYRSC1tZl63EAYiAZt7vnSy33movCRTpf0kqL6RLB7ZjWb+yfUiyN0TYhsbEMiFGxhtqhyEiNlSX/aQxKPpx65EjzWh16JKuQ62IonbSD+S7LMuTTEdbyc6EsGX8rpIy+fGarD1xMUuLX34fGsrGVhK0IyNtcrK9XX94OIu7Ws3Gark9leN2SubGGH3NSai8/iS87Icv7OTz0OP74VrNjhuKOAam9h1Bc7qF2vphHH1pCs55xJUI67Ydi7v/5x3Y+4k9+KcP3NQp79oT1uHYC7bCVWI89tn7u+p3y6tPwRnvegXGTt+I2kgF04emEa8bwfqTN2D9ies6Y1bISrx6zDCq1W5flexHrRZQaxPGVL5opZa2AJaHUwIZYSrfvYyL1/V7DRG2sm1QCaDdhBC8J9Okj2u2f3ngIfsUSRKPuScHDAuLfuXgfsa9ovGxaB5fitDyz2wIW86/HA85zuidR4aZIWQQUKkAtbiFobiJNWvSsWrt2nSM5dwVRRnRWa8DGzcC1eOH8c6/+kEA2WHGnB9p9To8nI35lF2Zrray5vzAsbHZBI4cbOHgE+MY2zKMo0/tx31/eQ+++Zf34LHPfAuPffZb+Mk7fw7rTz+2rRD1+JOX/W8ceeYQjt2+FW/88Pci2rIGR4+m+aYrI7ovKjKYMBgM+bWSvKbD9BqXl4uhnxG2BoNh1ijaMig1WAwniSVJeIQsIIA80SEHzyJyVD7TIYiHY+z4hddi/KEX8J27n0VjsonDTxxAazIjbCuu1VlwS7KMGjN5OjiFOe/zC3MKdnp7hdx+J69Loo1xS/S7vYLESIisk/XCRbkkjYqIIkl+LjYkuS3dUPA/LSclISfLHSKv+y1XaJHXWbD5dKUWJflFoX5eg/HIxckg9SzTIeFG63P5ToF8Peh+F8qXXIyGiBumJ/1vkkRierLe+MxMoOucKCJDu5QgnYFnZun3A1mnRQt+Wf65EgCpWPDI6oEkqzw1l+nL7VpRlL5DjndDQ2l4EraMi33N+8x6XY5lJBC1QDy2bVNua3H6bo7r1EO9nuWz1QJe++F34pU/9zokU3U89aW9eGnPM5h47hBe3PMskpbHxvOOx4bTN+HMK86Dj1NfrJWhuBM3x1LGS9+DoZODuWiP4/4VEqEwofkq9P75vjk2zZawZRmYd60oYbn0QqVsbuCOlUj4415KC5WlDBLcZURf57qnSVD2vB4flsqcu1yg59wiObLIvU8RQgp4ICyLGhYGbs9uRO96B+IoQVxrIIpaiJMIPolQqddQqTZQaVaQtGJU10yiFqfnVHg4VOIm0D4DI4oSRM0KoiRCVGmmh5m1z8vohBHfK1F64Bn7ZtLpxxFqjSo2e4eRagMbowRbvcMbL4lx17Mn4uvPnIx/uuy/YtvGAxipNrD3wEYcefF4nLVpHy5u3otj/+Mn8MLRtXCNGhzzt/4Q3PgYogNjcMe+CDy5G7jolZ22aG3OYEgRMsyZCWEbGuOXIoywNRgMs0ZIEyy/S00YF55lpzsCeZKXv4u2L5R95DNv+8i7MDUF3PuXu/Hlf/tpfPyNH8GFv/ujWJtEqCeV3An0WtMurUx5TR4kI90YFOVNgqSYJDyKrDp6gXH1Wrj0Q8KGLBz4X09oMl7pd5L3evmwlYsoWqnI7b6azJDWgwwDZNa88rAf6RJBlpvhJFnS1W7a29AkKarjIWFG601dtrI6lUSWLD//y/tA8bvV5Jwm0iRxI987CSDpTkCmXbYY1Qtkbbmt+9xcLDB0mqHtfGHCth1+9lkohH6HoY8k7HQ7D5VBxl0E5wDfPjhRknxsD7Lt6PGWOwb6GQdCVtsyjIyjTPHGa/pe2h8d1p56DCoVYN05WztkMQldWrDykJl+DmUpasMhSzudv34I27I60W1RW1XPFppIkmXlgXfSJQLnNY7PJHVZxx2/yw5wyHaaGDlQDG5XbiUudwCpVFjNBEYE9g8pG/YTdiaEbdl92Qc7ys42mWck/NygM1Z//9uQfHESrXoEl/h0d5OP0EhiNBP+b3UOM24mUYdkTRDBIe4cWpx4h3or7oThwcaR850w8jvv8TrfMdNJvOuEbSUOkQNeefxzePTAJjw2nn6INZUGLjj+OYzWGp3nW4lDEmUHLXu49mHMEZILLkRy9VUArA0ZDKsZRtgaDIZZQxMohCbvtLWRfF6DghqJUG7jjeOUJKUvQXkgDQ8e4OKeW/PlFvrpaeC47z4L5/zwxXjor+/G83c+iWOnhnBoeAi1Q90kJOPQvlEnJtIPCejp6bwFGsPy9NcQqddoZNfkdR5A0IvQ1oSijIuEMxeTkiyRiwz+lnXJcIyvzCWCJLdlHfHgI02KyAWtJDWkX1YSs5q4ZJtgnbItHDmShhkeTu+1Wul/ElOasKUlnvZhy0+9lZ5InLQPDmKckqxtNpEJ9818maU/SZl/Xgv5FZUEq3xOkmv8yPLHceZfVPpxlu9aWxPSMryIjAtZFsn8yzD6vcrFaxmxNQhCFqwyL0WKmg5jGyiXzPdca9S18gLIu7xgG2D6Mh9lhG2XlbFw3aHj4HtnXqT/U47B2hpTulQI+fvlFlK6RCApKElotmttYcttp0B+u6ecG6QPYJnHKMrGdPmMtrCVCkH5O/R+peudkMJMz11yvNTKqCTJ6oXpc6stx345l0mElA8auhxaQaPDymf4Xe9ykSSS93wnc8Qor3BIhV205x5E33MZoiRCnESIo1Zar94hdgmiRg1R3EI0NA3s2Q1s3w6UvGNDG7t3A5deWhrEtT8dy2UgtZp0HlGUpN+bFSSI4F0TPvJIWjGSZgVJ3EJSaSJpE24eLp0u4lYan099mCZXXwl8YGfpXMPrQGpx7QLzjpFtg4P1liRA44d3ovGLO9E4DPgK0BwFkig7n6E1AbTWAs1JYHoSmNgANIWM06rkXRzQJQKG84pqKZOHDp6TirdmM1tzYCSbkzjWXlkDjjx1AC88sA+tFrBhywhOfNWJnedQBRovpHlutufU5klA8hTgHwf8eYA/A0hiAIEDjA0GQ/E6Q689Q88tJxhhazAYFgRSaJWLfAC478XdeOcnL82FkVtTKbSRXPA+E6wkCSMFLLlVWZKDnWuvSfB89Ung0J9h+G1NbBieRvVTl+a2zkuCReaF5AO33TJ/8r625tRWS7wfqh/G1YuwDf3WVr5SwAwt1GX6Mo6y7/odyfwyjM5PGWRdyHqWbUBaJJL44XMyfZIisg3osjKtjt9G3dZe+8104fV3l+baXlf7fN230mvtdiMtpmU4/RzzIMPp91BmlaPbjW7j2spLx6PJ8jJLpdCzbNOSCA7Wj7oWiq8sPUn6sl4k6SUVDXznJOu9Bw6N1NH8iWdxS62OyamHMPwYsGF/ZoU415ZPoTIXvQPZP0MWt2VpdL7v2JO207+5tCst2Y60Na1Mi3UqlUrSAjs0jsp7ofYhy6sVBaH6lvnTYVgGtlc9lsm05BhMFOVPzj8aOg/yu0yf16mAobLE++wQTZnXUPn1eFpWP/2MrbJdEVI5IIlz/m42gRcj4DvHvYitk2vClWLogMqEyjvfisptR1GJsgPw4sjnwuWwfTvwvvctTCaXM+awjhxSK8sWIjifZIc4qQ+AjoVs59ru3aml48/szFlPlyFyHhGSUgWMoT9wTqfCi66fgExZJ89d4HcaSgDZOM/rQKa0l4YIkoTlNcpzmvSRJH0Z6RNFwOYzN2LkxI2o1/Muh6SiTu+SorJUymjM01InbaWssNTzalj+kHLRTJ5dTjDC1mAwLAjkwEorpDgG3nP++0qJQ/nhNSBPgIbCyHCS0Oss2CsRNp97PA488iI8XOfQMb2wDsVb9CnKj8x3Ud2E/vdbr7MRjkIEib6vSVNNwoSe03EUIURYlsUTej/y2VD9h+on9G5yz3kfJF4ZznsgcehsIdakWy/CVofTeSkiyYuued/ts7OMANIoqvfQ9bJ23W9++0krFEdZXrvuOVa279xbbkJaL2hrrty9ULtGf31IX5d9T7b1EELjQ6/fReNIKD2tJCh6rqzd9YqjjMwFitOVC3F9rYywLSPA9VzXbz+Q8y2QV6jJ3yQDTtt3DN57ZLQ4UgOAjJRIfmInWr+8E821YqeJUnq0jgLJEJCsFxEk+bhmlYcBjKIHDTvTvM0aO3emn34hy9VEasFcAVwLqDTT/x3L+zpQmQIqNaAynIbPWdZX2vElgPuey4G2n3D2k17zR0rYLlbFLU+wLRN6hw7XCjKsJGflTi+Od9xdQqWyHGO1Wy2pgJRptUS7KbKwZZ6Gh/MHxNKYgwYdofWAHHv1mkWefaHH/6WKIjnCYJgvaFlLK8h67VwZZE6UkPNvaMfFfCjqjLCdIfLbLg0GQy9w8pYDW6sF/NjLduK9Z+3sLHDkSeYUevSprq0WsH9/Fp4nq46Pp/c2bUotnKRLBClQcTtvswn89at+HxsOPYW3nvFtbP5vn8ptj2f8UhvPbcBHjgCTk8C6dWm8R4+mZeRp4VGUPnfgQJqX0fY6mAM5y8RrjBvIrkuNvIa2oNUTBeMYGspv1ZdbhaVvQ+kfkodXMT5tiSC/T0+nnyjK6pjvj4InBVspxJFE55Znvc2f1pLS3ywP1pqezp5tNtO6j+P0lODx8fTZsbG8AC3r5siR9Pm1azNLCvr6rFSAqeu/H40kxprf/HTn/dfrmfDMOqlf/w5UogS1//xZtFppvHGcvmt5Cr0UKviupqbyh9oR2hWErHNiaiofL/vGyEia/tBQ3jJRW9tNT2dbzJMkq3PZ7vlfbk9nuY8eTcs3Otq9JVRvoZd9Wr4D3Y4JeV8uxNg+x8ezOuN/+c4nJoAnn0yf+ZdbnsGhP/8TXLL1aTz87z6KbduA170uHR9kWWcqXOm864O5pNW/XvDRTYsc7+QYEKorptFJ/0/fkvrX++3b4Fy260Bv19cuQNguOQYeOpSGWbcuc7FBlxmM9+jRNMzISPqRrgs04ch2J90AUMCVVtl0MyKJTOlqAcjGrjVr8mMU+74cY9hHQwc66vqT9SP7Jv/Lhbm0POa4Kt3uTE6m9TM6mvky3bo1K1MoLdmGyhYcobbBthNyiSDzxzLQZQrHZ27jHWlv4x0fBz75SWDj7/0/uPL8+7sjNXQQUs72G77o/kzysBAoyvtysaLjvMUxgP1QkmFAvt/LvhrHqXuLRB1GK+eMrvnDJaVKNEMeZQphSaLWaqlcU69nhyRquZdEbbWad+lDyDBSvpeEKOcWpl1G2ALF7nfkjjFppCKJYunyR5K3tLKVfu+XA4ykNawGLFY7N8J2htAWKEbcGlYrpPVTSFslhSq5gJbCihZ+GSa0xZzxkNSThG2tlh0CRsGIeZML2JzgXYlT12WRzwnwkrCSQiGFNylEVippurQGkFp7LThKwlZek4SK/h9CL8KWz9JfZIiw5bN68aIJtjLCVhIxkgTU9SVJP51/eU0KsppAJJkjLUkbjbwQL0lVLexq6zRZDgnnui0XQ1Ygne2Toh5C1oxzjbKFtLQc1IsGICO2OmVI8m1PE7bSyoXtvNHIFje672tt82wFmyJNdlmaHYVq4rvKv1IhiclQuw+F1R/ZZjn28j2HFNS6nev3LZ/RhKUmemXepX9dEr46Xv0/lL9B3rnsL2X/Q21aK2RarYw8l8/NlrAl2P9CkAoCOW7yP8Po384BMfo4zW2VQ75rvVtCz6O81uuA1ZDc1CsP+v3PhNTp55lQWy/Lx0qCc0j9hKtxtZywXeETzRwj1IakNS3le5KY/L1mTSaXcuweGsp+hw751GlpmQ7IFIRA/vyBEGHLcwvkQbe08qXbmSTJ4tTnSsjvUvm50vuVwTAfCK7Resyt8n6/CsiQrC2NEnh9rmGE7QBwzl0B4IozzjgzNxmEFgoGw2qAHqTKCFspMOntQCHhlwsfkqK8TzKR5JwkRKVllcyj/p0TvKsRfPvQCfoilItrEpaStOQ1hvc+O5hKLup5OBqJSJaB5dMWtqw/Xi9DL8JWxiEtaXW5SLbGcUoMyAU+4ysjbCcm0rLTL2iRha0mZlhHHEtZT9KyIGRhS4tXIH/oGAVeHkAmLeC0z1uGkeWTlpHT01XUWzHqh7L0pqbySoZmE6hPD6UWtofSeMfHs3hpvSitxFnuJMksbCnsE70sbLkwkHOOfFdMi+lIH8syDdlfdBvUh1FJq065JbHV6s6DJKfkoqVIcJKkL/Mh4yRBDOT7oQwr20iOsBXxLuQiqJ8xkeVmvmVdlSEnkHqHlo+QNLvfE8PKxaO8zjbFOpV9QD7LsW1yMlOGybFDklf6Pcp02F7kXBAat/iuq9U0XL2eKQxIhDIfmgxmHkLxFoFjEscjtpEiEjWkCCIWSjEQasuy7EAfygzVN4aGgGo8IHO4ShF6/6uFZFkt5exg927gzW8GvEvJWH6SKL0WJelvHny2e0/qq9gwa0j5kDIR5wfOA5L45DUq8anwk3MD++70dGZkIfuyVI7JHRwhwrbVSudFzms0IJBjcSpPZvHxv/zO5ynbFRmqGAyGMOain8x0bpPGB4MqXweBEbYDwHv/GQCf2bFjx/sXOy8Gw1KA1Cz1u1ANWWXJBbb8L/1YFS1S5QEqFHZIpPJDiyQZBmgLTVGEVhKh0XQdQY9pS3KCwhvzwW3y09PZNmJ9wBjD8Luss0766CYBig47kOA91kGI+KAwKkloTdhKAk6TzkBaNlkuTdjW61n9ykMdeE0TwCQQWUYKw6x3Pi+FV1rbMn65JbjIWkG2L9lGitqa/Ow9sBHPHx1F4xduSd9XtYJzf/4yjG4Z7by7JMkIM5aPi4TJySy/JJtkWq1WRtgCectfSUxJCxG5TU8vQCYmsndEC2SWhfXL9DXpyXDyEA8+I9s/260ke3pZeul+HgKJyzJhKWQRKtPS1vrZJ80o/VMvxOKnH6FPCniDPNcVD3yhJXgZSa7zIq0E5AJVvr/p6fx4URa/DCN9DWpSWsbB+qDLA+0eRrZFaQUlF9ccB/R4KPMpxyjdJ6WyQudTP0OrVElE8zvnHwk59urrReQw70vljSyDVESxzjk28jrHGua7UknHJ44ptJqPIqASGWHbD9hH2CbZZuQnNLcUYam7Fljp0Iqezufq9wJA7mAyQh9Y1vl/wYXA1e9JeV17p7OGno9CFqiS3CxaX2j0Q4gWPS9lb5LKUs6S8qbMv9wBRtmMBig0eOAzNESxNmQw9EaR/FykXA+FmynYx7ULlrmGEbYzQEgYMwtbw2oEB0kSRP0+I8kgQgtHOUsy0cdkOC5IGZZacy5auYiXZCmvdRbV1Sr2T43gC3vPwlWC5KVABWQ+bLlVi9ckYUvCURJQBAd0WWdycCfhVKtl5aOAVwRZP5LclSQWyUKG1xa2hBQimTdJWktSRxO22i+cdFdAwZNhNQku05bxaEKOJKa2FOwFrUhwDph8/hAOPHoQ8AmO1tLKfumBF3D0hSNojE8AiccjT58KAFhz1xNI6i1Mj0/isU/uwehJY6htGMbIsaPwALYeWo8TRg9jaGoCw2MjHT+8a9em/iK1/1LmiW2kUsn8FEtChc+x7kOkL8sm/f2WzUWFi1K1IJEkOd8d88s2Jee9fhYUUukSgra6l+gmYbvbh1x45cjdRVjs9CKXZZuW/Yf3ysi7rmuRh/MJIBa07MMMF3ITIN+7bBdUotTreWWKtubWOw40ZDuVxCbzptvxoGR60da3QWWxosX/IM9z7OICm+WRgvtsfdgyjIxT9iepfNGucOR4LsdoOY5XKukW41qkWGYDgLBsIvuN7h/S4q5fpYkRM/OL0LsCwsqzDnbuBD6wEzyEDJH4NNvXKu3ffM9CAbXa3qkcl2erhJCyG2Uc+qalawQgr2yUPm7p81z3QTnm8bwGCSl/SsMAOX8zPimPDg9ncXP9QIJWp60/lLWcy+YR/excQfaD1dY+DYb5gJb55wtG2M4RVuPkbDAQRQtuTVjI79LXqyRCJUEQWkzLRTKFOCD7TnJLCjuaCGR4ANj2gbfisX/3R9g/uQb/9G8/A+8czv2J12DtKZu7SC09GIe0+aFt/NLCVJZTWqzJ7dHc8quttGS6coEhyRBZ5pmCdTyTOLRAKN+t3JKm20VRO+F//awk8Ck4Swvpeh1oHJrE4194CAf37sPk84fx/L8+hsnnDxfmvbpuCLW1NaytTmPH1mdw2j/9BapVj6//99tx+JlDSKYbmHrxMKYPTuLFe57BMzgpffCC38Y577sQp73vu7H2lE2oVFwXQS8FZBImtVoxYdtshv0PA/nDmkjqdkiXdpxsi5Igl21M+humZaH0Hcw4JREqyyIJ9H7mPinUSAwi4BQpdTTx3MnPCtekerQtvNSCVFoPyS2fIUtArQjTFoKSsO9XINVEKMd4Wm9L4pZtWCp66I9c5ksqjnR46f+PC17ZFuQYROj+WaQYYVhpxco0pQJLzjHe5w+MnA1hyzxJBV6RGxEZFwkE7jhIkuzQMYYdHc3iHh0FapVZTBorFEWyfWiRJvsX0C3nGBYGIaUU0D2+zcbYptcifbW97yJZfaZxAfmdN5RnKMfQYELuDJIGE/2mw3mSaXJu0rJViLDlb/4vUzwWKcs5r/KMDc59PBtjLjFX78dgWEoIybMrsW0bYTsDFE3UK7GBGAz9oJ/tCCHClotrXpMLZiksyUU0F60kNXnQQLWabesfHc18iDabmY9VLmDlIvaEV52EZGwcew9swpO3Poyjzx/Bg391N175gdfgkl95PUY3rekIhtR8E81mmpYkZ0dGssVypZJuV5cEBCFPuZULO+nzNCSwhTTj0lpKkoKaZOlFkkqNv4xXW9XK79p6S1t7SfcEQJg4Z5rSOon1G7JqkoSS3H7cbAJP/8O9ePL/fhlHH9+Xq6Pq+mFEscNp73gFxi44FetP3Yg1ayNEFQePCOvO2oLhdVVUKkD9ih9Es5VWpHMOF/27t3QsqZnflx7Zj/Gf+hXsn1qD+8dPxEN/cw8e+pt7sOmiU/HG330XjjlzLOeKg/VMslNuXWb5WB/c9s3FiKxnaa3IdzExkW57lgsNtkeSW6wj78MuEdKyhutYP8tt66wTvVBhnExfLk60EqCXUkIubuT2c1lnegHEtEkoe7gF5W71LpyiMLNBWt8egMtdk4QtIa0ugeyd6IP9hoYyIl+OHXy+2cxIP/qTLiImNMHJ79VqflyR4wmQti05XpLordWyts92Ja1ZpaJLzheMg+2TC35N4jKPcrcI/8vn5Y4AuXjX5xoMAr0TIHRfjnNF8fdSZmiSSu9WWW0kUz/Q4zf/64+GnjsNC4N+iKiynSb9kri23stjLscP+Q5pfSrdj0h5Q75L7QoNCBOsXAewb8q4KLNxzA2N53ps5feQzCJJZK1YlsrGIlmf8c5Fe9PxzKVFtMGwGAi1aXl9vtq0VvzJsQeYH+t4I2wNBsOcQi8+tSBM0ocDHMlQKWAVbaHWRB2FGekXVbpAIOlF36ySsOWCv9EANgxN4x3nPITNd9yCf/2tO3D373wJ937kX3DvR/4Fa7esQzxcwdnv24ELdr4a3sfwPiXIpKuFI0eycvHggnodOHQoT2xQsG02M9+CLANJZvo31aQe61NOSswLkNWDc2l+aIkgt+BLgoRboCkQT011k6SsV03Ysv4mJrJ3yHt8B5JI4WERzKN2iTA5mdUbhWiSK7ScpoWebCuNRvp+k8TjXz/wF9h31xMAgM3bT8KJl56FoWPXYcvrz8aaY9Z2CKvJyTQftILTQr4kHFlP0nIjioA1J27C0OhRnLj+MC746v/B459/EF/9hRuxf9cT+OQbfx/xUAUuTl+GixxcHCGuxRg5YQzRcBVJM0EUOUTVCGuOGUXjaB0v3vVE+kwblbVDWH/aZoxs3YC4FiFpJPCtBMe9ehtOuPRsxGtqHcJ2cjLLO/9TycA6Y7+iFTLJM9YrFQbSOlpaB2tlpSR9pYWKFGJ0m2W7LUPZgrkfAqVjFdzx7+oXzKKkX8JgLghb53znFHNdJ6E09eKMYfnupTU1+7j8LsPye9kiXS5MWS9si0WErVb0cGziGCr7pVR26UWwVEJQWQfkrYV1XiXJpvNPFBG2sg45XhKh73KOYx8rQz9KgH4IW45lmlyIIiDGgD5nVjmKiPRBXfcY5g56J4fsW/0Q7bJ/6jChec8wv+CcIV0h0FADyMuKem4qc4nAcU8aFFBhJ+fSXha2fJ6KcSlDESGLbymryF1iod14/c4Rg0DLKGZxa1iOkHKsXqfw/nykSat/yWtIWcAIW4PBsKQhNdWhe1p4loMeF5EMqwVr6XcPyJOTMk0ZR5GWTebFOSBy2eE9r7ruTTjnfRdj7z88hMOP7UNrso4HP7Ybd/33W/HYp+7Fe//5Ax2BK3TQUT8ThCxfEREmhTkNadUlrdjkhxMGLXml9Zi2BJNWzFGU347sXP7QNkkw81lJsoSIF5m+3MrM5xmvtCwm8QvkCVtdBh70FfsW9t31BDa+4iRs/9W34Ny3ndZlScF4aCWoCVum3RiexHSrgoqw1KYlN/NWrwPJ0DQqUYJoPXDuu87F+pf9Kp77yrfRePZFxJFHs+GBxMP7BL7lcfjJA2gcqePI0/tx9JmDAIC1W9bh0LdfSOskdjjl8rMRD1VQP9rA0afHceD+Z7Fv91OIKhGaEw20ppt49OZ78Or/9Hac+2Ov6ig46I9NbgmXCwPWcYg4DSkBtCWe/C/bsG6j8rrsH3znoUWwhCTbdP7180WEbdZ/fFee5huaUA7ldaEX+vKdAmELIV0/2mKqaIwqI2wJPTaG0ie0FZKcH7QiRc4H8rpMQ491g5KdoXBl7aifha+cs3Q9h+pTjrWhfOkxl2HlGMt7eo7guDg0BFTiBTRDX+YoG1Pm27rHUIx+FBv9xrOQuzIMYUhZnWM01w1yLaFl8X7G4F6kvfyt53GdLpV1lGG17ALkd2iF5P9QekSREctMYeOTYSVBr/vnOy25juUuALljeD5ghO0MoAUC20pgMKTQg6UWViQxx0Wi3lZbNOBpAUtukZJCj/RtK0lGPiu35nMR21TC0doT1uO8H7uk4wLhvJ94Fb7x32/HM1/6Nj5z9f8FnENt41qMnrIR57/nFdh4xqZOOYaGMnIvilJScGgo9S8qhS5pDcCw0oqMZdDjC4kJloFaPeaVcTEM/ZlK6zFJYoTIXi08SpJWW50VkTj6I60jgG4LW16ThC1JfL4rTdRQkG/sO4gv/crNAIDTrngFTnrdabm6IFms60u3tQ7BHHlU4Dtbs2Wbo7VeFAFJpZkStsPpvc2nrMXG916ADRtS1xjSApv/aW3cmGqhWnOoDac3ZbtIkszdAF198J0efmocf3nx72PvJ/fAtZo444rzMbw5db8g/Z/JuqVVo3zfDCtJcZL72tqYB0fRepAWutyCLiFdKujrRQSYhPSNyzS0dby0sJZKH/3xtLLE0pyjQ9sk2dfK8tupS9/tw7YIvUhG7YaF7QbIW1/3uyCWcctxmnGzT/S7/Xg270+2x0EIWz32yrKEyqPJYcYRUpToeTL0XV+T92ZCKIXyIsu1FPvIUkGICNR9Zi6IQsPMMdeLdSO1Fh9yHuIONu4SqtdT+UDKsvrwXz0ec4zmfSnbAPmwRf1Zr/85JwD5A8TkOQFUqEsZS8r8vC5JYA1rjwZDGLJf9CPvEVpWG1Su5afMjeFcwQjbOYANogZDb8jFYj+LTa1VLyI2pC+ZooWoHFSlkAW0haMeW0GPefkJ2P6Lb0Brso764WlMjU9i/PZvAwB2/+4/4ez3bsdxl56PjRecimq1lvNXK8srP1qoZJmkS4TQ9l1pjazDS/KVbhKo7SdpKbeNaCJXHuJAkGQkQVFkEUciVBJrQOYeQde79CXJ/EoileQgBXamQZ+WfPfTUx5P3v5tvLTnGWx945nYcMmZmJjI/Ag3Gnnr3mYzdR9QrebzmHcfUEvbVyPLR6ORtTmWMUnSwkTN7m1wIUjLq8pQjEo1X9ch60y5Ld17YOy0MZxy6Rl48o5H8eLuZ3H3//on/Mh912FoKMbQUKbp1dYf/RC2Q0N5wpZkP/PG8JVKfgsg24FcIIUI236gLUmKLDt1HWmrFZkoreeXksXUTK00c4IpHJJ79gBvuRxwNJFW/wH4djvtXPNkGpP0exKlnyhJP0mUho3aL79ZgWvGcD4C4hZc1IJL4vS+K6lU79pkeQIXpbsYPBzQiuFdSqh7H8G3s+Q90GzFiOIWojgdk5vNtIHF7d+Jd2m/cz4lq51HEiVo+QjNZpzuloiT7F237xMJy67y7eGQugT2gHfC77FHwupyHr4ZI4k8Wu04E+/Q8hGSRgVJlJYTiQOGptvtLs2jS6Nqaw/Ue2inGcpXmggbfCKCOHj9jHfwzWo6v1SaadmTCEmzkvarSgsJHFr1KtwPvAPJr+xMH+OcgCXUQZYQyqxoDUsHev7UKFNMyzDyu73jxQXlDh7CRYKTcq1UJEtZSVqyhghbIC8vU57U8oV+RrcPqcAr2xFURBzJ3RbyWq92ajAYUuh1tUQvwlavNZbyeG+E7QygB1ODwVAOTRDqwwEajcwaUVurSIJPasPldtgQNCkcIolpWRZHvudAfdzFJ+Odn/5J1GppPOPPTeGbf3E39vzOF/Hwx3fj4Y/vBhzw8p97A8ZOWY/TLz8TtWM35EhnrfkLEbaSkCVJJ8G6Y361xSGFT9ZnyA8uIQk8GZc8CMq5jPTkM7wuLR2k1ZEkaUnGckuzJmxJ/kk/uIyLrhhI2NI6+6WH9uHe37kN0/snsO+epzp5veg/vQOT8TpMTaVpRpFwmRBnRKv21asJ26SR+iluTWRELePjgqFeB5J6LbWwbfsvPnKkuw74XoCMOGV90gJDgtYf09PZAoX1xufe+Cc/gol9E/jW//kSHvzzr+Pjr/0DXPL7P4ITXnlszuqEvpprtfyWcuk3WhLYDJM7sMvnfQvzGWnNwnclLRN5Xy5Y2J5lv9WHjsmwXRazBYsa3XfT9D2Sw0c7YZfaNmW9FbLfBZosh3/fe9BKHIC2L1ug63/RNX1df3Q9OQdE7XTiyMMjSdt+CWFLcpRxAm0BOaVH4ZxDlFKj6ZgOl8sDn/Uof2ltejX3m+kncBlJK/IUgvdpHrxPudU0bJvIbeel6WN4sQpI2lbO/ETep/F4h0i3S3X4Xd/5gsuXT5GrrCsHj9glaCLuxMd85cp4zx4kziP5pZ2d63Hc3T4MKYr66lIZSwyGlQzKMNLVAJXS9HFO5T5lGLnDSsremrDVbrxmQthKwpcoMjbRhidAt1xiOx4MA2P37vT/9u2LmYsFh5bttezcD0c3m3WB7Ofmw9ZgMCx7SNKNmnAgL0jp7Ud6axKflUKYtriVH3lQlCQbNQHkPYD2AptElCQtSX5qYileO4xzf/q7ccHPfTcO3P8dfPXXP4/99z6Nb/7RlwAAX7kuDTe8ZQzn/srbceb3np0jY9esSQ+LAjJrUAqcExNpfcmt7QQJP9aBJEdJQAMZ2SkPmyqyjmW4yck88UbU65nlJsOTNJ+YAKaONDH5xPMYGo5QHY6AKEYLMdYetxaVSq2LiNXvl/VMawWW95Eb78G9//ufkNSbaNVbaE03kdQza+jquiFsfeNZcOvW4uTvOR/rt65D60BmPSotgqXFBYniYpcISUZ4qHYmSU1pYUuSk++QRDaQXxDI98UFg4QkleVhYSSB2QYwMoIzfvx1qB+pY+8t9+CBP7wdlV98E4592XGdcrKdAHnBgpbQDMND+ZhHtgFajdTreQtlaUlN0HUBD3ZjOlxMyYOYBiFspQ9ixsN6KxOyXrjtPhz580+m7SRqdZ0uPVfQ44u0+uE1DdnvZgrnAPeBnYh+KiXdOsodxikF1aa6xjxV2t+b7U8l/Tj6E2f4KQD1dtha+vENIIlVOgqdskdZuCQBkka3hb+L2vHXAV8FknY78tPtOm5vM0WS5i+K0+9RBMQ1wCVApa1UqQ7lt7tWqt15CgnyvawzoghIRF/olKeddhyn+fItIFoXaO86bfm7JF9ot5Uo7r6un6nV0/GoQ0Q007wBQKVtMV954/ehEiU5sqJaNcK2DFpGCZEvg2ypNBgM/cH7vHwi546Q4YaWdUMK3xBxWiSjanI1lL/Q+kMbVUiXXvK7NiahHGxjiaEvvO994e+rANJwA5gZYTubtBfSOtcI2xlATgYmoBkM/UFqo7nVmluduPil1SGQX1jLhaXc9iTDhRZRFIKKtlWTCKvGCapRK3fgEZDf+s3f8vRyEkdbLjwBl/31T2JiAmgdmcD4nd/G1PMHcf+ffR1Tz41j97Ufw+mv/RUMH7uuQ6TK7ejaGoDCnPQhqSH9qZIoGx7OSDbGMTJSTA6S/GId0WVEKByJVGmFkCTAv/77v8Njf3tP4XuvjKRMi4sjRJGDix1clL4Q5xwqayqIqjGSRoJWvYXG4SkkjRZajRZ8M83ceT96MaJaBa4aI67GiEeGsOGMY3Dq95yNRsNhfDzzj8t3pA/fkYStc3kH8V0WtpVmStgO5ZUDrHMiiVuplaHwX1yppGR8qM2SgGU9FlnYyvfP/hDHKSnK/DYawPBJo3jNf3k7nv/Xx/Dilx/E7gOHcPGvXooz335WzrpYkqh839I/b5Jk7SdJMgKXv2mZEqpTbREvXWew3YS2C8ry6vIX/WeflfOvJlKo5Z7cl5o7n7LhAMaGpwpa5+ygtzNKFy39yAVzJeRpdysamngsyp90LVOUr7LtZ73SDW3/LEujSCCW3/UOBpkOv4eE9kEEeWm9Icc/HR/DhXzclqVd1h8GheyXjEv22yRBStYqwtYIgmKELfjz440MK5WaBoNh5ujsJvH5Mb5X+KJ7WgYJySNlsoeMX8qToTRmIgOE5rCFQj/zv2EJYufO9GNYUITGk14y8WxghO0sIScTg8EQhiQSJPmjCVBaPgLdhC2fJXkaOqxMH5IjiRy56JYCVa0GIG6hFrdy289DhBStTAk+T3+zlQpQ2TSCU899JSoVYMcvvw53/p+7cc9/+RyGWhPYtGldx+pyZAQd9wrykDJpMUCyTlvYSkJP+yBlHPowA2nZLCEPOHjpoX149muP53zwAsC6M7fg6JMv4ciTL6F+aAo+8WhNNfDU7d/G1P4JbDj7OGy99GxsufhEoJWgPt3C9KE6Jr8zDtdqolH3SBKfbn/2HkmSIGl6+MSjcXgKzjkgjoAoRnVtFUPraoiqMbyLsOW123Dy607tCJJ0n6DJOykgazJJC9RFDuK7LGwrWX3ynqwbTdjKA8mKhPyZooiorNSqeOvf/yK+9iu34LnbvoVbf+Jv8MLPfzdOedOZ2PjKk+Eqcc7aM0kyy19artASkdasjUbeEli7RGg08m4qZL1LYV9bnjAPofcSQmgbsiyHjpPtPEkA30ovbhyamDd3CKE4Q8oh5l//nwuL3yINv16EancSepEo25YmJTnmcOyWip4yyDCyXZRZRfEdyvR1+9LfJWGr29xMiFkNScaGlA4MQ8uoxV7whqxB5feOCwdx3WTYYmhlgTzwNHRAkN6maTAYBkMv2a7MOGMu+5wc80MKyNB8QE5AniEAdK9LpHzOtQDHlIVWoGkZ2cYtg6EcWsEh11Z6DT0XMMJ2BggN0ibsGgxhhKzQyqyjNIrCSEEIyKxhuUiXC6nQAlpaPSZRgjjypWTKIEJMlmeHoePHAAAff+NHcPwlJ2PzK7Zi7KxjceHPXJw7qVZaGQ8CpiUP/ZJWus0mcPSFI3jiHx/Bocdfgk88fCtJSdeWB5L2YUCJxwN/dXfP9OLhCqojNbjYAQ44+fJzcc77X4/jLjihY+Fbr2c+WIeHU1cL3meuH4CMHAxttedkR6KQwqxcLMtPq5VatQ4Pp+kODaXfmY4My7qSFrZsL7zWsbAdzgvqkrCNojRcHHm4WmYBS+tdtkVNGhWRkIQuW6hN8hqVBHEMXPBffhAnv/ks3PnvP4U9f/hV7PnDrwIAjrlgK172oxfhpDdsQ+KBkS0bUKlEnecGJZckKauJrH7IS01kF1kbao21JEyK6kYqWiKfPhgPQNgtR8j6L7Kw7WVN2w+K4u4XIdcRvC6JXOZLjmUUhmU8RZZAcr4gir6X5bUoLLfmyviKrHvnEiGL5lD+QlbnQcL2nj1I3vQW8GAy/+KxwMO7geO2zk8BVgjkWKeVusQgSimDwZBH0Q4JPWfJcwg47tFtkpT7NKkCdCt95TX5WxoGhHaqlJVBG4eUlbVMoboQMJLWYOgfeoyq1dI153wQtYQRtgbDcsbu3cCll2bfl6DDcU3Qyg99fYYOaJIHb8lDyig0TU/ntyJWq+m16em8kCbdAwCZ9SAJ0okJoNmIMd2MUZ3KWxiSHGTeSJAB+cO2KhV0DrqilWUcp3kZfflpOP+XvwcP3/BP2P/gC3j+zvSQrOfvfBLrzjgOp13xcoydsiHnu1UeIqbrUgqOkgTRJNaB+5/Fw3/5DYw/+B3sf+CFThyVNanzzyiOgCh1TxDF6UsaOW4U2979Slz886/puMJ86aEX8dit30ZtbRXbd74KQxtHcoIw/d6SzCRZSTKcxKm0+pWEiNy+S8FWWjVLYj5k5ca6lsI466ZIANUCeJd1XtsCzYuDumj1F3rGK+JLE0pFJOSghG2RNWWahsOp77gA51x9AQ4/+Awe/eS9eOQT92Hfnmfxz3uezaUxsmUdTnzdNrzxw98LN9RbwpB1zvLJsuowmpANffohzhi/XozJBRmQV050Po00gcS7zqFVK3lRElr4yXtFlqPyPj/awla6qZGuNHrVp2znRWlLSyS6C5HWizoO3W85PoSslnQ5QumH0GshHirzfFpUDhJnUZ/Llemd7wSiBKljYvHceRfAve8ylBTfgO53XUSkr9SxxmCYT0g5j7JdtZrvc5wnkiR/tgLlT+1mjPFKhT93nYXkMoJ5kHnT80OR1S/z1GtekAo27abMxhCDoRxaQQ3Mf9/Ra1Guf42wXWLgwhHIEyc2sBoWFNq5+PbtS9rhuCYUSFCGFpUhgU1rq/VWRFpIShJQL9pJRkjXC3EMIPYdlwjc9ivzRyEt5HOU1+TWpuHhzPJx3cYKXrHzNXjjr70GAPDU157Cl375U3j0E/cCAO6/4St444e/D8e8/Hgcd/6xALJxRbpEkBYC3MJO4TSKUqtSksVJAnz7/34dez91L4Y2DOP07zkTJ73+dJz/3ldgdMu6Tt61r9ypqfQaXSsAwIaTRrH1u0/PlVEKvCSXWV/MA/M9LKxUpZDN9813JQ96k3VMAkZCthvGKwVxth8K2iGiUFtG0do3igC4ttWxENT19tcoAhB5VKIEqGTtg9pW3Vb5DMvebBb7sJXlkha9kqCXFl5UeJAw33rJiTjp1Sfitf/lbZjYN4HvfPlRtJoJDjyyD+MP78NTdzyCR27Zg0du2YNXXPManP4DF2Js2yZgOOAzA93kREsQ2f1YxmuSLfRfQlu56G3wMm72za7FUjMBHNL36Htbuix3aAG1jJAMhdFbMCXRyfGn4/al0j2e95sO46N1txxP2E/YZzQRC5QTtkW/ZfpFlrn95r+oDWnFZK92rX/3q8CYKXJ95Gd2IvnATiSjACIgaQLuYSAeAtx5qQLKUAxJwlAhLFG0e8CwdFBGsgHdinHD4kDOBXLslbIk5VIgk4+1wpuQynQ9TkuZRht68FltpUsuQLcnHtxK+axIZuJ8JdcjlKPNr7jBUI5eCvT5hO7zcj0cOndmtjDCdoYIWTjZwGpYUCwxR+NS+AktiGUf0RopuRiXFlYhgYv35anzQHaIl3Mp4RiysmK8tOQC0rCNOO8SgQIV06L/Rk3Y6U/RxCHLccKrTsZ7vvoLqEVN3Pz9f4EX7n4at17ztwCAtSesw9C6oVQI3TCMy//gHfDew/kErUYC30qQJMDGl52AuBqnFq4HpvDSo+NojB/t5O/Zrz+F5+9+GpvOOx4//OUPdIRM5zJrYaDbry1dNEhikBaNFI6lgMsJSgqnzqXXeU3WH+tttturZd3qg8YkeSsJIPkO+hmrnUN6cr343aXJbVvi8hT3kHJhLqH7kGzTbH/yeqXisO74tdj43ld2Fg0AMHGoibv/2+fxwF/djfuu/xfcd/2/YGhsDX70nl9GPFwNpq3JUkmiSusQbe0K5N1dABlZ16lHhdAiqoggDhGHzgFIUpZWvvOlRqAM6pZgPqHrR7bf0NgmFWBl6IfQ12G1ICwxWyJltnIa87ZcZMCQhX9o7uK4aegNqUwOjSmyLSzkwrEXzHIvxaDlX811tdiQO/EoVwAZMUtlrCZRG42sf4bafdHcIuUSjvNESIaQymAZThuKFI0JRePHSlYuGwxzhZDcKv/PZ7oa/c7DM4URtjOA3J6x1BaABsNioIycXQxQmKPQJTXujUZGJgKp24KpRhWHp2toHUqvkYSkwEc3C9LylC4RaCV59GjqHqBzEnclfe7w4TQu6ZcVAEZGKnjLX/8k6uOT2Hf3E3j8s99EXEkjf+qOb2P82/vw19/9x4VlHNmyHq16E9P7JwrDbHvPDhw6lBHcmuCgVSkX6vV6GkaXc3o6I9elgNpspi4lGo3sMDbWLQVs+S6k4CotnYssbKUPW4mpqYxkaLXSem82M7cY0upCupdgfuShWXzfktxPWqyQ9J/36TNyu1q9DvhWBc0kAdr5kYd5ycWFFCKSJM0j3W5ITSxJ32YzLaO2MOT7ofUHn6crEEkqkzgH0nrh+3cOaLkKXvWfvx/bf/GNePbrT+GJf3wYj396Dz7+hj/GCa8+FZsuPAXH7DgNw+dv6tQh5zt56JhcPLEe5fZ2ugzhb2lVKdughLRCZpy9rKHkjpckAZ67/VvY96X7gShC7FJlDC1W5gtFfu7KCOmFJHXmCvL99crzfJcpRJrqxfNMFCc5pQzCih4uqOWYoEluGVai7PdMZMrQMzIvck7if+mKhmFMnu0PzmUEdzWs3+qgiNSdy7zM5JnlMt7MB0LjBFE0dsy3BbyhG5SHylwQyN/SEEDvxAH6I0Hlup79mwciMw6ZrlR6ybTkDig+J89NkG1QKrO1Et5gMBRDrycWare7nEO10dB8wQjbGWI1CzsGg8agCwASYPwuST0p/EiBmRaC/C0XyhSmSKrR/60mbOM4v22ho/1WXvvKiIAiKyVaDMv/enEMZHmuVIDaUITa8Wsx9o7zcfa7zu+EObS/gadvfwSxSxBVIlSqERBHcJHDo5+5H83pFuJajMpQjGi4htFTN2P9qRsxNFpF5ADvHIZOOwHV4bhjwSwJO2mVqK2GSXZqYVEStiFhs1ZLiV5unyYBUK1mpJu0KuB7ksQBLVSlkB4ibNk2KpX0nUshlwtp6RNYvi/WPwVxWe7ONru4zQCKdFlv0mo3iVtp26nk49bkh6xfuYiQ7anM5yufDW0jZ77kb8bHRYy2MiFGjl+H0773fGx45amIImDvJ/fgkafGgVv2YGjTCK745E9iw7ZjZrRw0GXRVib9YibW2M98+m5M7zuMkUteDvf43nm3YJ1JmYCFJQS0O42ZEj1AOeG+0JD9SS/SZ5q3op0iIWtVg6GsP823pdxM+rK1XcNygJS3tGxI+Y8yJmUrSXbquVVf0zJYTmmfZHGHfKnLPIYIW4aVSne5DtBWtFJxppVpBoOhG6F5bzGUkfO5q1LCCFuDwTAr9NoGEFr0Sh+GmkRkmBBhBYS3u0tBDej2YcvnJWnKMCMjQFRrYrjSzB2QJQ85YD6KiEySlMwDfdgC6fc1a9J0mDegna6ybsoIxirOv/L8nA9bluPs7zsr53uWloxSyEuS1OI3joHR0by1pZ5UpJ8sWkTKckpLYukrjGQt8yB990qSXFpiyncpLUQZRhP2tBrVhK0kyev1tGzMHy05tbsNrQgI+bDt1F9ECTu7r/0SOgf4uF0w1S6kD1tdbp3/EJEvCWTpw1YuLKjA4PtrtdJ2Jh3fs05DvkDZbptNYMPWtXjj770Lb/vIO3H0haO46/e/im/9yb/iljf+Ea6+/QNYd9bxnWdarbRvyHRk3PTjywWULoNeiPRjYSvbRegjD7mrVNJI15+7FWM734noP/5dkNCeS8hxgmUoGr9YvoV0gyBJfJnfQSEXw/w9E8iyS8UClThSyaDbrdyqqhfLHOOksm4mQrRsk4yLeaAyUIZd6PdpWFyw7en+ZG3AYJg7SCWv3o0SmmOBuSVs9aFkjEMi5KJJjgdFu4I4Zyy2wtNgWK7QcvdKhxG2BoNhxuhn0R9a3NCyUZJxJPEkAapJEClAya1GQP5gHGnhKoUyqYknuTM8DCBudA4dA9JnQofwlBG2srzan6quJ71Vq5//Zd+LhEEpEGrXAMyHPDCFhK0kzEjY6jT4vnhQmSQckyS1fKVFBK2pByFsvU8JW9axhCSo6/U0D8wbXQmUuUSQB0AAeTIbQOqXFgBKttqk7Zqmkvl894JecMx0oS/jKdqWIwnbMiveOAaqNYf1W0fxqg++BaOnbMLXf+PvcccvfRrf9Z/ehi2vOiVHeGrymteZtt4uSKvnXgdp9CK5dXnZr9nvqtW00HGtkm5BjBJUo9aqPsRDE7QzFXD1VuLQ4rVXWw4tvrXQHSJadVpsi/rZ0AJ7NsSy3mYrd29w/GSYmZDxRa40+kHoGR1XaI7QY7kRjYMhpJwBrB4NhrmEVPyWjf/zhV7zWSh9OUf28+xqIZsMhpUO+toGutescwEjbA0Gw4wxiMAU0kTrxb/86MVoP2kVbU2QJI8kazvWf5VuC1tJWpIYkoStfF5vYZIWtmvW5H1X6S3tuuz8Hfovy1lUZoYlOVZEfLGcsl5DYXpZMkjrTZknadUXOmCqjEDQ8ejyy/ouIvKkb15ZDr3VjfdI+DkXtrAN1R1EOAro2hpU16tMj2WcC4S2ghfVr/SZRp+03qd1kiRAElVwyju247mvPIonb38EX/t/v4Dtv/hGbHvb2R2fxnRHwbQlCc94+Z1+o/WBTUVWaUXtRB8sJusu58eulcDFK3clJBUxC+Wzqxe0FW9ZONmf+R7ZF+XYG7IM12Mz72nl3FxY2Eolhy4D2678cAzo1+JyKbw3YHG2ERoMSx1l7lWMnF8YFI1Nsv6LDBrkfY2icDqesrlDK24IyqH8zjhDfmm1wk4aPxgMhnIUnYmx0DKNXm/OB4ywNRgMywJFxGQZyUhIgmw+EfKhSDJCEr2SNOY1EhT8rf9L8iBEYsh60ZaUMqy8pvPGuMp82Mq0JYlGNwTMsxRYaQFJRFFG4hVZ2LLc0iKboKU1QUK8Wk396NI9A7fwS2tPvhdJsOv6hLCclXnuIn+Uha10jaHbn/zPd8i6kff6dYkgw9DSj/VQZGHLctKlAdPiAXvS7/Lwuiq+96/ei8//1E147HMP4Is//TH86wnr8AN3/AKq1WpOQCkiqfkpIrxCQlUZya0tdLUVeY6wVQ14pZBSRXW52Og3H6EFsH6HvRbfg1iWzjSfMrzOs27ncnEvFwy6fYat9LvjHhShZ/pVGBkMKwHal3Wo/2ulIvsrd9xoVy3ye4igDc49AWtQw8yh5VheW07jl1TqyfbCexozUTIaDKsNZWPAYhC20jBrPmCErcFgWLYILfRDH2nhqT+tFtBMovQjTr3XGnz5PxQXBTJ5qBn9jMrFw2y2v/N/iAAM1csg25OLIMskCQl+lwsgTbbIOELphCyiQ0RDUb61/2MZnyT1it6bvCYRcokQtNpQ4fp9t3MtTJB4177bNEEjCV9J2NI1xfBw/kCPkRHg3R+7Gs9/ax/+9b9+EY9+7kH4w0cwMrKxQ4wzPqYrCWbvMyJY+/6U70XXRVk/Y5+VbZGKEcblWwlcJUrLDd8p+3Ja5BVhuS1We2EhyyLd8iwElhK5rgmtEHmwktqVIYx+/WYuFcv9fqCVIIM+W7a1nZBkrFb0ynRtm/vcg3ImZb7lMpdLoj9EPIdAxbS1IYOhHGVuRRa6/yyEbGeErcFgWDbQ1krax6C00gS6LV0ZRvodbDSAeitGvRWjUs+ek/9JVkqBi/HwNy05iw4a0JYYkugE8hMM80doAks+x9+SnOM2d2mNK4lWhtX1V0Rmhsqh7w3qtzHkT1Xnr4y4lYStjKPIqnM+4OHScgdI6tBveV36wpRhJSkJdL9XhmFb9z71m0QrWZqRUegAAQAASURBVPkM26SOu8x1gWybTGP0tGNwxrtfgUc/9yAeuOk+bHnXd8FtrHX8NbHP6f7QaGTl5D1JnjL/sj1K62Mgdb/AupicTD8sF8vLuFst4IGP78HkC4cxtGVT2g+SGC0f9eVfdbliKbpICKFff62hxW3IyjX0vazs/baBkNJJ35O/i8a/pUKu63yExl0jCVY+BrUsXwpttx8U5TVkYcvrcidKHOet5Am9U0UqJkPxGuYeUlagErhsXJYW05pY12S7fp/yWkiO12mVfZeytTQwCM0t2sijH4WKwWBYWpD9ez7mBCNsZ4ilvCgyGFYiQotOKQgVkX4yLK9zcdq55nz6ibrTlP9nihDRHLJGDYWR1/ldE3D8TUGVhC2QEl4k4einlNvwNclQdOgYyd8yC1sSZoTedqjrlmmxHCGXCJKglGA4Pse4oihz+h7HmYVzyCVCkUAPAEmrzQTW8+XpIrtbUWqNW8/KL9OSdZCLP0kPR5PEsiwrBXhJZoYIW6mo0IQtLaM7efVZ+2g0uuuPYZMkO2iOYep1oHbcGOCAu3/7Drysug5nXX1hzi+tJmyZDtsNrXhZT1yE8Vn2Y/l+gYz0pc9c+X5Z30x38nATX/rlTwEA1px2XKe8rJPlREL0i7m04tTjDqHHnJmkMShZpNPVeZHkK9uplMtC5Gy/C+Fe5HeRCwe5QJ8J+rV+1PnU1yRhIX8XKd9kfep6NKwcrMTxz7CyQZlGuooCyndfESFivd9rRfdn+p27oEIIGSms1gNSDYblhoXawWeE7Qxhgo/BMHPIhSFJKL2oDPn762WFyWdpPSEXpdr6kqRtvQ74SgvVOOlYVHQReAUWVBJyTCjbfhq6L9NiXch8lBG2JPco4DEPLJ+2FCgbt4pIU0lWhghbvjsSaHxOhpOEHFBM2ErfqNKSmPXG/zp9TcZK61JJKuo2wfhkvfTjEkFDKg9mC7ZPaYEr8xAiiVhmaS1E0r7VQo68JMEryX1arEoSnu+kXgfWnbMV7/nGv8WNl/wvPPmJu7DuxPXY/I4zOmnJdGW+CG0Vqwlb2f51HYasqNm++bxvtvDoZ/cAAM79lbfjxHe/Cs88AwxVWqhFTVSrCyNULTTmShbpp/3KfgQUE6ohDGpxoElZeT1EqPLaXCnZGEe/hLhUIM4k7blql/2mX+YSweTbPBbalYbBYEgR2g0AhOcTLUvPlrAdRHnWC2WuMijPOJetW+gCwmAwLG1wvabPD5lrrHrC1jl3vff+mkGfsy0wBsPMULSw7fWb0GQnhSpJGIWsiIiQNRG8L7RoZZrSQhHodokQImg10UuhjYRjHOctMkMktPxPaJKaEwYP92IeeBCYJCt7TSpJMtihY/xNn6ZFRDrrMUeMJnlfqiQcmT/GwcPHJGErt8nxwK1aLb03NJT6Yw0RtJLUl2WU7S2J24x5LV/nXcJ93ELiHXw1I5olAVn0HiVRKX2+sqzSUlmnL3/zvYe2M8s+xnamn9XhtUKE4Xh9zbFrseX1Z+L5f30Mj338G3jZO87ovI8Qycp7klQrWnxJ8pzXiraZy7w5B6DVwuOf2IW7/tPfAwBGT97YOYSuEiWInO9SpqxU9wi9UGRBC3QrnOT90M4A+WyvRa5830VhNGHcS87q5TphLhbcZW1bX5stYTuT54qUG0D5f50Wx12TbfPQMolh5YLjmykslh/k3LUcYW3OYDCUYVUTts65KwFcttj5MISxXPzyGQYDF5QkmTR5GNJ4y2fld+0zJuR3KkS+SuHIOSCOPCpRZmErt7YDmfZbbmkqsuYlCScJUkkuyW3r2vpXWvhKa0TtS40gkQlkhKrMG+OURHQZYRsiM3U5WX+aDOUJmSFyWeZZW1IODaXPSQI8RNiGiBhJ2Mr3IPMSImzpGqKonSVR+wFRT7LcHTgPBw+vCNNehG1RGE1Iy/YWKj/ripbqHZKynW/ml/UrlQ1so7xeqeQJeSAjwEkgDw05vOVPfxifu/LPMPncOMYfeh5j5xwfJMakGw6p6NBkX4g8lGG1q4jQid73/d7tePBPvwY44Afu+HlMrtnc6b+y38lthvM9n4TITV1GWc6FmOP6ib8fC9L5QmjRzTTLrJN6WV4VKbxmilB6sq0tlKwyG2JYKyg5JxvyMCJldUDLhPbOlxdC72y2FrZSsRWah/r9XmR4UZRPg8Gw/KD5iLnGqiVsnXNji50HQzH63YZoWF2Q7YBEFQdIknXSYlVCC05cnMYxcj5stTWgfDZ0CIUmbCXhSRK1Uum2cuxVzpnUSa9wQStRAV1e+V1ek2nq+2UkZeg6iftecfQibOSnV30MOp6UhXcOcAUWo2V1ERrj9O8iwV+nQes4+ieW7TSkCNCWrrLepHsFkrl0rRBFqXuE6qZ1eHHPk/jbyz6CC375TTjnJ1+L2kilQ9IyHkm2zoSQlNa2khCTv/f80VfwxGfvw5ot6/GWP/5BrD9tM6ZeECStS9LPAvqEm8l8tRBzXK80ZP+Wv+Xz2pp7Li1sQwoW+d6LnlkqhO1CL7z7fZ+agKAiRiq1OE8ZDKsRIct0w9JA2e43jTIjjUFhJL7BYOgXRtjOHy4DcNtiZ8IQhk2Ohl7QbaRfsg7IWw22WkA9qSBqemAqTxpw0CUJJX2q8mAmErRJkvfLSutFWhnSTyjTJfkl885nJUGmIa0O+Ztxy2s8NEqWp8zqj2XSEw7LGUKSpIeayfzKOuO1kIWtPJCKlpP0RUvIcoYIH9ZFyIetDCPTp/Ae2urciV/5sJ2PyTe0lVlv8Q4RtGWkf+h5TR5zy2eIsJXkmO5b8pmXffAdeO684/DgH9+BPb97Bx75+N14/f96F45/9WmIItdJS57CLS3qdbuUfoul0oP+dfmc/PhGE//8Hz6Hb3/iPlTXDeOs970ax19ySudZ5tt7oOWjoBuE+Zpnem1L7/Uelyp0+5Lo1Uf66UMhYtXIk7kFSXet2Ay5VTEYDIbFxFzM0TONo2y+MxgMBqA/Y6i5wLIhbJ1zFwF4j/f+upIwlwG4HMCjAMYAwHv/4YK4jKw1GFYYBrE2lZa6kfNIvCsl+XidCLleKNrqXEYOzgU0EVuUVi/CNuRGosy9hCxf6LnQd5kXeS8UT5FVRWgrubSEKJo8lxpRFtrqLfNNYlmGl9AuQGgVS0gfy7SWZTjd1knkSkt17bO4VkvjWbuxhgt+4Q14w7Xfhb+76v/iuTufwhfe95cYPWkD3nHzj2Dz2ccAyFx0VKsZqV6t5g8M036LtZU6y0Br9WoViNHC05//Fh762G5sOH0Tdvzm92Lr687oWA6uWZO5vaCVLYnepUBM9XI7sJQR8m8r0csCqleYsvGJ6Rt6o8w9kBxrgez/Um97BoNhdaFInpuJAlAjNJf1klt5Xcuq0jBBf5cH88q0Od5SNnMui9tgMCwPGGEr0PY1+1EAN/UI8x7v/VXi2mXOuVu995er4Ju897vMLYJhPhE63MV88c4P5EFCRVrxIoFveBhIKvXOVtGQha3cQq7j41ZShkmS7MCrZjO1Tq1UgJGRfLq0GpRx8XfIhytBq1LnUkKKxBrzQtRqaZjh4fyCXaajQQtbeXgYLWylj1yZF96vVLJyA70tbHlfbsuV13T5iyxs+V2Sfv34sC2dWB334mfPBbdLinChtlFkZRkKo6/TEk5bPHeSFha5SZJ3h8B6KOoPRda10s0ISVOSqiEysbq2hnd/9qfw1FeewBc/cDOOPH0Qf/OaP8JbP/JunPXulyGK4tziQyovJHmsrcNZZunXmN8f+suv45u//flO+Ms/ehWGTt3StdjqWAojc3fCel1slC1Cl0L+irAUCGWmb4vaYpQpdvhbwyzJBkcv5QXDGAyGhUPIgEDPXSFDCk2WhtZw+tl+jBRCYeU9KtqlAt/GDYNheWFVu0Rwzn0IwDYANwLY2yP4RwGcLi94729zzl3nnNvpvb+hHeeV3vtb5iXDBkMbpf4ul/CCfDmil7/jkFCmEbtUva2tksqekYQTf1NTrkkmIE9g8r+8Jgd4HVanS3cCLB/Tk+GlmwJN2BZZDszEJUK9nuUnVGcL0d4lYS9/Mx/9WE3MGLt3A29+c0reepd+nE8/CU1lff6/d0Cjmv6uNrJrDJNEcACiKOlcjxg/gCiJ4H2UkZGtGHGzgkrcSg/PixI4eCBJ/QxUogRIIrR8BCQOURIhqjTTZ5MIUaMKF3mgWgc8gFYFrhXB1ZpwCeBaFTh4uDgBpoeAiRH4WgPJmgkk3uH4JMIPn+RxT+UE3P2dE/GFD3wSX/jAJ3DsyFFsGJ7G5dseRasZp23BJWjS44R3aPkIsUs6B70l3qWfKEEziVBvVBE5j0q1gd3PnIiHXzwOQzGwZfQwLjj+OYz+22twtFFL23VtKo1jahgOHsnBDWg+cy+arzyzY8Fi4+/MEbIIJxbSJcJiWiHphfdSXFjrHQdSSaUVSeYSYWZg/RZZzclwNuYYDAsDzlG93B+V+SzWhy+WjYv9WNhGUfH4qneIFR00azAYli4WYp5f0oStdH/gnPtgUTjn3E4A+73344HbtwK4BsANzrltAHbNdT4NBg0T0hcOId+f+qCAXovq9NCxpFRQK3qfZVtP9TWtgaPlIqG3qOrrTE8TkvRXKyH94+pt73LbvIT0hTsIYUvCWBLJ0lpWkubSwlaSzSELW22FG6qnJEn96PLdSQI9ZGEr66QI2oetTDOHq9/bJmmz5xLv4OGQeI9Wm1QNxc80+N/D5cKmcWThcmFp4QGXi09+Ik0cwLfj727IvMcQjNfBwznXOZSPZHA1aqEapeQw81SLW/iuE5/Cucfsw78+fRIarRjj08P49v5RvPWMRzBUQSceWr4yr7FLEEc+V5ZKm7BNy5Lm7J7ntqIStXDB8c/hohO+g1rcQjOJ0EjSvAzHDSSIUIvTRhBHHm7bBYjecWnHAtkWQXOPQQ6F6RWml0uEojBFSrV+0+0nXJHv66U81xf5qwa6vy/lciw1SBJGywnLqX2sRvTreknCtqovD3Bnkjba6CW/A93vfyF2REqf4kAq65rvXIPBoLGkCdsBcBWKLXD3Ario7f7gMgBjLhuBNwPY5Jy7FsAu7735tTUYVgCKth8VwbmU3NF+NOX2pNA2UyC/9Z7P0qWAdJkwNJQX+OUWbQpo2lVByCUCf9NiSrpr0C4LgLxLBLlFPgTGK4ktGXetBuCGG4CbUu80iXeIWjGaSUqSVdtEWXozjYCkXiItRQHESUoTksSDTy0/0zTTypS/+Vxa+a7z3/sIrhnDuQSuksAlDoiS9NOO17XJUKYVISkXhvfsAbZv7+0S4QM70w+vJ8iRvG3D7Ywj5bMJgIn277arDIcsrGshJYEjEV/7u3NA7NO4mW5SB+JJIKoCUaX9iYCIltqV9rMJgGb6iYfabaEJxFNt/67ttuKmANcEotH0uYgH2NWA6BAQ7wfitUC0sX2/2b4HYEsFeFc7y3f+n7vwpWs/hz+687tw0b/5blz886/Bui1rcz5stbsR6Y4hagLNiXbYg4eBM38H23/jHXjFT+5AbSRtj3ELaB5Nw9dGU5K/Mp7GVXkciEeAylag+kT3Qm4+ULRNcqUq8VZimYpQ9A7n20f5XCBETMj/Sz3/Sw1lfuusLpcupBK/qD8sZx/jhjzK3levd7lY79vamcGwfMD+Ko2OQmvx2WKlELY7UOzflkTuDrpFINoWt1eGDiYzGAzLF3IB3WtLfJIIC8WCbfRAeKtjma9S/em1zaoonlBY+YwkvSSxK/3haivTXvFJi1ZJoFUqAG75OHDvbmD79hwRS+tLjSLCNnLZbx76xnuMR/6WhK20NG35NKOxS1CLW2g5l5Lv7WcYNrUWRZ74LcKFFwA/9F4gsLWuDGVkeFHYUHhJ4hPc5qeFebYtae0l3WXoNs0DMGiJ3GhkrjD4/uv1zK+adPFBNx58Xt7Xi2AAOPmt5+P8B1/E/X/6Dez6g69i1x98FdXRGlrTTfiWx+jW9Vh7wjqc/YOvwIXXvKqTT8bTbKb5axyaxO7f/XIaabWS820bsmKXdSMPG1sIaxldD/KdrcRFWL/lmkuXCGVhQuFD8c4ERc8tdcJTt8syosowGELKYavPpQtpgVnUn3m/iLQ1LB8MMu/qnViDoGgO6jU36Xucz+bcdZfBYJgXyLlkPvvtSiFsxwCM9xHGYDCsYJSRYEUL+yjKSMOyhX3oXr9uEkhu6eflNRl/mQ9bIC9YakJNx0FSrR/ClmFl2pIcS61II+CVFwH/eFuadpvcS4aARGgVk3b6SSVv3SutTL0Hkva1JEmfcQ5AlRlq/6+I59rPAqlVapQAcb1NWFbbcbS/d6xeJfoRxme44O61OJD1LknWfsKXCfGy3TNeEjStVrgdc+sdkJKiJDaTJFMu8H9I+SDDO5daZZPYJ0aPG8Hr/9vb8fr/8AZ8++8fwf4HX8DR5w4jrsWIKxGe/toTeO7Op/HcnU/jSx/8B5x2+VlYf+pGrDlmLV72Q69EtKaGL//GbXjoY/ek+RmuYOys44J1IP0Y8yMFqYUgTEPbMXl9uW9vDB3kEkJI0WUkx+JCt0tNDgDmw3Ym6NW2rd0vTfTacm79wLAQCB18ZjAYlhe4JlrVPmznCOPt/5vkRefclUh9225rH252o/d+1wLnzWAwzCFClolAXiDSYcoI2zL/t6HFGhfGkujqtRDW1sDyP1H2O2QxpePqh2gpCtuP9Vg/pIwOUxS+X7/DGpJQojWqLMtMiCP5DOOcK8wXkcW2rS2JdDuhFbVzbTcClXQbj7SYpW+1kMW4XvCSvA1ZeY9sWYtX/tj2rueaTeDICxO463e+jPv+cheeu/MpPP6PjwAAvv5bd+TK9aYPvRXn/PircfCg65DFMk0ZL+uV5V9Ii7eVQM5qzKatGmG7NKDnPP6X3+09DYZefd0s5QwGQwhyF9RMZV6DwbD4iOPM9eF8yv6rgbANwnt/C4Bb+g3fPthsJwCccsopC+KM3GAwzA1ChG3uPrpdImgStSxOHbdcBGsyST4rhbZQ/P2OMyGLkZA7BZJwZZNKyCUCkFpQVipITVoBQLha0IenMa2yBa0mQ/mfxMFMXBHIT1F+ZorQlv9eKAorLUFDYYpceMjvrVZGptIKGsjXtwwj09PkrbQCJ2GrP9IlAt0o0JVCq5V3nUFMTWV5knFIwjYaHcFr//Nb8br/+lYAwMT4NB751P24/y/uhItjHHfJKXjZT1yCY88aw8REdlhdL8hFkCSdFwMhv7aDKkXmGyE3DkTI/Uu/WGnk9UoBre/leGDvymAwLDUMeqjlIOHm8pmy7zrukFGJDGccg8GwPOBcZkBihO0SQNv/7Q0AsGPHDm9WIwbD8kIReehc6t/Uw3UJhXPRx8ssSzVpKbenkmQqIz1leE3E0rpQ+rDtZ+tGEWHbiZ8+YAXJym3xfEZuR+9nAtOEbZklWAjah2so/GwnUr6LIqF+kHLK+AYFCUiSsUC3H1cp9MtnighbeS90wrl2hxDylxtSEITea6/3O7x+CC//0Qtx4U9diGYTmJ7O56FaTQ/wowJBtldt5ct80oXDYhBS/b7jxZQp5lq5YVja4PuV73gxFRoGg8EQwmqdi1ZruQ2G5Yh+dtPOFiuJsB3rcX3/XCZmgq3BMDuENMqLAefSA6tCxGiIfNL3+ZFWs7Tsk9vTZXohQSwUZpBxJmStGUqnzGdWkUuE3PX2IV4Q17S/0EH9WM6WsF2I7bz9lqEMuj31Uy75nUS+tIaTh8vJD5AR6SSaaQ0r09fkTciaUhLy0n+tJEZDLhHkialFhK1WEFChUKtlVrkAMDyclWFoKC8c9Wo30q/vQqOs3ej3v5iEbT9p92Nh3q/rlaK4+SnLz2LMFWVlX2zr6EGhlWlmYWswGJYiQq5c9PcyzGRMm+0zg36Xv01xZjAsPwxioDRTrBTCdi+Uj1qBTSKMwWBYAggRBDPRKGvycabbiJzDwIeO8RoJISA74EkStvpE4kIr3wIfg0XP6Pt6slhIgqrXuzMfXXODMjcSQJ6Q5W/eD1nhSpcBetuh/EhrXrpCqFTS/zLdVitP2NI6tlIpdomgySJJ1jWbWRpRlH5vNNKPtAhm3NKlA5Bt+bZ2N3vMp8VPkQKrKL0yVzLzgV7lNksog8FgmD/I+d7GW4PBsJSgDdDmg7hdKYTtLvSwsLUDxQyGpYMiAnMQH1KhRftCbyPS1o4hSM3bIARDmUVXkX+skA8taV3ZSwNIYk7G02+eQ4RfUZ40SChKi0pJvDFMKB6zDsu3L+0qQRO2mtTsh9Dsh7AalHQrQ5mvXe3aQYeXZZHblBbCCnslY6YWBINankulQ9lugIUk4ftpxzPxf2gwGAyGcvSzQ81gMBgWA9IgyQjb3rgVwHUF9y5BSugaDIYVhJAPvvlCiDzt5Rc05E9UExDayjEUdwiDELYhNwdl5QwRtjmCLOASoaj8RXkqKlNRnvVzkowGlvY2stB7LCubvlb2TuU1WrZKclIetqWfkaeatlqZWwP5jHRTwDRCrhd4L4ry14rypgm6kM9kPlOt5l0kJEl6TabF/Mn8ep8/CMAI2+UBEsP9KBFs8W4wGAwrGzbOGwyGpYqQ68P5wEohbG8C8CHn3DbvvXZ9cCWKydyB4Jy7AsAVZ5555lxEZzAYljDkFqwy8jT0jN5OXmQBWnS9XzK6H5cI+tCxMmIzFI5kXxEYVvtO5b0QgScht7jJcsjy6wOjZPx8N73yuVhg/uZjMtfkuvYTG2qzWrjQ/mt13NqyNeQSAchb7xLSncEgLhFkfI1Glme6RJCW2LQgD9XvUibyDWHQjcx8Ya788BY9Y1t2DQaDYfHRz1ivw9vYbTAYBsFCKZSW01JmDAV+ar334wDeD+B6ed05dyWAvd77W+YiA977z3jvd27YsMF84hkMKwgeDol3wW3X/fb1ufLLO1dYsEmkhBQLEdiSyOan2ez+9Lqn4ylKZymM1fogr7n48CCtIpIbyFwkhOqO12Xd6YPzdP5n054GqYNQOZi/UN5CB6fJ30ulHRgWFwsxJpo1mMFgMCwuZjIO29htMBgGhXa9Nl9GIkvawtY5dy1SlwYXAdgGYJtz7m6kB4jdKIlY7/0tzrlx59yHADyKzHft5fOTNxvYDYbZQvs9XQxSxTnAwXdf66N/SyvGIr+8tDCtBEZbbWGrrQz1dfkcr/eyZtXx9+tTMmS9G0UAXLvAyuJVb7mXflR1nvo9gEz7KtUo8mMaemapWVqUlU3XmQ4bcrXRanVbKkuSs8jNROiafjeSbC1ziSD/8zutn4HuA/j4m+SzLE/IRUKtll6vVrNrFJaYT513OcbYnL26MVO5zay0DQaDYflgNmt07z0OHz6MQ4cOYWJiAi15kmtX2Cy9Xt91/uTz+p583mAwdCPUR+ai38RxjJGREaxfvx7r1q2D6xGZNkaZLyxpwtZ7/+EBw98G4LZ5yk4OJsAbDLPDXB5SNNt8RG0SctB+TV+ZmqgNkbC93Br0GyZ0vWyyWAjCtihufS1EIst7khRkOO3jNPQcw4b8r84E890OB4m/LJx0dq8VBvq9a3KYdSrrV5OuIXcaJGqpUZZp0Dq2SGgKuRbRZHMIemtjiHTmf0lSa4tkm7cNBsNcoWjLtW2tNhiWJ7z3eOGFF3D06FFs2rQJW7ZsQRzHhaRNL2JWhtM7g+TzeneTEbYGQznmg7D13qPVauHIkSPYt28fJicncdxxx/UkbRcCS5qwNRgMKxcUTDSJMl++PkuU5EiSNBNRc7B49WJNC2VyK3ezmb/OeyHCttXqPu0+lA5JylartxVuPz5siw7IKhNEi7SLc2EtPYjmMrS1fqmiyBpbo+id6vfJ39Kfa5EiIETq9uvuQPt1DlkCy+v9HBwly6MRck+irfL5X/t8JkkrtyotAZnLYDCsAPSjSDMsXeh5yt6XAQAOHz6Mo0eP4tRTT0U8n87UDQbDkoNzDpVKBWNjY1i3bh2eeOIJHD58GOvXr1/srBlhazAYVjYksVkGDzfwYTMhwpbX5WFl2h+u3OIeItOaze7DuELlYvr0QxrK2yCErcybJo87CxxPli3sjoC/i8jfIoS25rOcht7ot50XPVvkN1aSwUCx24n5cmkiFTuajNfXuL6iq4WybYeGwdHPIS5GfhhWA4oUzoaljyI/6AbDoUOHsGnTphmRtUWWfnJOtHZmMCwPxHGMTZs24dChQ0bYGgwGw3yDPjKB4sWVj1rwcAOPiEVb/ENuAKrVPHHUIVH/5AbgxhvT59ruBpq0+KWrBlfOODF8JcrYlKRNrEbOpweqeYfI+Z5xyecAIPIO3gNx1H52z25g+3ZoH7YSvSxIy1w86IVUL5JoMQiiEBkdQi//u/K/jn8mZSqq914WtrRCpSsE6SOWZaDbhKGh9FOtdvurZThdNl4raxPax7MOw/vaBYn8FC2YbEE+e/Rbh3pLp8FgMCwlSAXgINCyiCmnVh4mJiawZcuWxc6GwWBYAhgdHcULL7yw2NkAYITtQHDOXQHgijPPPHOxs2IwGOYQnYPHZmgt048PW62w7xC2N38MuHc3/PYLO4efaaK2F8kaCscyzZaw7Xr2wguA9/1QsK76JWeLFkr6UCqgt0XfQpNxC2G1OWiZJLEd8vXK79K/a6/4Qn5wacVarS4eYavjKXN3EMcZ0WwL69lhUGtCI2yXHkKuTID5s443GFYKlsqZC4b5RavVmldXCDbOGgzLB3Eclx46uJAwwnYAeO8/A+AzO3bseP9i58VgMMwxdu8GLr10sGfoHoAkaEImSayIW9ynrQZ979LPnt1w2y8A7rg9u0d/t5H6XwSGFyO6Q3sx4QAk7U/UR1zMeiR+9/vsLFFm+bJUtp4WLdL69bGrw8+0XJJ40XkqIm9J1pa5P2DY0EfGU/R8yLXFTC2Ny/JUdKCZJBapADBCyrDa0cvy2cgng6EY1j9WD5bCAUMGg2HxsZTGglkRts650wBsAzDW/r8ZwEsA9gIYB7DXe//4bNIwGAwrB6EDg+S9RcP73rd4aW/fDvfDPwRXQub1Qwb2E86wMlDmgy9EyrBdSGK12cx83moFcrMJNBp5/8e0bK3XgenpNFylkqXHsHGcxVevZ/EVWdjyML6QhW2zmb/fbKZx0mq22UzTn5zMiFrnMr/LLKO0+jUYViNCBxHq30tobWIwGAwrCqHxVctqNgYbDIYQBiZsnXNvBvABAJcB8ADuRkrO7m8H2QjgVUhJ3B3OOQ/gNgDXe+9v1/EZDIbVgX62YS8adu5MP4NCW6O2DwtLxI6qpE1aJTX1KK0HablasJW9r2yUWCnm0hogrn6eNR9ui4Mya7mQJZAkY5IkJTQlYUOyVPqJ5W/tw1a6Q+A1puF9StiSZCVqtWLCVudBXtd51N+lz13n8kSuLCNdI9Di1mAwGAwGg8FgMBiWOvombJ1zPwjgQwAeBXALgPd77w/28dwGpOTurznnrgdwnff+EzPMr8FgWKboZyv5creCKyKDivwG9tom3i8Wi7Al5oq4LaqnQZ5fDZjpwU48gE+7nqDLAOlKwPtiwrZWyz6ahKUlrLxWRthKC1p5mJv2T1ut5i1mJWFLMD8MJ/NZrRphazAYDAbDoCg6/HW1yFwzhayffurK6nPxsGvXLuzfn9oeXnbZZYucG4Mhj56EbZtwvRnAPwK4uB+SVqId/m/bHzjn/p1z7kakhO+hwbNsMBgMSxMk0iQhRfKryF1ByGfrfLlEGORk5FCeip6dC/9uSyWO5QDZxvp5p3RXUBbfTNBLETGID9vQgUjSFYP2k6vj13GtlrZgMBgMBsN8oWwetTnWoLFx40aMj49j27Zt2LZtG8bGxgAAt912G8bHx3HRRRdh27ZtGB8fx/79+7Fr1y4AwIc+9CFce+21i5Ln8fFxXH/99bjpppuwbds23H333YuSD8PyBF3LFbl4mwuURtkmaz8E4Brv/WNzkaD3/rfb8f5759x/N9LWYDAsZ5T55eX9fp8nig6TWsoIkW0ay92CeqVCKxqkZWuvZ+Y6D4S0sB3Uv+Zy6TMrHUVWWctxfDMYNIratw5jbdywnBEyRJAwua4b+hBYfU3fCz23XDE+Po5bb721y0r1uuuuw4c//GHcfPPN2LZtWy78+9//fjz66KPznrddu3bhoosu6ro+NjaG66+/HmNjY7jtttvmPR+GlQN5fsZ8opet1WXe+w/MFVlLeO8Peu9/DcDlcxnvfMM5d4Vz7oaDBwcyMjYYDCsUIcJBWwKWfaRV4Uzur7TPXGwHMxJo7sC2R82x/LRa/b3T0LNz+SnKB69LNwuGhUM//dD66sKh1zxifWQw9Nt2rY0bDIbVgvHxcVx55ZWlLgU2bdqU+z02NoaPfvSjHXcE84nrr7++9P7mzZvnPQ+GlQW6muO5HvNhXQv0sLD13v/t/CS7MPHPNbz3nwHwmR07drx/sfNiMBgWH3oxFvIr2stdQdl29n4H/sV2iVD0zCDXiH58HffCQi2Qe5GBJEKW24Jd+riN2wfozcTadSHKXeTPl0IU87uQbaKXxdFqIMj6qfNB+rRh5jBice5h9WUwGAjzT5ti//79uPzywW3xxsbGcla384W9e/fOexqG1QepEAfmR7adJx4YcM6dBmC/uTwwGAyrBaFF3EwI234J2EHDLwXCth8XETLMINvtFlIg5nsO+V4lylxELGUiVx9KJn9Xq+lHa5LloWMaPLws1E7lwWRAXuCRHxmvPHSM/nmTpPswMh40thDblYDB3TYs1fdvWFkompf02Gzt0WAwGAwzBX3XzgTzbd16ww03zGv8htUJyldJkvmw5XpmLjErwtY59z8AnA5gP4Cbvfe3O+cuBHBb+9o9zjnvvX/P7LNqMBgMyxNlfmqLwi+1xXOZ5WC//mpJbg5CrA5SFwtZZ5ykQ9adgzy/3CDJ2xDxKq/3+l90ba6Id6n1Xggyf5B3KvvCUuzvBoPBYDAYitHPvN2PD9uVMv/PxlK2zI3CbDA+Po6bbroJ11xzzbylYVi9cC4zFpnPXWOztbC9E8Cj3vuPimu3AbjJe/+zQHpwmXPuV733/3OWaRkMBsOyw0wEsfkg8/rZqs1wRYJlEenVL+E003IN8txCH4AxSN5CROVygiRAWy2g0cjaBMsjtcz8T8JUuldgfI1GdxqMk35qaUVbr6cfWuvyv7wWRWmczuWfXUoEuc7HUsqbwWAwGAyGuUWZ0nilKG1n49ZgbGwMF198Mfbu3YvLLrsMH/3oRztWsbfeeituvfVWjI+P46qrrsL+/fuxadMm3HrrrZ3nP/zhD+PGG2/E+Pg4rr/++g45e8MNN+DOO+/Etm3bcNddd+Gqq67qPPOhD32oMM9Me3x8HHfeeWdpWMPqBnf2zZf/WmD2hO1GSdY6534QwBiA63jNe3/QOWendBkMhlWJXifsLgRxNwghFPLL208e58L3rGF+UeS+IfRbf/hupbVqUVy8xv+tVveChJbJOuxcQLdF+uJdKgui5UjQ9qvw6Teu5VZ+g8FgMBjmAzYfpmTv3Xff3fGBe9NNN+Haa6/Fbbfdhuuuuw579+7Ftm3bcPPNN+P9738/du3alXv+2muvxUUXXdTlQ/faa68FAFx33XXYtWsXbr755p55ueWWW3D11VdjbGys8/viiy/GgQMH5qCkBsPgmC1hq1vu5QD2BvzWrgJX2waDwbA0IUnXQQnU5UguGbohfe72A32qvPQDK09F1U72tYaZ5FzoULBe7VL7sS37yPAkZ+M4y+dSImyXG+a63mxMMRgMi4Ui5ZMpkgx94Zd+Cdi9u+/gZU1q0cmR7duB3/u9xc5FDhdddBFuueUWfPCDHwSQuko4cOBAhzwdGxvDJZdc0kXYMuxsQWKY6THe8fFx7Nq1CxdddNGs0zAYBsVsCVs91lwN4PpAOJsCDQaDYZVhLq3yBknTFl3dCFmdFvmWlcQsoQlc+ZGQ16SPVrpR8D6fNt0mhAhb6RJB/pbh47jbEjj0WaiDx1YijGA1GAwrAWVjmY1zBsPSwP79+3PEqCRP5xvj4+NdpCzT379//4Llw7C8INe787GzdLaEbedIP+fcW5C6Q7hRBnDObQfw6CzTMRgMBsMywmItfGzR1R96uSOQ9dhvnUpSl79Dn7lEyIXHfLpbMBgMBsPyxGx2GxkMAObUItVE1TAW01es+ak1DIqFWHfOlrC9zTl3E4CXALwHwPXe+91Ah8C9BsBb2p9lD+fcFQCuOPPMMxc7KwaDQaCXJadZXS48jDhduujn3XBhq10d0LE+P+x3tHTlc7LP8bu0iuW9Xi4RpFsDksE8kZV5aDbzlrvSz66Mx9qjwWAwGAwGw9LFpk2bFjsLBkPf0Oul+cCsovbePwbg/QBuAXCx9/5nAcA5dyEya9udAFZEz/Pef8Z7v3PDhg2LnRWDwdBGv+STkTWGlQAqJ2ZjqSqFi5l8vAcaDaBezz7NZurygP/5CblQYLheH7pQKHPHUPYB8qSvjQEGg8FgMBgMhltuuWWxs2BYIdA7DOcas7Wwhff+IIAvqmv3ALhntnEbDIaVDW0ZOxNLWCNjDasFeuv/XKLISl27FSDZmyQpqRry2TRXbg+khW6IjOX30IFm0gKXRLONEwaDwWAwGAwrD+Pj46X3tQ/avXv3zmNuDKsFXFssZR+2fcE5d6P3/j0LkZbBYFgeCJEnRr4aDMXQ/WOmmtyQoqTIv2yIsK3Vsv+8XqsVP8P/dKsQEmbk8zIeKQAVuURIkm6C1vvsO/NtY4vBYDAYDAbD8kXRIWS33XYbgDBxu3nz5q7rC3mYmWHlYr7dIQBzRNi2DxYrcnswBuCignsGg2GVwggUg2H2KPPfHLJYH0RRIoUQ+T+OM4JUk7HAYIRt6Hl5r1/CVudX14mNNwZDBjluzPVBgAaDwWAwhLB///5SonR8fLzLElbj6quvxjXXXIPx8fFOXPK50PNXXnklrrvuus4zu3btwo4dO3JhXnrppdJ0e1nwGhYeS0F+keui+cKsCFvn3OkA7kZKypZhCVSnwWAwGAwrBzPx3TwIcVlE2MoPsHACU5EVcBG0r14jbA2G7jHA+oXBYDAY5hq7du3Cb/3Wb2Hv3r3YtWsXAODiiy/Gjh07sG3bNlx//fWdsHv37sV1112H2267DePj47j88stx0UUX4UMf+lBXvGNjY7j11ltx3XXX4eKLL+5c37lzJ6655hpcc801uP7663H33Xd37m3btg0333wzrrrqKlx++eUYGxvDzp07AaRE7Pvf//5c2tdccw2uvPJKfPjDH8aNN94IALjuuutw44034uabb56X+jIsTyzEoWPOz2Kl5Zy7CenBYre1fdkWhbvLe7+j6P5yw44dO/xdd9212NkwGAzLAEU+bcp83QzqB6fZTP+HrBRnGqdh9tBWnrLu+3lnC4UiC90oSvPpfao9BrJDxqIodWNAEnWmFrb1evq/H5cIU1PpYWd0yUALWx56VqtlFrdJAkxMpPleuzZ9Lo7D6RiWP0Lj20zHvLJ+O5fPLAZmMh8ZDMsRRX3S+sBg6FUvK6neHnjgAZx33nmLnQ2DwbBE0GtMaDaBQ4fStcf69Z3Lc64Gn+1S8U7v/d/2Ee7GWaZjMBgMBoNhgdGvFW8/izVtrVt0rehZbjsieaytfbWGW1rVmksEg8FgMBgMBoPBsJwwW8L2QD+BvPe/Pct0DAaDwWAwLDBCJKf3QKuVWQlrhCxspc/MkIVtUTzymUYjTVeTu81m+pEWVEmShpX5MMLWYDAYVg+4idTGfoPBYDAsV8x2A8MB59z6XoGccz8wy3QMBoPBYDAsMEL+Lgf1B9vLupVkbq8P3S+QLO71kc8sxCmuBoPBYFga4LxjuysMBoPBsJwxKwtb7/3fOud+xjm313t/e0nQawB8YjZpLQU4564AcMWZZ5652FkxGAwGg2HeoRe7cQxUq+l36be2zIctEXJ/EMfdPnBlPNLCNopSsjaO0+v0Ycv72oetzK8t2g0Gg2H1wMb8uYPcIRO6Z/VsMBgM84dZEbbOuS+0v17inNsAYG9B0G2zSWepwHv/GQCf2bFjx/sXOy8Gg8FgMCx39OsDV1rIkpQlYSsPNZOEbZKYZa3BYDAYDDNFv37sDQaDYbWiyO3bXGG2PmwvAXAbgN8qCXMMgJ+ZZToGg8Gw4lBktVBkyVCEIotGnZYJ1QaDwbC6EZp3bH4wrCZYH+gfRsgaDAZDMRZijJwtYbvXe391r0DOudNnmY7BYDCsKCy0AGxCt2GuQf+wQH7x248CoZ+w0rUB0zMYDDNH0Rxg84NhtcD6gMFgMBjmCtwlOJ+7+WZL2F7VZzhzIWAwGAwC/SwO+h38Q75BDYaZQJKwIUgSlQeA8boMo68B4XbabIbD6rSiKA0bOqCs0UjzwXi1SwSDwZDCSCnDaof1AYPBYDDMJZIkW8+EzuSYLWZ76Nhj/O6cezOAy5H6q90L4Bve+0+2wx2cTToGg8FgMBjmF1zE9rJkpTbZuSxsP8RoiLDtV9lA7XWI2C1agJv/WoPBYDAYDAaDwTAf4DpjyRK2AOCcOw3ALQAuAjDevjzWvnc3gCu990/MNh2DwWAwGAzzB018hshOefCXPgiMGMTCNvS8jEda2JKw5X8eMkbr26JDxwwGg8FgMBgMBoNhLsF1yHwQtcRcLGVuAXA9gI3e+03tTwTgDAA3A7jFObd+DtIxGAwGg8FgMBgWBCEXHGUf87NsMBgMBoPBsDpAspaf+cCsonXO/SqAq6RrBKJ97cPOuVsAfLD9MRgMBoPBsMJBokv6xC3zYRtCyIctLWsNhvnGTPxcmn9Mg8FgMBgMBsNcYbbLHhciayW893udc/tnmY7BYDAYDMsORYd4eb98iR2SsUDY/QHLzE/I7yxR5D6B1/RhZqHfZtlomA/MhHw1FxwGg8FgMBgMhrnCbAnb8T7D2VLKYDAYDKsKZYd4LTVLvBAJWxSuF2FLFPnEHeTQMUl4y/gkedtq5fNlJK7BYDAYDAaDwWBY7pgtYdvvcmjzLNMxGAwGg2FZoZ9DvJYCBiGOncsOAJOHjvVTtkEJW0nORlH6Wx8kxu8hi+WlRoobDAaDwWAwGAwGQ7+YLWF7wDn3M977PykK4Jz7LQCPzjKdJQHn3BUArjjzzDMXOysGg8FgMMwJiojNMhJ2LgnbIktYksPOAXGcXiNhS+vaSiWzqJX5kXEYDAaDwWAwGAwGw3LDrOx9vPd/C2CHc+5O59y/dc79gHPuze3/v+qcewTAtjJCdznBe/8Z7/3ODRs2LHZWDAaDwWBYdgi5LdDX9KefMKFnDAaDwWAwGAwGg2G5YtZnLXvvP+Cc2wngfwAYQ+omgTYt13jvPzrbNAwGg8FgMCxvhKxdad3by0LXucFIWHOHYDAYDAaDwWAwGJYzZk3YAoD3/gYANzjnTgewDcBe7/1jcxG3wWAwGAyG5Y8yErUXYRvyWxv6vlT9BBsMBoPBYDAYDKsJe/fuxd69ezE+Po7LLrsMY2Nji52lZYc5Xdp47x/z3n9Rk7XOue1zmY7BYDAYDIbFwSDuCVotoNmc+afVMhcIBoPBYDAYDEsZH/7wh3HxxRfDOQfnHC6//HJcddVVnc/ll1+Oyy+/HDfccMNiZ3VecMYZZ+C6665b1Dx8+MMfxuWXX955B7t27errufHxcWzcuLHz3uayHLfddhuuu+46XHXVVdi7d2/X/aVQb7OFXBfNBxbKFuVDC5SOwWAwGAyGecIgrgbmwi1Bv3GYCwSDwWAwGAyGxcG1116Lu+++GxdddBHGxsZw66234uabb+585O8zzjgD4+Pj856nfgnLucJClKkM1157LW699VZce+21GBsbw/XXX9/XczfddBN27NiBbdu24dZbb8WHPjR31N3OnTvxxS9+sTTMYtfbbLAQ64++XCI4534LwAbv/c+Ja29B6re2F8aQukkwGAwGg8GwjCH9zUoXBP24IqgEJA5qowdxZVDkEsEIW4PBYDAYDIbFw6ZNmwoJOBK5GzduxFve8hbcfffd85qX66+/vm/ScrZ49NFHFySdfrB582bs3LkTN9xww0Dlny93BWXxLqV6mwm4LppPl2z9Rn01gMvVtf0ALgbwRQA3lXw+CmB8DvJqMBgMqwaDbDu37eCGucYg7W8hP9bWDQaDwWAwGJYvrr76auzatWveLWBDW/BXC6655hqMj4/jlltuKQ23a9cuXHbZZQuUK8NM0JeFrff+jMDlcQC3ee9/rdfzzrkdA+bLYDAYVi0GtRS07eCGucSgbYnkbhF4LxRmEH9PDCvTC/mM4m/rFwaDwWAwGAxLC2ec8f+z9+/RcV33nSf63acA8CGJBEFJflsiKL8SPyiQct6JIgF+dLc6iU2QcXqme7pbApx0Op254wjW6nX79p3bd2TCvtO95t7pBJBXz/TLNknI6bS6PVYAyc6zbYsEKechJw6Llp+KLYJFvUgCVWffP079qn61a+9Tp+pUAQXg+1kLC1Wn9tl7n33287t/53cSaalYLGJsbKwnaWxVX7lZGR0dxdjYGObm5nD06NFguDNnzmBqamodc0bapWPj3eoLxt6TMfgDnaZDCCHbDf14RdY/ClOkW7RT/wqF5K/d+prnbz196JLNg2sVTmtsQgghpP+Qx+B7IdaWSiXMz89jenq663GHKBaLWF5extLS0rqlmYXp6WksLS2l+ogdGRlZvww59Gu59RuZLGzzYq29sh7pEEIIIWT9EFE0zXdTFj+37fqw9cXpxtFLf1Kkv/AJ8xTsCSGEkP6iVCrh1KlTOHr0KEZHG19ztLCwgJWVlVo4IHmRlqZYLGJpaakmNK6srGBkZARPPfUUTpw4gfn5eTz11FMYHR3FmTNnMDk5WTv3xIkTTWnOzs7WfKxeuHABBw8erFmcFotFTE5OolgsYnx8HI888kjNcndxcRGLi4sA6sLo2NiY1y9vq+vKmk67HDt2DNPT0zh16pTXinZpaSmzO4S0cnLjXFxcrFlRSz58tCo3bSV99uxZzMzMNNw/XW5HjhzB4uJiraxLpVKtTrj3fLORS7A1xtxurf2G5/gHkbxo7DKAM9ba83nSIYQQQkj/oK0ZW9EtlwjWUoAjfijOEkII6TWf//XP47nzz210NrrCqw+9Gu/7V+9b1zRFYBsfH8fp06cbfpuensbhw4cbRMBisYjDhw/j9OnTGB0dRalUwszMTNO58/PzNX+1IoTOzMxgeXm5KaxmYmICMzMzDaLl9PQ0pqenMTc3h9HRUZw9exYTE8mrnE6dOoUHH3wQS0tLmJmZQbFYxOjoKBYXFzEzM+O1FM1yXVnTaZfh4WEcPXoUc3NzXnFVBOJWtConYWZmBqVSqelFZzMzM95408ptdna2QdQulUo4cOAATp8+XcuHlNvk5GTNsvrYsWM1YXlhYQGHDx/G5cuXW15jP5PX/uSE76C19lFr7cettZ8EYIwx9+dMhxBCCCF9wEaJYxTlyHrR7kv36H6BEEIISSgWi5iZmWn4E3HvkUce8QquPl+qo6OjmJ6erlnJnjlzxvsI/9TUVNuP9s/OzgJAk2ApVrr6hWhjY2NYXl7GkSNHaudcvny5QUTdv39/UxpZr6uddNrl+PHjWF5ebnoBW6lUylRmWctpaWkJ8/PzTWKt5CGEr9yKxSLm5uYa8jw8PIypqSmv+HvXXXfhzJkzGB0drYm1kudSqdTzl9v1mrwuEVounay154wx9+ZMhxBCCCF9gE84XU+XCIT0kk42BbiZQAghW5/1tkjdrAwPD+PECa9dn5eZmRk89NBD3t/ksf6lpSWMjo7i1KlTNStdjSt+ZknTl8fh4WEMDw/jzJkzDT52V1ZWGr5rYTAtjSzXpa+lk3TSOHr0KIaHhzE3N9dwvUtLS6kvIxOylpNrgavpRHBeWVlpsiw+ePAgFhYWvOFLpVJT+lJ24o5is5JXsG1pU2CM2QNgAsAncqZFCCGEEEJIz6D4SgghhKwPxWIRpVIpKOqJMLi4uIgTJ07g2LFjmJiYwPDwcO3z0aNHM/tilTQB4NKlS14BcHx8vMn6tF3RsZ3r0nnvhb/VY8eOYX5+vkF4zSJitlNOy8vLqZa07TA6OlpzYyAvJRseHsbZs2eD+d7sfmrTyCzYGmPuBDCNxDetCLVHjDGPB04ZATBcDd/elgchhBBCCCGEEEII2ZKIKNjKklTCzc3NYXp6GidPnsTCwgLm5+cxPDyMJ554osEyNUtcExMTXqHXZ3narsuFdq+r03SyMD09jfn5+Zo1r7ykqxVZyynrtbbDwsJCzZ3G1NQUhoeHsbCwgFOnTnUtjc1C5ocQrbXnrLUftta+B8CjSKxmVwCcC/w9AWAewB3W2s92O+OEEEIIIYQQQgghZPMhlpGlUikYRixVxRfp2NgYTpw4gQsXLuDy5cs4duwY7r23tQdOsRLNkmZe2rmuXjM2NobR0dGaf9mlpaVM4nbWcup2eS4sLGBychKnT5+uibXbmY68xllr5wF8GMCytfajKX8ft9Ze7G6WNw5jzH3GmPkrV65sdFYIIYQQQgghhBBCNiUi9rmWpoIcv+uuu1AsFrG0tNTwu/hnHRkZaYrDfXxefpeXUy0uLgbzFcpPVtq5rvVgeno66P81RDvlNDo6igsXLuTKo/Dwww9jfHy8SVR272e717NZyfOaj5MAzoR+NMZ80BhzvzHmUI40+gpr7WPW2qm9e/dudFYIIYSQvsBaII7758+29K5PCCGEEEL6gbm5uZr1p8vCwgLGxsZqj9+Hwo2NjTW4E9i/f3+Txae21Dxx4kTw8frl5eXcgq3kNet1dZNLly41HZN0pqen2/L3m7Wc5ubmguHOnAlKhl7cl40JZ8+ebbinm/1lYlnpWLC11l6x1n485fdHrbWfBHDFGPORTtMhhBBCSH/Sjy9o6sc8EUIIIYRsdVZWVtp+NH5qagpjY2OYmZlpOF4sFnHy5EmcPn26dmxpaanmGkGQ9LQge/To0dqLv4BEXNR+W6empjA+Po6JiYmmuMTXqz6WRRx0r7ud62onnVb4LE9HR0cxNjaGM2fOeMXQULpZy2l8fBzHjh3D9PR0Uzi5zlAabrmNj483WVIvLy/X8lAqlRr88PoE6rT4u402XOkFxvbYFMUYswfAaWvte3ua0Dpy5MgR2+5OASFkeyKdd5TneYY+SIN0ju/+bKd7Vi4n/wc8rznttBx0nNupLAkhhBDSfZ555hm87W1v2+hsbFpmZ2exuLhYE9rGxsZw5MiRoIWpj/n5eVy4cAH79+8HkAhxDz30UE2IXVpawsjICFZWVhosYEulEh588MGm+BYWFjA3N4eJiQkMDw9jamrKm+bZs2dx8OBBjI6OYmVlpRauWCxiZmYGS0tLKJVKtcf0T5w40ZD2Aw880BDmxIkTDY/zt7quLOlkYXZ2FnNzcygWi7Xr1XEsLCw0XJ+co++biLNueaaVk1vmTz31FA4ePFg7Nj4+Xvs+Pj6OxcXFluU2MzODYrFYE2lHR0cxPj6OmZmZmng7NTXVFMf09DSOHj2K2dlZnDx5EsvLyzWx2hXIW9GqTyiXE7G2UKgfiyJ03WQkt2BrjLkHwAkAwwDc19oNV//PWmsfypVQH0HBlhCSFQq2hIJt8p+CLSGEEEL6EQq2hBBNFsEWaFrfdF2w9SyfsmOMOQBgAcA8gAsADgMQr8Qj8t1a+2iedAghhBBCCCGEEEIIIWQ7kEuwBfAggAPW2isAYIyxjjj7iDHmTmPMPdbaJ3OmRQghhBBCCCGEEEIIIVuavA8QLotYW2Vf1WdtDWvtOQDNno0JIYQQQgghhBBCCCGENJBXsHUd4C4BOJYzTkIIIYQQQgghhBBCCNmW5BVsDQAYY26vuj04B+Cjxph3OeEmcqZDCCGEEEIIIYQQQgghW55cPmyttY8YY34DwDSAfQD2A/gogHPGmEUARQDjSF5MRgghhBDSgLVAHLd/jun6e1gJIYQQQgghpD/Ia2ELa+3HkVjQHql+X0DiFmE/gOMAzllrH8qbDiGEEEK2FsZ0Jrx2eh4hhBBCCCGEbAZyWdgK1tqLzvcF0KqWEEIIISlQeCWEEEIIIYSQZnJb2Bpjbu9CPgghhBBCCCGEEEIIIWTbk0uwNcb8LoALxpg9XcoPIYQQQgghhBBCCCGEbFvyWtguAniPtfaFbmSGEEIIIYQQQgghhBBCtjPdeOnYE63CGGMezpsOIYQQQgghhBBCCCGEbHXyCrbzxpj7jTGHWoQby5kOIYQQQgghhBBCCCGEbHkGcp4/X/0/Y4wZAVAEsOKEGQEFW0IIIWTbYi0Qx92Nz5juxUcIIYQQQggh/URewXYCwBkAj6aE2QdgNGc6hBCyaem2WOWLn+IV6Vd6UTeNYZ0nhBBCCCGEbAzuGj/K7XC2mbyCbdFa+55WgYwx+3KmQwghm5L1EJUoXpF+pld109r6H+s/IYQQQgghZD1Yr7VHXsF2MmO4mZzpEELIpoRiKtnu9Lr+s40RQgghhBBC1gtZf/TCqlaTS7C11l4EgOpLx44AWLHWfrZ67ACAA9baJyXcZscYcx+A++64446NzgohhBCyKaCgSgghhBBCCCHtkVsPNsb8FoBlALMAjsvxqkh72Rjzkbxp9AvW2sestVN79+7d6KwQQgghhBBCCCGEbCizs7OYmJiAMQbGGCwvL2c6r1QqYd++fTDGYGJiAjMz2R7MPnz4MEqlUqZ8HT58uJaviYkJTE5O1v4mJiYwMTGB+fn5TOkSst4Ya23nJxvzAIDDAGastVeMMR+01j7qhNkLYNJa+8l8We0fjhw5Ys+cObPR2SCEELIJiONmP6vyvdeP0RBCCCGEkHSeeeYZvO1tb9vobGx6ZmZmMD8/j2PHjmFubq5l+Pn5eZw+fRrFYhEXLlzIlMby8jIOHz6Mubk5TE1NZTrn8OHDKBaLuHz5ctNvpVIJk5OTKBaLOHv2LIaHhzPFSbY2rfoEedmYs5br+jOFeZeKB621H7bWXql+b1J/q781twxCCCFkG+BzCUA3AYQQQgghZCuxf/9+TE1N4dSpU22d145IWiwWcfTo0UyCsDAyMoKRkZFg2ouLi1hZWcG9996bOU5C1oO8gq27DRJafh7ImQ4hhBCyKRFLWvePgi0hhBBCCNlKTE9Po1QqYWFhITXc8vIyxsfH245/eHgY09PTWF5eRrFY7DSbTRw7dgzLy8uZ3TkQsh7kFWyz+lM4mDMdQgghhBBCCCGEENKnjI6OYmxsrKUF7JkzZzA6OtpW3EtLSxgfH8f4+DiGh4fbsrJtxcGDiWTVTRGYkLzkFWz3GWPuUd+bBFxjzOMAzuZMhxBCCCGEEEIIIYT0MdPT01haWkp9MVjIRUEaOr5jx461tOJtB/GhOzY21rU4CclLLsHWWvtxAB81xjxujPkIgLuMMfcYYz5gjPlNY8wlAKWt9MIxQgghhBBCCCGEENLMsWPHACDoy1YsZduhVCo1+Lqdnp5GsVjsiguDUqmEU6dO4ejRo21b/RLSS3K/n9pa+x4ATwCYBTADYBHAAoDjAD5qrT2eNw1CCCGEEEIIIYQQ0t8MDw+nvhisWCy29aIxoFnkHRsb64pbhGKxiHvvvRfj4+M4ffp0rrgI6TYD3YjEWjsLYNYYcwDAKICitfZiN+ImhBBCCCGEEEII2Sh+/fO/jvPPnd/obHSFQ68+hH/1vn/V0zSOHz+OyclJFIvFBqvVUqnUkTuElZWVpmNTU1OYnZ3NJNoWi0XMzMw0HBOr3UceeYSuEEhf0hXBVqiKtBRqCSGEEEIIIYQQQrYhR48erVnAnjhxonZ8aWkJR48ebSuuYrGII0eONB2fnp7G7OwsFhYWWsY5PDzckA9CNgNdFWxDGGNO0jUCIYQQQgghhBBCNhu9tkjdihw7dgzz8/MNQqnPUrYVCwsLeOqpp5osc1dWVmqicLsiMCGbga4ItsaYQwBCdu3DAGhfTgghhBBCCCGEELINmJ6exvz8fM3/bMhSthXDw8NB/7Kzs7OYmZlpeikZIVuBXC8dM8YcMMasAFgGsBT4W0Di15YQQgghhBBCCCGEbHHGxsYwOjpa8zG7tLTUtq/Y5eXlVJFXLGtPnTrVeUYJ6VNyCbYATgB4AMA+a20U+gNwLn9WCSGEEEIIIYQQQshmYHp6GgsLCx2f30rkHR0dbRCFCdlK5BVsn7LWPmqtvdIi3Mmc6RBCCCGEEEIIIYSQPuTSpUtNx8QCdnp6GuPj4z1Jd3p6GsvLyygWiz2Jn5CNIq9gezlLIGvtx3OmQwghhBBCCCGEEEL6EJ8l7ejoKMbGxnDmzBmMjjZ7ykx7CdnMzEymdEUIDlnZrqysoFQqZYqLkH4it2BrjNnTKpAx5gM50yGEEEIIIYQQQgghfcTs7CwOHjyIYrGIffv2NQmtDz30EKanp5vOmZiYwPLyMpaXlzExMYHZ2VkAiRuEw4cP114oJsd9zM/P44EHHmiIc35+vikNADh8+HBTPgjpZ4y1Nl8ExtwPoGitfTIlzOPW2vfmSqiPOHLkiD1z5sxGZ4MQQgghhBBCCCE5eOaZZ/C2t71to7NBCOkTWvUJcZz8jxpNYE238zGQ52RjzOPVj3cZY/YCCDkNabZ9J4QQQgghhBBCCCGEENJALsEWwF0AlgA8nBLmZgD350yHEEIIIYQQQgghhBBCtjx5BduitfZYq0DGmAM50yGEEEIIIYQQQgghhJAtT17BdjJjuAdypkMIIYQQQgghhBBCCCEbirV1X7ZAkz/brpBLsLXWXgQAY8whAEcArFhrP1s9dgDAAWvtk9baK3kzSgghhBBCCCGEEEIIIRuF6frrxfzk1oCNMb8FYBnALIDjcrwq5l42xnwkbxqEEEIIIYQQQgghhBCykRiTWNTqv16QK1pjjLg62GetHQFwSv9urT0H4BFjDF86RgghhBBCCCGEEEIIIS3I68P2oLX2w+q7dQNYa68YYy7nTIcQQgghhBBCCCGEEEK2PHkF2wvO95AnhwM50+kqxpip6seDAIYBzFhrSxuWIUIIIYQQQgghhBBCCEF+wbbJojbAwZzpdA1jzIPW2ln9HcAjACY3LleEEEIIIYQQQgghhBCS/6Vj+4wx96jvTQKuMeZxAGdzptNNHjLGjKvvywDGQ4EJIYQQQgghhBCydbE2qy0aIWQr0099QS4LW2vtx40xv2uMmQGwCGC/MaaExM3ABIBjAJastZ/Mm9EucthaW1TfxwCc2ajMEEIIIYQQQgghZGMoFAqoVCoYGMj7ADIhZLNTqVRQKBQ2OhsA8rtEgLX2PVW3AuJm4EEkvmxLSHzDPpI3DQAwxowBOG6tnUkJM45EKL6ARDSGdn9Q/V5U4YcBHAfdIRBCCCGEEEIIIduO3bt346WXXsLw8PBGZ4UQssG89NJL2L1790ZnA0AXBFugJorOGmMOABgFULTWXuxG3ABgjDmKxM/sqRZhjltrJ9WxcWPMorV2wgk7jMQNwnEADzgWt4QQQgghhBBCCNkG7NmzB88//zxuuummvrGsI4SsP5VKBSsrK7j55ps3OisA8vuwbcBae9Fa+0S3xFpjzAljzOnq11ai6iMAHnDys1SNZ8o5XrLWLlTF3Wn3d0IIIYQQQgghhGx9brrpJtxwww149tlnUSqVUC6X+8qPJSGkd1hrUS6XUSqV8Oyzz+KGG27ATTfdtNHZAtAlC1vBGPO4tfa93YpPuz8wxjyUku4UgBVrbcnz8yKAaQDzgdNnAFw2xizR0pYQQgghhBBCCNk+GGNw66234sUXX8QLL7yA73//+6hUKhudLULIOlEoFLB7927cfPPNuOmmm2CM2egsAcgo2BpjHgDg22I6Y609r74fNMb8L2i2hl2x1n62syxmYtKTplAEMFZ1g3AEwJy19qD8aK0tVW/GWEochBBCCCGEEEII2YIYY7Bnzx7s2bNno7NCCCEAslvYngFwAsC91e/zABYdsVb4qPpsASwhsXDtJUcQ9m9bVGEAYKFFOEIIIYQQQgghhBBCCNkQMgm21tpzxphpJKLtA9baK4GgJTRaux4BsNda+42c+WzFcDXt1DDW2gVjzJg+WHWnsGytXe5R3gghhBBCCCGEEEIIISQT7fiw/Zi19liLMJestY+q7+eMMR80xtxjrX2yg/x1g1L1/0j1/7wx5kH1+0HULYcJIYQQQgghhBBCCCFkw8jqw/YjAKYyBG2yvLXWPmqM+U0AGyXYNlB9Mdlsu+dVLXGnAOCNb3xjl3NFCCGEEEIIIYQQQgghQJQx3F0pbhA0DwSOjwSObxqstfPW2iPW2iO33HLLRmeHEEIIIYQQQgghhBCyBckq2GYiRdQd7WY6AYZbHF9ZhzwQQgghhBBCCCGEEEJIx2QVbIdzppP3/FYUEbbiHVFhCCGEEEIIIYQQQgghpG/JKtiaThMwxhyAx7dtl1lGCwtba+1yj/NACCGEEEIIIYQQQgghucgq2C4aY/6nDtP4GIDPdHhuVhYRdrtwFxJBlxBCCCGEEEIIIYQQQvqaTIKttfbjAP6pMeZd7URujPkggAkA8x3krR1OARgxxvhE26MAHu5GIsaY+4wx81eu9NpgmBBCCCGEEEIIIYQQsh0x1tpsAY05CuAkgKPW2t/OEP43kFjXTlprP5srl0l8FwAsW2snU/I3ba2dSDvWDYwxLwL4i27GSQjZdNwM4PmNzgQhZENhP0AIYT9ACGE/QAjZaa19ezcjzCzYAoAx5kEkIuwZJOLtEwCK1toXjDF7kLglGAcwXf380ap1bmeZS9K7C8AY6i4PlpG8QOyktXbBCT+OxKL3Auq+a2c7TT8lX2estUe6HS8hZPPAfoAQwn6AEMJ+gBDCfoAQ0ot+YKCdwNbaWWPMMoA5AB8HYKsZ08EMEkH1PdbaJ/Jkrl2x1Vq7BGApT5qEEEIIIYQQQgghhBCyUbQl2AI1UfRg1d3AOIAjSKxZS0gsbxettY92MY+EEEIIIYQQQgghhBCyLWhbsBWq7ggWWgbcmvT6JWqEkP6H/QAhhP0AIYT9ACGE/QAhpOv9QFs+bAkhhBBCCCGEEEIIIYT0jijtR2PMoV4m3uv4CSGEEEIIIYQQQgghZDORKtgCMMaYj/Qi4V7FSwghhBBCCCGEEEIIIZuVVB+21tpzxhgYYx4HcMJa+2TeBI0xdwL4GIAZa+35vPF1A2PMOIAJABeQvEAN1trZjYqHELL+dLEfmAJwEMBo9W/JWjvTvZwSQnpFr8bxar9QrL64lRDSx3SzHzDGjAF4CMCKOjxjrS3lyyUhpJd0cV1wFMBd1a/DSF7U/jD7AEL6n+oYfrzTtXw3+pGWLx2rirbHADxkjDkB4CSABWvtN9rI6O0AJgEcB/AUgGPW2ivtZLRXVDvR49baSXVs3BizaK2dWO94CCHrTxf7gRMA5qy189XvwwBOG2MuAzjAyRkh/UuvxvFqPzCHZB5ECOljutkPVDdqpgHcK+N/tT84UT1OCOlDurwuWNRijzFmFMnaYJLrAkL6l2o/8AiAUznOz9+PtPPSMWPMXiS7xEcBWADLAIpIFGO9czyCuoXZ4WrYOQCP9ItQK4SEFGPMIoDTIrysVzyEkPWnG+232ikXrbXLgfjPcPOGkP6lV+O4MeZBJALNpLV2IXdGCSE9o4vrgnEkG7gHneOnAYxba/d1KcuEkC7TpXVB0DJPLO+1kEMI6Q+qGy2jSAxVH0Kyhm97k7Vb84lWPmwbsNZesdZ+1Fp7B4D3AFgCYAAcAfCLAD5c/X+kenwJwIS19k3W2k/0oVg7BWAlsLu1iIy7392KhxCy/nSx/U74xNoqpwCMVy1rCCF9Rq/G8eqijG4QCNkEdLkfOI1ko8YXD404COlTutgPjCN5sriJ6nphrKMMEkJ6irV2xlqby8iim/OJli4RQlhrLyIxEd7MTCKxEPZRBDBmjBnO8LhCt+IhhKw/3Wq/x4wxowEr2rPV/0dA8YaQfqRX4/i4tXbWGJMrc4SQdaEr/UD1iZthn/UMn7gjpO/p5nxgGkCT6FN1ixBKgxCy+elaP9KWhe0W5AjSC1LCrFc8hJD1p1vt9wwSdzA+hqv/VwK/E0I2lq6P49XddYozhGweutUPHE+JhxDS33SrH1hA8nTdoucJuxPwW+ATQrYGXVtXdGxhu0UYRvKmxlZh1iseQsj6M4wutN8W/mnvqoYJuUwghGwsw+jiOF5dnIUehSKE9CfD6E4/MIbqgqy6cSMcBN8OT0i/M4zurAuKxphpJO/xuWiMecBauyAvcbfW8ok7QrYuw+jSumK7C7ZplKr/QxZz6x0PIWT9KVX/522/R0FLO0I2K6Xq/3b6gSlr7WwP8kII2RhK1f9Z+oFRAMvGmAd1P1B9DPqsMeYwRVtCNiWl6v9M8wFr7bwxpojEp/VpY0wJwL004CBkW1Oq/s/Uj2x3lwiEENJTjDFzSCxtmt4SSwjZelTfDk/LGUK2N2NwfFdaa4tI+obN/g4QQkh7zCNp+8NIhNvRjc0OIWSzQMGWEEJ6RFW4OQZggtY0hGwbxmg9QwipCrQuiwCOenxaEkK2GFX3B8PVt85PIHkJ2SiAC9U1AiGEpELBNuw7Qo5nfUlQt+IhhKw/wy2Ot91+q4uxOSSPPvHlI4T0P8MtjrfsB/iiMUI2PcMtjmedD4TG/VL1P19GTEj/MtzieNb5wCVrbc3S3lo7j8SXdRGJpW0oHULI5me4xfFM84ntLtgWEfYdMaLCrFc8hJD1p1ft9zSAaVraEbIpyN0P8EVjhGx6urkuaAUfiSakP+lWPzDj82VfNeI4XP16rP3sEUI2AV3TF7b7S8eW0UL5zii2dCseQsj60/X2W/Vbe4JvgCVk09CNfuAYgAljzIRzXCZmD1V/K1lr6dOakP6jm+uCVoLsmcy5IoSsJ7n7geoGbin0u7W2ZIx5GIm1LSFk69E1fWG7W9guIjyhugtJQa9nPISQ9aer7dcY8yCARVesNcaM0l8VIX1L7n7AWjtvrZ201k7rPwAPVIM8XD1GsZaQ/qRb84GTSF465kPi55N3hPQn3ZgPlBAWazRPZc4VIWQz0TV9oSuCrTHmkDHmfmPMB9SxA8aYe7oRfw85BWAk8KbGowAe1geMMcMBwaWteAghfUW3+gEYY44CKGp/VYoxcIFGSL/StX6AELJp6Uo/UJ0DlKpzApdJAPN0nUJI39Kt+UCxxTxhAgCfxCNkE7Me+mBuwdYY81tIFOJZAMfluLX2IoDLxpiP5E2jV1QnSw8geTFQjRTR5TSAxaoT8TzxEEL6hG71A8aYMSRvfx0xxkypvwerVrcP8eVjhPQn3eoHCCGbly73A5MATuiXClXDjQKglT0hfUoX+wHpAxrEnKrAI67TSt3MOyGk6wwj7IsWWAd9MJcPW2OMPOa3z1p7xRjzQSej54wxRWPM/dbaT+ZJq1dYaxeMMSVjzAkAF1D3KeH6oAMS0+Yj8PidajMeQkgf0aV+4InqeaHddIq1hPQx3ZoPCNVNnIdQfzT6EWPMNIA5buQS0p90cV2wVG3vjxhjVpAs+IrWWvqsJKTP6UY/UBVsDhtjTlT7Av1G+BM04iCkP6kaWt2FZP4+CmDUGHMWyVr+pDOH77k+aKy1nVxHcrIxH7PWflR9/4C19rOecB+01j7acUKEEEIIIYQQQgghhBCyDcjrEuGC890Ewh3ImQ4hhBBCCCGEEEIIIYRsefIKtlnNc/n4DyGEEEIIIYQQQgghhLQgr2C7zxhzj/reJOAaYx4HcDZnOoQQQgghhBBCCCGEELLlyeXDFgCMMb+LRKhdBLC/+n8YwASAYwCWrLXH82WTEEIIIYQQQgghhBBCtj65BVug9ia1j1W/WiS+bEsAZqy1j+ROgBBCCCGEEEIIIYQQQrYBXRFsa5EZcwDAKICitfZi1yImhBBCCCGEEEIIIYSQdaJqoFoCsAKgZK1dWre0uynYBhMx5h5r7ZM9T4gQQgghhBBCCCGEEEJyYIw5DeABa23JGDMK4Ky1dt96pZ/3pWNZmVmndAghhBBCCCGEEEIIIaQjqpa1i9baEgBYa4sADq9rHrrw0rH7AUwCGAkEGQYwaq0t5EqIEEIIIYQQQgghhBBCeogx5jKAAyLYbkge8gi2xpjfADANYAmJTwdvMAD3W2v3d5wQIYQQQgghhBBCCCGEBDDGjAE4bq0NPulvjBkHMAHgAhIjU1hrZ9XvwwAuAzgIYAyJ3jmmw6wHAznP32+tvaNVoOrLyAghhBBCCCGEEEIIIaSrGGOOAngEwKkWYY5bayfVsXFjzKK1dqJ66AiAIoBha+1CNQyMMXPW2uneXUEjeX3YXsgYjj5sCSGEEEIIIYQQQgghXcMYc6L6gjAgEVrTeATAA/qAtXapGs+UOjxqrV12whyrWt+uC+vy0jFr7cX1SIcQQgghhBBCCCGEELI9sNbOWGsnxRo2RFWQXQn4pV1E4vIVAFbgd/u6gsT6dl3IK9ieMcZ8oFUgY8zJnOkQQgghhBBCCCGEEEJIJ0wibIFbBDBWtaAtourb1mEEiWi7LuTyYWutPVf14/CbSNwjFNGsQg8jcdJLCCGEEEIIIYQQQgjZ5lRfEPYIgHsDVq867INI3qOVx+XqEYT924qQe8Rau2SMKRpjRq21DQKvdpPQa3IJttWXiT0Bv/KssXnSIYQQQgghhBBCCCGEbA2stcvGmCUATxhjgqKtMeYEgHEA9+ZMchh+VwduGCB5F9d09b+8rGw+Z/ptkUuwBTCHxFnvkrX2SiiQMeZMznQIIYQQQgghhBBCCCFbBGvtTFWQ9Yq2WqxtZYWbE4l7pJqvBWPMSNWyt5bXHqbfRF7BdtFa+2iGcPRhSwghhBBCCCGEEEIIqRESbddRrA3la10tal3yvnTscpZA1tqP50yHEEIIIYQQQgghhBCyxahar4p7hOGNFmv7gdyCrTFmT6tAxpgP5EyHEEIIIYQQQgghhBCyBVGi7UX0TqwdbnF8pcvpdUwuwbbqDuGYMeaeFkGn86RDCCGEEEIIIYQQQgghHVJE1UethxEVpi/I5cPWGPN49eNdxpi9CF/YaJ50CCGEEEIIIYQQQgghWxPlBuEAgIcQeBFZDpbRwsLWWrvcpbRyk/elY3chMVd+OCXMzQDuz5kOIYQQQgghhBBCCCFkiyFirbX2cPWQ90VkOVkEMBP47S4kgm7fkFewLVprj7UKZIw5kDMdQgghhBBCCCGEEELIFsIj1gJIfNp2WbQ9BeCEMWbUWut6CDiKsJi7IeR96dhkxnAP5EyHEEIIIYQQQgghhBCyRQiJtYJ6EdkTxpjhDFEOI+Cntir4PgBgzsnDUSQGqQuZM74OGGtt7xMx5pC19nzPEyKEEEIIIYQQQgghhPQ1xpgxACestRMZwp4AagKu+9uDSFwajKH+Dq1lJO/ZOukKscaYcQATAC6g7rt2tuML6RHrJdg+bq19b88TIoQQQgghhBBCCCGEkE1MJh+2xpiHAey11v6KOnYvgI9lOH0YdYWbEEIIIYQQQgghhBBCSICsLx07BiB2jq0AOAxgFsCllHMN+sxxLyGEEEIIIYQQQgghhPQjmQRba+1Bz+ESgCVr7UdbnW+MOdJmvgghhBBCCCGEEEIIIWTbsV4+bPdaa6/0PCFCCCGEEEIIIYQQQgjZxKyLYEsIIYQQQgghhBBCCCGkNVl92Hoxxtxurf2G5/gHkbxo7DKAM9ba83nSIYQQQgghhBBCCCGEkO1ALgtbY8xJa+3xFmHuBHDYWvvJjhMihBBCCCGEEEIIIYSQbUCU83zTKoC19hyA4ZzpEEIIIYQQQgghhBBCyJYnr2Db0jzXGLMHwETOdAghhBBCCCGEEEIIIWTLk9mHbdW1wTQS37Qi1B4xxjweOGUEiWXtKIDJHHkkhBBCCCGEEEIIIYSQbUFHPmyNMVMAfgvABQCPpgS9BGDBWnuxs+wRQgghhBBCCCGEEELI9qHjl45VRdt7W710jBBCCCGEEEIIIYQQQkg2MrtE8HASwN5uZWQz8b73vc9+/vOf3+hsEEIIIYQQQgghhBBCNhbT7Qg7FmyttVcAfLyLedk0PP/88xudBUIIIYQQQgghhBBCyBYk2ugMEEIIIYQQQgghhBBCCEnI4xKBENIDlpeXsbKyAgAYHx/f4NwQQgghhBBCCCGEkPWEFrYbyOzsLCYmJjAxMYHJyUlMTk5idna29nuxWMTCwsIG5nB7IffDGANjDA4fPozp6em2wxw8eBAzMzMd5aFUKmFubg6Tk5Mdx0EIIYQQQgghhBBCNi8UbDeAhYUF7Nu3DwBw+vRpLC4u4vTp0zh9+jSmpqYwOTmJYrGI6enpmqVlv7G8vLzl0n/wwQexuLiIsbExDA8P4+zZs5ibm/OGEctXXxggEV47YXh4GHNzc5iamurofEIIIYQQQgghhBCyuaFgu87Mzs5icnISTzzxBB588EEMDw83/D48PIzTp09jZmYGS0tLG5PJDPhEyq2S/sjISKZw7r0TLly4kDt/+/fvz3U+IYQQQgghhBBCCNmcULBdR5aWljAzM4PTp09jbGwsNeyJEyfWKVedUSwWt3X6hBBCCCGEEEIIIYT0Agq268j09DTGxsZw9OjRlmFHR0f79rH4+fn5bZ0+IYQQQgghhBBCCCG9oiuCrTHmkDHmfmPMB9SxA8aYe7oR/1ZgYWEBxWIRx48fz3zOxMRED3PUPqVSCfPz800v2dou6WehWCxieXm5r91ZEEIIIYQQQgghhJD+ZSBvBMaY3wIwBaAEYBHAZwHAWnvRGDNsjPmItfYTedPZ7CwuLgJA7WVVWRgfH/c++r+wsFB7GZm83OrBBx+s/V4sFmsvLjty5AgWFxdr55RKJTz11FM4ceIERkdHG+ItFotYWlqq+XBdWVnByMhILfz8/DyeeuopjI6O4syZM5icnKyd64tPW8KePXsWMzMzDWHazWe76W8E09PTWFpawtjYGM6ePdv0+8zMDA4ePAgg8XU7PT2NhYWFmu9iqScaKce0e9cJxWIRJ06cwPDwMIrFIkZHR/veFQchhBBCCCGEEELIVieXYGuMeaD6cZ+19oox5oP6d2vtOWNM0Rhzv7X2k3nS2uycOXMGANoS2oaHh5t83U5PT+Pw4cMN7hKKxSIOHz6M06dPY3R0FKOjozh79iwmJydrVqnHjh2rvSRrYWEBhw8fxuXLl2txlEqlmn9dzfz8fE00FlF4ZmYGy8vLTWE1s7OzDSJyqVTCgQMHcPr06Zpo3W4+20l/o1hcXAy+MO7w4cOYnp6u3TvffXBZWFhoee86YX5+HnNzc3jiiSdqcU9MTGBmZoaiLSGEEEIIIYQQQsgGktclwkFr7YettVeq360boPpbPnVpCyCWsCKOdcL8/DzOnDnT5Nt2dHQU09PTDRanAHDXXXfhzJkzGB0dbUh3fHwcpVIJy8vLtWNnzpypWdZqpqamvMfTKBaLmJuba7AOHh4extTUFGZmZprCt5PP9aJUKmF6ejr4JwK8j/379zcdW1hYwPLycsO9O3r0aE2oBtB0X8XqtdtlIi+/02ItkAi2s7OzHcdLCCGEEEIIIYQQQvKT1yXCBee7CYQ7kDOdTY8IY6VSqWPRdmZmBg899JD3t2PHjtUex9duF0qlUpMbBklf3CoAieh76tQpTE5ONoV3heAsrKys1ARH4eDBg1hYWPCGz5rP9WJ4eBhzc3PB34vFYqpo6/LUU09577tYGfsolUpNFtbdKJPJyUlMTU0F66F73wghhBBCCCGEEELI+pHXwrbJojbAwZzpbHqOHDkCAF6ftGmIZW6xWESpVAoKacPDwxgeHm7ygZpVeBsdHcWxY8cwMTGBffv21XyrAu353ZW4Ll++jPHxcSwvL2N2dhbz8/M4e/ZsUGjcDgKh3Mus9KJM5ufna9bDLk899VTX0yOEbBATE8kfIYQQQgghhJBNR17Bdp8x5h71vUnANcY8DsBvQrgBGGNGjTHtKZBdYKK6cPb5Ng0hLwGTz0BrlwrtCsKaubk5nD17FlNTU1haWsLk5CT27dvX0eP3CwsLOHjwYM2Fw9TUVK0MtiPHjx8H0CzayovX1ou5uTmMjY15xWC5z9tBPCdky7O0lPwRQgghhBBCCNl05BJsrbUfB/BRY8zjxpiPALjLGHOPMeYDxpjfNMZcAlDqsxeOjQE4bYyxxpjLxpjTxpieK1RHjx7F6OgoTp48mfkc7d5ARLQ0K800C9xWiFg3NjaGEydO4MKFC7h8+TKOHTuGe++9t+X52tXBwsICJicncfr06dRH77tJyNVCvzA2Nobx8fEGH76zs7OYmppq24I5D8vLy970isUiisUijh49um55IYRsIPPzwN13Z/+r+tomhBBCCCGEENJ78lrYwlr7HgBPAJgFMANgEcACgOMAPmqtPZ43jW5jrd0HYJ+1dp+1dtJa27lZahvMzc1heXk5s7h44cKFmtgpQmzIglaO33XXXR3lTVvzCuLHdWRkpCld17WB/v3hhx/G+Ph4k/9V95w8Imta+v3K5OQkJiYmMD8/j/n5eYyOjqb6ye02cn99ls5yL06cOLFu+SGEbCCf+hRw/ny2sOfPJ+EJIYQQQgghhKwLeV86BgCw1s4CmDXGHAAwCqBorb3Yjbh7hbW2tN5pjo+P48SJE5icnMTZs2ebBE3N7Oxsk5/Rubk5nDhxAg8++GBT+IWFBYyNjeWykJybm/NaX46NjWFkZKT2ff/+/U2WvtqKtlgs1nz2as6ePdtwXqcvzmqVfj8iFswbacF6+vRpAM0uD0qlEh5++GGcOHGC7hAI2U4cOgR88Yutw919d48zQgghhBBCCCFEk9vCFgCMMYeMMXustRettU9Yay8aY/YaYz7Qjfi3Eg8++CBOnz6Ne++9F7Ozs02/l0olzMzMeP2MTk1NYWxsrOGxeiARSE+ePFkT5IRLly6l5sUVPZeWlpr81UoYLYgePXq09hI0IBEjtUA7Pj7eZK27vLxcs+wslUoNom67+WyVPpBYsx482Nm77rIKya3cU2jEmnZ5eRmlUqnlC8jaLZMsLC0tea16Jycn8dBDD3k3AgghhBBCCCGEEELI+mKsbXpPWHsRGPMbAE4AWLTWvtf57U4A91prP5ErkSSuMQDHrbUzKWHGAUwAuABgGKhZ/+owRwGU1KExN0wrjhw5Ys+cOdPOKU2USiXMz8/XfNqKODs6OoqHHnoo1WJ0fn4eFy5cwP79+wEk4p4+p1Qq4YEHHsDS0hJKpRLGx8cxPT2No0ePYnZ2FidPnsTy8jJGR0cxNjaG06dPY2lpCSMjI1hZWWlwL1AqlYIWvXNzc5iYmMDw8DCmpqYafp+ZmUGxWKyJtKOjozUfriLeTk1NtZ3PrOlPT09jaWkpaDXsY3Z2FouLizWxeWxsDEeOHGkQONPC+Mr9xIkTNUvq2dnZJrEdQMN1d3LvslAqlbBv3z48+OCDmJiYwPLyMi5duoRisYjp6el19aNLCFkHjEn+h8Z4sZptx8I2S1hCCCGEEEII2X6YrkeYR7A1xtxvrf2kMeaDAJZDbhAkXI50jgJ4BMApa+10Spjj1tpJdWwcwIy1dkIdGwWwIi4RqufdlSYEu3RDsCW9p1QqYWlpqS9epDUzM4ODBw/i2LFjTe4jlpaWMDMzgxMnTjQJz91CXgTXyhUHIWSLQMGWEEIIIYQQQtaLrgu2eV0i7AMAa+2jLXzWdpRxY8wJY4yYELZ6q9QjAB7QB6y1S9V4ptSxovZfa61dAMBnwbcgxWKxL3yyLiwsoFgsYmpqqslyenR0FFNTUzh9+nRPX0C2uLgIABRrCSGEEEIIIYQQQvqcvIJtVvPcvR1Fbu2MtXayKqoGqQqyK4EXiS0C8FrlKkpVlwtkC3HmzJm+ESj1S9tCv7cKk4elpSW6PSCEEEIIIYQQQgjZBOQVbG/OGO6OnOm0YhJhC9wigDFjzLAxZswYczkQrtSTnJENo5MXc/UCeUnawoJ/36FYLNZcIvQCecmb+BMmhBBCCCGEEEIIIf3LQM7znzLGnARwv7X2RfdHY8weAKcB9O5Z74QjAE4FfiuqMEU4bhOMMcNA4iqhV5kj68/CwoL3ZWkbxeLiIhYWFjAzM4P9+/c3vCAOAE6fPp36ork8FItFDA8P94UvX0IIIYQQQgghhBCSTi7B1lr7qDHm3UhcCiwgEUQvAdgPYAzAOIB5a+1nc+c0nWG0tpAdttYWqy8i0zwEIPMLx8jmoB/FyaNHj25IvsbGxnD5csiwnBBCCCGEEEIIIYT0E3ktbGGtnTHGLAL4GBLXBEIRwDFr7aN508hJqfp/BACstfPGmAerxw8CuGCtnd+YrBFCCCGEEEIIIYQQQkid3IItAFhrl5C4HIAx5oC19mI34u0V1trZds+pvthsCgDe+MY3dj1PhBBCCCGEEEIIIYQQkvelY030u1jbKdbaeWvtEWvtkVtuuWWjs0MIIYQQQgghhBBCCNmCdF2w9VF9MVmvGW5xfGUd8kAIIYQQQgghhBBCCCEd0xWXCMaYQ6j6iPUwjOQFZL2kmJL+iApDCCGEEEIIIYQQQgghfUsuwdYYcwDAWYStWwWbJ50MLKfkYRgArLXLPc4DIYQQQgghhBBCCCGE5CKvS4QTAB4AsM9aG4X+AJzLn9VUFgGMBn67C4mgSwghhBBCCCGEEEIIIX1NXsH2KWvto9baKy3C9dqH7SkAI8YYn2h7FMDD3UjEGHOfMWb+ypVWl0sIIYT0GfPzwN13J3/nz29wZgghhBBCCCGEhMgr2F7OEsha+/Gc6QCJawOvn1prbQmJpe+cPm6MOQqgaK1d6EL6sNY+Zq2d2rt3bzeiI4QQQtaPT32qLtQeOgT80i9tZG4IIYQQQgghhATI+9Kxy8aYPdbaF9ICGWM+YK39bLuRG2MeROLSYAyJy4NRY8xZJC8QO6mFWGvtgjGmZIw5AeAC6r5rJ9pNlxBCCNmSHDoEfPGLG50LQgghhBBCCCEp5BJsrbWPGmPuN8YUrbVPpgSdBtC2YGutnW0z/BKApXbTIYQQQgghhBBCCCGEkH4gl2BrjHm8+vEuY8xeJJavPkIvBCOEtGJ+PnmU2ccv/RIwNbW++SGEbB7uvrv++fz5xMKWEEIIIYQQQkhfk9clwl1ILFrTXup1M4D7c6ZDyPZF/E66Qov4oqRgSwjJAv3WEkIIIYQQQsimIK9gW7TWHmsVyBhzIGc6fYEx5j4A991xxx0bnRWy3fD5ndSWc4QQovmZn0n+018tIYQQQgghhGw6opznT2YM90DOdPoCa+1j1tqpvXv3bnRWCCGEEEIIIYQQQgghW5C8Lx27CADGmEMAjgBYsdZ+tnrsAIAD1tonrbVX8maUEEIIIe1hbfLXDsYkf4QQQrYn7tjBcYEQQghZf/Ja2MIY81sAlgHMAjgux6ti7mVjzEfypkEIScdaII4b/9oVaQghW492BdtOBF5CCCFbCz0WcFwghBBCNoZcgq0xRlwd7LPWjgA4pX+31p4D8Igxhi8dI6SHuJNpTq4JIYIxQBRl+6MFFSGEEKA+dnBcIIQQQvxow7lekPelYwettR9W35skImvtFWPM5ZzpEEJaIBNroHcdBiGEELIZ2SwbmXz0nBBCCCFkcyDzy17N3fK6RLjgfA9l80DOdAghhBBCCOmIzSDYboY8EkIIIYSQOtpwrtvktbDNOq08mDMdQgghhHQRLQ7Rqo9sB3o5oe4GfDqGEEIIIYQIeaet+4wx96jvTQKuMeZxAGdzptMXGGPuM8bMX7lyZaOzQgghhORCBFta9RFCNhLfi1N7/cc+jxBCCCH9Ti4LW2vtx40xv2uMmQGwCGC/MaYEYBjABIBjAJastZ/Mm9F+wFr7GIDHjhw58kDLwIQQQkgLeiaW2sRcNs1iT/8meZBjtLglhKwXvfb/5ksPYB9HCCGEkP4mr0sEWGvfY4x5EMBs9dCDSHzZlgDMWGsfyZsGIYQQshXpmlAxPw/7qU/Diiv5808Dhw5lFmz1MREzao+OV8VfdPFxbQrChBDNerqroOuJ9WU7PsXBMY4QQkg36MrUyFo7a62NkPiqfQ+Ag9baEYq1hBBCSDoiVLT717AY/PSnYc8/XRdsDx0CfvEXO8qPPJ7cqwX2dly8E0LIdmW79fnb7XoJIYT0jtwWtgBgjDkEoGitvQjgYvXYXgD3Wms/2400CCGEEFKnyTr30CGYJ59otFKrWpJlsVzTYcQ6KIoAGDG57UKmQes2QgjZbvT7C/+6Ccc4Qggh3SL30GmM+Q0AywBO6+PW2isALhpjPpI3DUIIIYQ0U7PONTb568BSt6X1LiGEEC/tvDCNVpeEEEIIaYdcFrbGmPurLx4rIhFtG7DWngNwrhpuS7x4jBBCCOknEktbg9iaJj+znfiwbTpuDUzd2QIhhJAqWf2Q80VnhBBCSH+Sx5WNXjf14kmSvC4R9gGAtfbRFuE4PSGEEEJ6gLXoqZwqcXMgJ2TzsJn8aPo2jzbTS5uyPO7Px+QJIRtJ1jFhM/W9hHSLrr0EugfkFWyzTgX35kynLzDG3AfgvjvuuGOjs0IIIYTUMLDJJCPyCwdR1P5kXdwjxJmHekK2KfPzwKc+5f/tl34JmJpa3/ygvxcfraA1KiGEdJcsYwL7XrKdyetrvVd+2vMKtjdnDLclFE5r7WMAHjty5MgDG50XQkh28lgabcWd5m5bXm3FMtqKZJ2sb1aRh/SOzWStGaKnFo7/8dPA+aeBQ4cAqA2U8+eT3zdAsAU234ueJK+0RiVun8N5hp9u9c0s3+1BqzGBfS8h/UdewfYpY8xJAPdba190fzTG7EHyMrK5nOkQQkjHdCpCbdWd5m6Kclu1jDYj1gI2xYetfJZ75VvoVSpJuCgCCoXqebZ6goqLi7vtxWYQ8lsJF91eiDa1gUOHgC98IcmDAUwE4O67u5tol+lU7GH7J71G9zmcZ4TpRt/cy/LtpI9h/9L/bMZNXNYrslnJJdhaax81xrwbQMkYswCgCOASgP0AxgCMA5i31n42d04JISQHnVgabcad5tAkyp2odMvyajOWUT/SDWsiC9MQh7y9XHDvVaXSvNCTN5mnTca5eN6e9Lu1prshEaIb1yDtphaXqTaKaHP1iZ2IPevZ/nslCnTzHmWNq5M0t7vAIG1sPdtUN+rcem9u5e2be1m+7fYxnF9sDjbDJq6G9YpsZvJa2MJaO2OMWQTwMQCT6qcigGMZXkhGCCGkS/gmUZyotM96WQ+4CyXxNQt0ZhHuCratJtR6oRdF9bDivzaKUBOj+Ljy1iRLXV+ve55XoMoiXHCjqpF2xZ6NEM+249jFcXtjyFvntnOdDdFOH+P2L3p82u4bGP1Gv2/iarbSmE22H7kFWwCw1i4BOAIAxpgD1tqL3YiXEEJI+7iTKE5U2me9F13aYq/T++Va2AKNLw8TtEDr/jembmVLtgf9IjBQoCI+2hEFer3RliYYZc1jp8IVWT/yCFEcP7uL7+kjkg237LL0KVnC8B4Qsr50RbDViFhrjLkdwIq19oVup0EIISQ7nUzastJvi8puWmCsp/VAt8rRl2dtOZsFcaVQ+3N82PryutUsX3ol/PRrOWWt671sD/3Wl5DNRy83H7ihQMjGwDbXGb3oD7kZQbY7vvWBnr/2Yp6cS7A1xnwMwAEAKwBOW2ufNMbcCWCpeuycMcZaa4/nzyohhJBO2IwvB+gELqjD6DoQpwivItLqz60m/Fux3Hu50NlK5dSvtJpQ56UpLrWp0fCb54V9afSDpfNmp52Ntn51BUEIId0gtInfilAY9oNku7MRT6XltbB9CsAFa+0j6tgSgFPW2l8GAGPMXmPMR6y1n8iZFiGEbEq6IZj2wrdjN3cB+8GPFSeSjbgvHevksUJrE1cLBrapDm51n7bdtrDequXUj4R8eXdr46oXgq3kr1t1rluPv/rOydJ/tFPebj46bSu9fAFY6Jys5dEr1uPFbHn7rrzl7Z7fr08qEKJZD2MJtgVC1p/Q+qBXa+G8gu0+LdYaYz4IYBjAjByz1l4xxlzJmQ7pERvp72u70naZqwUfy3Nz0o2XWAC896Q9Qn2N69dW/3f/jAEs6v5xWQfJeiMbD1KXQ/VaRB3tB1pPnsvl5LxCof08uGNvmmCb1k7SxvCQ78tO52mtRLK841GWcNuhz9jop1e2SzkLnA+RzUKv2+Zmagvd1hu4HibbibyC7WXn+wSAosdv7TZ4GHdzQn9f60+nZc7y3NzkfYkFIZ0QsqzOKthGEQDDIZxsHNpS3Jh885ZO+mH9QkCX2rFqGxHdtqntROnxuHH6XhrZ6djvS0/yYkw4TIh2xqN2yzsUtt17psP32jBB4tf3ab3nab30t+57YWU34ur0vujzKNqQfqeXbbNVX+x7f8VGtZc847Z7Hb6xlH0B2crkFWzdofYYgDlPuC3RhIwx9wG474477tjorHSVXg0m20lk6uTRv04E24Y0Qo9gYntZWxCyXWnoE6xJXg6m+oNKJfkTtNVhFCUWh/Jd/pfLyZ8+FsfJl6jst170WTOmsdGPEAOt+2xXIMxCqwVDNx93325oq/BQfatU6mWcVicH2pz5psXlCrZximCbZ06UZ57mOy/v/Mx1t+KjnTRyuUSYnwc+/enkPJkXGQv8/u8lx37q7ppbl1r81gDHjwMfnmqIKrgxPj+P+NMn63Hrc2ID84vHgV+Z4sZ6G/DJI0J6i0/o3Eg6HcfcdbNvzat/b5e0+SCF4O1Lq6e5Qsf67qVjAPbLB2PMvUjcIZzUAYwxhwBcyJlOX2CtfQzAY0eOHHlgo/NC+ot+eiStn/JCCKmT9iKkdtustXWByhikCrZRVA8PtC/Y2tgkk9YuTfY3etEgechS5u2EA8LhRODaCv3yevjM1GlVKslvrmBbKDSWp7SHUFz6907y5Vq96rSNbbT+3er01Tzj058Gzp8HDh0KBjGwiHQHdv48YCyiX2kUbHUf2cDJTwNPPw0cOtQQj4WBefo8osgi+tWpbWWo0A1EDMlradtNWt5DtUHQxIc+hPj+7teDtGttd8O0CbUZEX3oODA1lVzjZz6Tepr4tW9FwyZKBnT4ZJOlnoi19U2xvuBDH0rKK0BtE/GTrcuzE6SsokDZlqub7SZKKkkljoBjx4BfmfILkfPziD9VzWe1/JvCyP1pce3dJu09HN3YgPSNZ9wU2ty0O0b4No599WIzCrZLxphTAC4BOA5g3lp7HqgJuNMA7q3+EbKl6dajf80R1y10Gs5zjstvIT94ZHuiLaHc/yG28o5y1gG83QlgljJLmxR2Itg2PBZmqoKEx9XBwECjhYL7yHWjNW3988BAdTEdJZP2QqExrk4tbN10N5Ksb0JulddWZdBv/bJuB6G67gsjdaQXwpTvMcc4brSc1WOciKaSR9mA0H2ejmttrbN7oNOX+MvlJO2BgWq+y4OIjEX5apL2wEA1/NpgctIr2eqIFqb18bTzhJCf3TSXCELWtmhMXUBvdZ6uI1nHFNe9QCasgXnXIZgvfKH+crcIQKGauSeflGD1+vyz9ybPCDrpiGDrEynid90JLD3RMOeKY6D8sxOIYguU08tFi/xbeYxtF93PuI9vt/rcC1q6tghtEJw/n/y/v/siVk83SD7zGeD808lnYxMR7jOfSd0EsVUR1WTweGhtPXwWRIR0reLlN5Mx3Z5z/nzSqaTc79om4adPJmWcsqnUCTVxu8Xvtf/nngasQWV6yr9m/dRnkjCHDtXKP/LcgyzXDmyufs5XHtyA29x0o99M03Y2zUvHrLUXjTEPADgCYNZaexEAjDF3om5texLASM58EkII6YB2B6ytvqPci4VPO2UWmhR2IiQ1iK8pgq0rzrYj2AJAvM192Hbj8W8tcnayCOj2widLO2gVppt5kvrv1k2NFmxF2NR5CdV393O7LhEkf/KyMklf0uyHRV3ICtiHlHW7L1/rdMMhS13TeW3XKsbaKBEWmjYSjDduY5TQEXDF4HupnDzB4IaviSGqXvjz2fh/q46xLqH+M2RRn1YuaVZ23cS3eVTPhAXufBfwxS80Hr/7bgC2wbii23lLc2/i/iblnqkt1YRE23isutmhSZ7okQy1jtpWX/aIrP2NPHXUmJvkp2q/b9Tmme/61kUovOce72Gfb/CBKAbG3gl84YmuZqHlxll1E7M25v3MvQBiRIXAeVK3n1T5dMPECF67Zrv1c6Q/6cQNR9YxZtMItgBgrb1ijLkE4F5jzIq19rPW2nPGmBKAA9ba5t6eEELIuuGzqgQaLcb0YnKr+3JqZwDPEq4fBBvSOzZ64dGLTYasvtSlrfj6hVA7SutD0nyChaxLXd/LIcFWLGz19UkYYzoXzH3hmyzOozjZMBmoW9gWCkBUKCdlvLNzC9tU8ahKudwoKut8h3z9auHaJ/aE3Lfoc9rxWw1k39SSPGShZsGXQbB18+COaVr0b/gtihNhdqC5fsq9HxhIylYsr1td33ZB919ZLPslnGtVu15PKEg71Fb1jQGqB8vNxw0sbA+eQEiLL/SbPJ0AtKhzshlROxGAs6Eh962VZb6v35CnEbLWe9n0aMciX4fdqPFaP/Wh59bdykdambQSlGr/q5vvvs3NJBHZOW0RtwqX9SklQjYrbr+2GV0iwBjzWwCmAJQALAL4LFCzvh02xnzEWvuJvOkQQgjpDVmt7YCNF63S8C3Mt9vimPSGrCJ/WhifdXMWtGjZz+3PDevLa68e7W2Vpg7TaiHpXmvZEWbiOHGvIIvzOAYQR4lLhHJd7KlUgIE4QiGyHjGxGZ+rCclLVpccGun/OrHo7/Z9anf86Okj4JLGH/0+7D33wugnCKpinI0S+77IxEkenj4PvOtOr0ARVZ9u0NbWWQTvVrR8ND+Fdq2UQ3F0U2xyN1hCSDm69bcfBaDGze5EsM3S1tvFdcuiCW3M6A2gvPdRC7ZuvXJFeLferK011+G0+imbHqFrLRQan3YAOnMh4yPU1rK6vNIW9jIGRFGjRX+n7Vny0c457iZl6MkCiZvTZbJdCPVlWeetvk1Foe8E26o7BADYV7W0/aD+vWppWzTG3G+t/WSetAjpF7JMxCkUkc2GO0HuN19OdO1AtjudPNrVCrfNu+ObTErbbf+t8pomLrjWpa67BJ+Frf7d9bPsPhI/NJSed1d00K4UZBHelFcl2sn1xzFQsRGMjTsWbEPlEionVzAMiR6t7mnaBoF+YiNLfUyzyMtybta61+wWo9FarKluA4j/8PeBn/zp2jEtaFhEiI1JrNLeOYZ48heBcuM1xHHyYp/IWKBcF/d9wpVYGrp5btctSVZrHzkvj+Dbi/Gznb4het97EBmL+PFFb5t3w3cD9+WcTSjrQt1O4h76Ve2GAB+MK4OFbVobdOtKmjiv+6lQ/RLBViN1uN1yCIX3CcjaOrZRiA/UWcfS2hXIGwRT8csbEKOz9gMurfpwKctWgm3tGgOuX5rSTBF+Q3nLs4ZIi4tzfCJkGRv1b7oP8lnI+54qkuPu5oyec3bidqsVeaM8aK39sPre1J1UhdzLOdMhpGvknfi0EoI63QkN5kn5R/MddxeC7kKM4jHZzLhCRCcWWutR/7NY7oUW1vFvzSP+zCnAWMTVR28NLBCldFTWJAsGYwFjYc+dR/zOww39gRZmQmKQNz8pVhmhePq1j+lkoeP+nmWh0c9loPFZmfoePZZFXoMVKdoT+9r5Lc26NEtYHbf7u1yTFtPSSOtrrAXs/CPAZx5N2l6hkrTF8+cT339O2FgtgPMItu4xd1HgWuCFhF4ANStgjRaaQyKplKO2pmt1PTrutD4yLW6xUnPvR60uVwqwMChcd68nMcOLVxvTKBSA+OePwZYLKBz7IKIP11+cI3VEhP5K5CzeVj2CbaWQiIqrjeeL2wwtNrn5B8JCVEjUympBqMXaTqz6uykQ+u67XFvo2uMYwBNPALAdbRp1SqVSF229eObe69H3t7sJpo/7LFBreVYW5uIH3/dofKs09eaYLz3ZSNP9lC/PUmelf9OCabnc2PelpSf58W14uGWpy0RfRzsbRjp+d5yt+blWmwFp+fHF6atj7QhSWfLs+uru9zlNt/oosjVod6PRFWfbrU++zehetZm8gu0F53somwdypkNI18hjOaCtVkI7/Z1MKntlzUArw96SVfzPIkTIwMF71UieDZZQu+pUXE0LK/1CR/fvZPUNwlXBp/5G5fqFW4uGNy3HjlVM/K4xVD54HGYDBFux4mhHTF+vep5WB9LqVbuCbasy8JVrqzy753biTsGXD9dqNbTA1emup2CrBa5WddQXt/t70+I5kAcJoy3srE0e6QXqgkP86c+isvxVFMbelQh11sC8807g6NHm+2wN4nNPw9w7jtoUOfQSP2uAD04CH55qqkv63vvuQVqZh+qTb1xyBQuN77y0+ujWKxH/Q8KDW/f0b/o8V1RO7kE4H5qaBd30FOwDU9lfhNQqXtjaPdJjuQi2ITFLyGJJq4/7BJ5ePIbZDXztWM+lfcJSvZ5Vha6fvTcZh3xtJ9CeDGx40yXl4e84jmCtAaLYH/f587DvOoS40thXxMriMmt/nXXcTOu7svSpvvAbNdfU15wm2HbLFUZInA2FyyJCJwfiZKPuPfck8ao5mYwLiAcAxMBXz6sXuzXSai6i24pLq7HWN5czGS3BW827DSxMhjreTj/VLQtqH53OS3oJDaq6T7tjo/s0QNrmyUaOuXkF26zN6mDOdAjpKp1YHADdtTpwCebJ2enWj2Dq4w2/oX8n71uJToV297z1tgbdbLSa4Lu0muj3YiOjHcG96Rqqb+aNvvAEogEgFp+ZaoS27qI2RvIoXlT9iwFTblxw+KxYelG/fFabaWFrft3WwWJKxB63zLNaqQmhR9Dd71kWz/I/zYJUjkuc3RRsNa41kTzurwVTn2Dr8zPYJKQpy0pdd/V5+hx93VlEvqy4k/BQGbqCseTBPd8awNx5CNHjn0M0BNhqfR4YRINYE8dAdPyDKAxUqovk5OKigMAUn3sasbEw/2gqeWFZlH7vtYWt5F1bnsl5gF8Qc1865msTrRY67fTHaefo9uH2DZJXEdCbROWBMmJrEO100yzDAigPNrZNn+Wem1f9v9UiTdcPbdUqaei2HKrHPrFIrj1kIblRtCuq+NqxbwOlm2OTCLI+ccomUlNm4aqJQ4dgj/1isAyyjoVA7zfpfXlpypuz+WsrgPU87u/Dt+EnnwVtdZ5lvixji+unVn/OKmCHfnfbZ9oGWPBeHvvFZDCo1gN3Ez2xWLXJnsOhQ8CxY4GI0pH8daOepG1U+NIN1R/x1xy1IYJmaRO+zZtQXL1aL+n+rVd9rc4313z9Qx59J49xURbyCrb7jDH3WGufrH5vyqox5nEAp3OmQ8iWpWlAnJ8HPv3p+vfzTwOHDnknWQCQxSXCZqFXHV4vLfraEf9DC7+QJQTpHVnvm4hJWa0x0/AtZpJ7HyWCQ3Vh477kyHdupVJ/PFAWSmVHsC074pFeGBcKjQsp+V+u+mEUwQhAbREiOlNIAMtSnutdz9PuW7tt1yeauBsJWQQud0MhrW/SVmjdFGx9Vju6/w1tkui8N4iYKeKXbj9amApZCmra3VwJ5UF/Dlk4yvlS910BQixsy1EFBhEGBup+bV3Brfb/w1PAL081WICaQuB6fvbe7GYQbRJFdQEEaC3YhvuqRuEz7d658aXV4ayCrXejxXnzef2zRSzCndNfyV+h4Pc352tzvo0IoFEUTLOKDW1UhSzo3PLWx33/3Th7Nedp96kFfe/bztNP/kxyf5eeAGLA+4i+rz3H1aYUqGsAYJwNpdrv1XEzHgikh6oLEtV/RxFq9TA2zf1BU/4CZRUSobKOLzoOvfnmO692zHGJEBsAplqvA2XUDu58QTYDdR7yGC20vD7ns2/TJ7RBk7p59eGp5E+Iq38qrG3ThYMP2SD19VVp57pjFwDEJm4I37QmaWEIVIu7h/6as1g45nnKoFUb8s3L8s67NL3sm0kY35NGGneTu9P4e3Vvcwm21tqPG2N+1xgzA2ARwH5jTAnAMIAJAMcALPGFY4SEaWrkn/508piNPD5z6BDwoQ91HHe/4+5mdrvDS3ucqBWtxKV2hbq072lxtUqHlrm9Q2+o9FMZZ3mMTi/4XUGk3bgtTMNxrzjVpvjZzUlwiF4JxN2anGUVjbst2EpfWyj4Ld20SKUXMSJaSl58C1G3nrn9m5wrflfT8FkYhybWa2t1gSLN0iu0IaLz49sIkXDlOEI5jmovoBKXCRK3LjN3gSll7l0EVwrJS8quNwqU+tpFiHFxN1/0eTptnUdNVsG21gfMzyNe+AyC7h1Q3+hB9fHg2iPtnnMarNPkcWL9W/XxdG+Y808jftedaH4BjkFc7be0WKj7n5BAExJw9G81MUy9cM53vhbQQm24m3O1Xi8cgebNGv3nWhnXyvmT84hOfUZltPpCN/UYee2/NcnvT59DdOe70PSEmSKLiJn2W9rmW5qI5m5CuU+9pW1o+DYw0jawpB23Qvdfcg9coa+pbVf95tesjiMAJk7uw0Bj3G6datVv6Kc00vKg5/5BMdHTZkNlJtedNufxbZDofj90TSH0GOLWoSzCYlr8rhGO7z74cNOPnM2tTgVbvUnWqly6Kaq6bbZXpG385oXGORtDnnHRJ/a691HP/Vq92LYTcr/HzFr7HmPMgwBmq4ceRPIAQAnAjLX2kbxp9AvGmPsA3Hfw4B1daXAUWdLplbVl6N5t5P1o2I2vPh6NL36hMZA7acjgEmEzDAxpj8t2g1bWkZuddi3QQnG0egRoO+8Kt7KWaWdC74aLY9ReNBYNNC5qUhdZThhtXSttP5Tvpkm8s7jw3WdZeJXLze0pzdLLRU901qN/CqXVKg+uhZ+LKzZmic/ti0L31BdHLwRboFHc7MWGWRpZx/isYfRiuRPBNlTuunziuC4uuhshvu+aLPfO2sRyz41TfgtZ/JfLzfcylA9XsJX73VadP3ka8VefbnrRmqZJdLXhitXkkztwrjfMu+5EPHm8WbC9ZwLlisHqaqOABdSfJHBxXzqm25yuUyKAh6xp3Xum++Ss6P47TVR2j6/3nMdnme+1aD71GZjz52AP3Zk98kOHgA/9Ytfz7BJ6YqSVcNQQzuO+rB1xPsvmVav+Wde9dupBFvcQrSwafZ97PcZLmeh0tD/5UJ8u/0N9nvvZTcOHnh+J72q3D07LTwj9NJUrUKfNPfVmY608Ai+xrn33vCTTF1a/1yBEMA0HaiEkK63mjGl1zt2YS0vD7UNl7qPdtOgNeQBYXU2O+Z7Y6QZdidZaOwtg1hhzAMAogKK19mI34u4nrLWPAXjsyJEjD+SPK/nPTirMelgJ6LQA3o+Nope7mTrOTuNtdwc5a7iQkNZOOnknxHowkvhCjzqyffQnIbGpF+hHe12hZ7MLtqGNC59YKsJO1jLwTRbTHiHOcqwTfAvI0AI2LXzaQtS7wOvwmrSFVqtwnYhUesGfRbAtl4HVSgHlOEK8mhxfXa2HD1nYAvWJfKifj5XlroRzFwYiFMpxqU9ra3WrMp1vvcjX1yFWutr6VvfxIcG2djyOgHeOIfrdRW+56jj049nutfvK391slkVQyPJNwkTX6ukVCgAeexyrq8DqteaXf5XLrS2VXT/N+np0OZUrhcQybTW5D756GEXA9et1Fxq+snItByV/bj0ScV6fCzSKRHn7i6xilv7utkHJc00cjyPgnYdhH1+q5dO3ueLW+yhCzU1BVsvENHHcl3+9SNcbGqF+xxdGXjoWB87XIqK74Wdt/b5qK2WdR7n+rIKD+xe6fgQ2UuSlUvo62hVs5XOoz0ubA6dtNPvEdaEX84pO1og+IdLdzMi6GSnhfJZ+IeS+yyZmFPWfYBsSoEPhtgNZ5jLbVeRej7Wom4b75EjavYmiPhdshapI2yTUOn5utwSZLSVSdlLTbvp2bIyhgWi9BNssA2eWhWeryULLxWxgIAxOsjyTsbTFdIjtWOe2Gj4rANmd1wt21+pHFvuysE5bLIgAoCeQ7VhFZ61nvoUGkJ6Ou5j3CQSh466VkNsXhRYcOmyrMvAt4pL8tO/DVluIhfqlrP2aXkTI45N64qEtgH3WR6EFVoi0BVy3abXQ9C30fPXTZ+XWTl/rPioJ9O4pkrS4JX/uJo38d+u69AduGLHcca/bJ8C49bNQSP503L46LMKGFq588cmxtLJ0rSbc80IWVO49LpeBsi0gdkQR38Lc11/mwY3DtQpMs4Bzw7p51vdevrs0lLta2Pvy6W4E6vrvtjm3/H1irE/cc8NocVr6rtXVxv5U0l5bq9c/jYyVPgvaUJlUYgMTJQG1hamOO4rq42yo39NlkzZnc8UbXffdfqlTQvU6jayL6dBj76FjISEw7ViWeYlbD0OWwa3OrYVLsbAN5acmpMWNeQgZMbSTJx3ePaelNW/txWwpYTwbXWnrm3bDpZ2XNUzaei0t76H+JyTACrpvTevH9DFfP+TmN7OltCc/nRIaF+MYXRNs5Zhrkdwqzq0s4LbqR7e7gVlav55FW8uy6RR66auez7ltWeiFOwSgy4JtCjMAnlyntNaFLJ1FlkYXWmS7larfxTRfI2l3wiiDUpqFR6f4LKd8C3W38YWEK5d2J7b9xlYdANIspzT93r6y4utzfPfWvV4tLmRpdz7BNmv+3LyEcO9bFtHDNzluFa8+HspfqEzanTQG8+NYNbSzwPGJXSEBzJd/3feFxqStQEh88ZWxr/34xLfQuOFDNk70JE+EpCxjp540ZsEdT924tWsLdwGrr3VtrTlNES5DY6ibrq6L+lrlRSqCFipc8UZe8OVOot00JJx7b+K4vij0uRpxP+v+UD7XLGQLa0ABGLwB2LEjsZw0Bti5s265Kdel89vSwnZwLbGw3e2/VjevEkbX0Z07G8sjTcQRa08tquqFij6nqYyiGANRDFMI19/Q/fTVG/057VrdMHrxVFB5GRysp10uN5a9xFUuJ4srXR8kz0ND/jrkUqkA5YEYg1Gldv/lHHczT+6Hb0Hntm9970K+UOV63XoqaLGwEzrZaPCJsbXFrhI0ey3YdjKOhepqaH6o68fAABI/ywDigcY664Z18+6KBK3KphuCraxZjAGafEpHaPlSqfU0pEkTbH1+0PUGja/cfb/LZ93v67VolrW6nneF6qRr1R8apzsh7zrOmMY2mjq/6aIPW5/mkRbnelhZbjRpouRWnaN3g1aGkt1Ajwetxq9u0lKwNcbcC+BjOdIYRuImYUuRtbMINbo0s2q3MfZCTEuzKEkjNHHpVgfaavejU3wLcXfx7dJOubfbEXRzwGllreB+9rHeA4Ar+Ekeup0PmSC1srwKtdMsglcvJg1ZLHt8v4Umf3qR6otfCNWlUFhBLOZaodthljbjLmCtbU5H90nuYt63iPWJUq36wpBY5p6Tta9qCudMftMGfv2bWMPqtlNbPCqBKC2MTrdbloD9SKd9rvQfUpZuGWkhDwg/DiUCp68dZqk3xoRfVuWjleAmx7Uw5bYNWbTqPEu90dfji9dtl3qBrfsZqcOuBaZuw1qIjaJ6WJ81UZrAI+XXSrB1xwQdrwhPFqYWxq1TPpEhy/jmbty4ZafP1+NnpdJovSn9a0iw1db5ep7TnhWXrZaDv11pS0G3r9FppfXftXKJEwHWfYmQlI0WbOWaBgcb758r2AJJ+B07GuuDr124opumXAZs9QVNvr671/2pu3j03e8Gca4NsszHdF0Pha/Vf8cqL+08t720Oz9sFXeWtPR8ytePNp2jHjf3/Z52Lb5jeqxJc9Og51Xa9Yj006Hrq83bHJcIvnvle5lW6Np815VW91zDCleMdefC7oZqK4u6NGtlFz0X8p0Xuu6suJsC7fQPvnmqOyb4Nko7XcN2Yz6YZU3fbjm2mq/nNcDxbcp3I95u5MfNU7t08xqytr31JlTnOim3NKOvUFsMbdjkJauF7UEA8wAudZCGQWJhSxRZKnLaJDEvnXTEaQJmL3e8utnodaOVz60mIWmDuhs2KxI+i8iVhoVBhncF9B26vsjirVcLG5+VjysYZ9080cg5ee9hKO5e7iD74m+1eRGa0Ekbypt+FtyBOLSYSptku8fT2rkvfKswWeiGYOtbiGjxWS843UWbFm70hF4v8LQ4Yi1gYBvy58tnO9efpTy7Qas8hl7sFhIxBSkzERJ98bnpRFFiAanzImKwb1EqaWhBql3BVqxK3eNiYTs4mC7Y6rzLZx0mJNi6eXEXPlK/dFpZ+hEtUOqNIl3nXSFPfheROc3CSv7rPGpr4nIZif9aa2CrL7MSH7bi5kGHFyvIVoJMkm66D1vdHnX/qQVbfb+zCLZyP4zxiyauaFQT3MVf51pzOrqOyXe3r9b51wKzvm75TeKXzzodnU/3/sm9DrlEcF0FAY3+iN067ZsPiE/j2BpEq40Wtm4c8vKzUBvRv8Vx46PS+pyQyxzdlvQ90b+lzafb3QCRtHznuf+jCG1b2IbGM7ef8JWnr4wE9776BBG3vbpppPmwtRX/po2Qdb7Uap7k22x2Xd34rkXqFlCNuw3B1kcrwdZ9YY8OJ3VIC8Jp907yrfv9EJ3MM6Xf6MW620c7a59O1uDt1jW9aVjx1GPAXz80el2XNW133EkjJKBJXJ0Y4KS1oVbxtkura/TNE4D868FuxaPjC7WvbqeVF18d89Zr5zdxyeXWZZkX6vmWHvt74cc2S5QrAE5Zaz/aaSLGmCOdnkt6R8isO0SWgbHbuB1Cp+mEJhTrNSi7dKu8rAVshk5HL376pQPVg5/OH9AbIcddDOn0WqXp+62V5W5e2rU2D4mU7qLJPSe0KPF9dh9L7USsFVpNfkICW56NkrS8ZNlAa1UvfZPU0G69UKkAFceHrby4xtdXSR7EN6NPpBoaSv5fu9YsXkl/OjDQ+FZTua+rq0metEVppTwEA4uBa/UFlQiVYtXjuz5tZeeztlyP/jeUhi8PIfEu1Kf6yh7w9+9S1roeiTjkbiC5VqgiurezYJD8uCKvFtPiOBFspU5IHZE8Vir1FyXJ71ktbDV60isuFqT+RVFSX9eqwp9+LFjqYxwnYeRR8rW15E+L5Tqvul1oMfLateY+T88v9L2VPOprlfyUqwKdXaunp8tGC21p/WOnG1euAKwXRyFLV6CxT82aZnAOVl3Yu+WcJQ7Jl7vZFDpPl6cr9Oh75nvpVkiwKpfr9U9TdsRy+SznuW07TbDV44H0m1qQ8lkXC9JmfOKRO/667Vau1xVsfZt8uqzdOZneeNBzJunvQxsKvk0in8iTNg64Il6rcdR3flrcvutPqzO+ONw6FdvE76v1jIe6rfrqujtOa3Q567bm2whqVySLY2QSbPXcwZd332f5rutyqB1L3LoO+uZ+7fSVvrLUabtlp0VsX11oNSeTPkXmVDI2AI3jkt4AFV/aIbcnEq92VyN/0jfq/LibmKurjf3/aiX5UV6YKWnW+tjqXNRUGq+1qX8PuETQ/UjW+V0311Fpa2vdh7WqR90SZ7Ogx0dfvtw5tNBu/nox3+5EHO8W7rxZ5sm+fFhbbwvu2KDbwPXr9d+iqN4+JZxu62trdddLbvzimqqbtBRsrbXnjDFtW8gaYz4IYB+AMwAe6CBvZJMRarjtdippgkynC5w8uBNFnyixGei3Ha+NpBv1yDdZDhFacOnvrSa9WeL25Se0YPWd434OxeGbzLZTDv20cSBkmehlOe7WK70Y8YWvVICKjZK04+aFaigtsaqT3/Q9EKs+vUDQ4aSv1n2CpKV9b4qFoedl6rVrDeH+1m/3uxdIHerUskeTulhKSVsQy0J3QSXxyiJQxEbXKlOEpevXE6HUFQjEotMn2PryogVbcYMgn+M4Scfa5BF17UdVW0jqibVb512BSwtJWYTEkAWGr3+MrUHFRohUPiqV+maH+7Itfa5ch18QTCxsTaVxQS7X4ebDJ67pBYs+V6cjiw3dF/gEUI0WCgAkLgCMBVS/4Yp7+lxdr/Rx3/1wj4XGGff+67RC99AV0kN5CuXTjSeK6mWh43I3q6TO677XnTPr8917ozdvXHzh0q7Bh1v2oXkB0Cyg63C6XN24OnGJoPumdtYYIdEvdF63BAa9MarTCM2/dNsLvXxK2rWUievf2rfpJJ9btZs4RmbB1q37vuvxzT99Yqy+NnfDKU2wbeqHUtqrjttF+kydXxmn5Dd93b65q9t/r67WN2HlHB2P9hvvCra+65U26Yq6oTojoq4ek8W/upTraqUAnD+P+N73J2lW3ftUYoPIWMRf/RNU3jUGc715Y6lxQyyCgYVrYRvaANX/3fugx6hOCc3f3bmTOzdzf/fVLU2vRNzQeEDCuPO3LOsRd4wEGs935+1pc3n3fqVtiHaDTEa71tor7UZsrX0UAIwxB5AItp9oN45+JbRr59LpBMA34HmZnwc+/elskX7oQ8DUVGqcWUUUX8PwdcjtXr/vukNlkWV3LDTx8X1OO6bj1OF8k+6snW1och1FgPum2WAePeHSJuvdmpBuBVp17huBTzAQZPG2EXmR9H2Leb1gaCduoP8EPHe3ViPXmNY36/PdhaBMdkMYWO+iO/S4PtDog9LdPNAikluvRAiOovqj+NqPqCsUAECh6qNR/EjKue5iNOQbtOFaA+JCrwgt7LJOyrUAo/EJSXrhEZp8t1psStxyX+R3/dmHu3AXXMsddwzVL2qStN1r9NUZiWNwsDFeGWt0XvT4I5ZHUucGBuqCcBwDu3Y1ChKFQt1y1n3MzD0Wx3VLXH0/3MWtWEXoMLpc5Jjre7X2PYqBuLEe6z46NHdpNbezFg1ujrKMU762L4T8TooIrucvugxC84WGa3AsbN3xQlu7SHxpgqIWNLQ7Fp1umvCkr1Vfh+uvV+6TiDOuSNbKwtZ7rFoWbtuRP2m/el7qE0g1Pp/OEs61uHL7FrcvcgURXx/iuy4gXSR103LbnJuvdl0i6HblXqubl9Axmaf77o3v+uX3vHQyx2xV1r6+OeuaqFtIXfaNKb42U6kk/e3AQKM7ILeNuucBzf297kfcjUL9AkVf/Qmth3xrMN8Y7YZxr0F/1xs0ei4nwtDQUHP5ucfkuFyPPNXkjjm6bfueetHlE0VA/MGfg7wwEkjaZGwNrImSTac734X453+hYd6o55G1sTQuIEIMo9pnlg1QF9+8VcqwXWtqn9gmceljkoYe/3zahW/M7gahckj7vdX5/WgEsx74RFOguX9w55/6GNDYb8gc0R0/o6het+W7foGopO17qWg36IGXhSYuAZjAFhJsQ7SagGWl1aS+xqc+A5x/Gjh0KD3C8+eTHdT7w4Ktb3cnLV/uDlU/0QtBKGQJ0YvOnKwP7exmtloQZBWefJM/ITSxBLK1T1/9bJVPXxg9IPnCuXG0u6vYz21G9xmhHdVQvxK6rl5tDIj1nRYC3EVq6N7oBZfrr0sWT3ohVY6j5LrXmoUYOc/FXWhLntM2JnpBKI2QwCX5luPyiCNQbxtAo5WiLjcdny73kEsEV0yRuIH6xNKYRiucNMFBxy2LZd/ienW1nn83bVlwrq7W3WpInZH6IotDXXckfTcv2leytjiVPMZxPR2g0cL2+vUknAjDEp92ywE0WpxL/Lq8JS7JV5rY5IpdPh+24mu2XG7Mj/Zhq+u+xJ9q7Yuq6KfmMFqodxeSWlCWBblP5PCJD/oafeKapB8yUDBotLB1xwbd/n1xh/rFkBWeG78rYGUhtMmSdbEePOYRbN1zpO6LWOwTe/Q1Xr9ebxvu5pj2heu7j50Itu4cQ+o90Lyp47arVoKt9JXlcrVyXmvMuy4LyUccN1sWSntwhRndLwu6DxXhS86RjYG0/ktvmPnKTI+TtZd6Vl1jxOqxeB2/tIdWwpWPOG52w6W/+0REfQ/duHSfhrjx4uIyEMdVAa9cT0uutx0LW/00hM/Fhp5n6O9AvT5mXcvpTRJd7qG5qdsf+epuqC9yj8n/NGs/vQHqIzS/lPCtBFvJgxak9ItnowiIf2UK+JWphpcwVipAXHVVFA0AUbmxvvrWuon7j+QpE4nHzY88hSPXptfmafc0zaoxDXesaTW/dOtJ7dri+u+bgX41gtlMuEYq7nff/MN3TP/vNrkFW2PMPQBOABgGMOL8PFz9P5s3nX7CvZGCXtRpOr15vklIE4cOAU8+mR7mnntapuUOMK06VCmDNAtToZ3r79XOdmhC0WqC5MarJy3uAso9z/XjpX93FwUNaQWcuTflVTmHT4vfPeYj7bftunO3EYQE27T7oyeobv3UVmRpbcBXj7PmcSvWjVaWLkKoTHWb0YteHU/D5xwvHXP9CgOJJYsWycSfkl4UySJTP9oudSdtsdFK5BBcP6zyuzupz2qJ1Gk/5IrLWkTwhRURPC3POk9p9yw0mQsJBb649Xe94M+yoPGN6zof4u9Oh5F+Q/IpYXx9is6/K0bqtPT5Om1t3S3ihgjMegEIJMfFckF+d60loqgezhWPtHgh1kw+sUmENd1GJM0GC1vU09eLYsmLjP+uRbJvYSAWpbGx3jCSvjueu202ihqtO0J10/df4pf+RNqvCEW6LKwFCpHFQBQjHmg8T+fPjdsVSLQYo++PTgtoFOddYUeLoL7rkHC6rKR+lMtJ36hFbsmfhNHH3OuSvJmBCgombjhHEFFtYKBu2e1eh8Tt3iv9CHUvaSWQ+Pre0GI1lF/ZkDAt3pIbsoTV/32WdL78+6xQXQs7n/ibRezRecoyLvXKkETic8cP3bbcJxHceWLtab3ayckxcfMh8Ui/6Fv/6jyENi46EWxD1rxpaxz9Wa5Vo0VkHa/PfY18di3e3WsA6hsTcv36SQEdj8+liM8tgj7XV6YhUSlt3uHr+2Xcc8PIGObGASCxrk2Zk+l7p9fCMub7yrC28RGH65i+Ll+YVvMw9zp8YWU8DfV7WenEyj4NNz9uGZLu0Uqw1X2rIPehFy8cA3IKtlV3BwsA5gFcAHAYwGL15xH5Lu4RtgMh64A8+DqgJDHZWm2VqYzh0NhRtcq3ntS4llNA+52IXjC5i8J24vSFcfOVZaGr8yLHsna+ne4Q9hvcuet/fIsa93Mv0up1nKG2n9bHhIRoN0y7/UG7+DaxtODWNFlUgq1v0emzctP9dGhCqt0XAP5Fh5teJ8KoL4/uAkSLYlr8zCI+Zh2TfHQi2HaaVmjDxU3fXSS5C2q5B1p802UWEsN1OoVCsngcGqqLhrqM5SUo8oI6qXtiYSs+ZsXFgOR7cLDur7VQSHzO6jyJlal8lrxJ+mIdKOnLtb/yShJOHpuVMhK/gPJIrdwn18JWwoqLBZ9gK2Wze3djfdSf5VpESNZCg7worTy0inIcYeDGJC65FtkokXxIOes4jKmL0rqc4hiIB8qIKhYYavQbLPc1JNiGhJQ8/Zpu027/bC1qVqWSl1bjQkgoy9v3ukKDT6DQi3A3P77xQP77xhffsUqcPFLs+sSU37WVma5Xkk8Jp8UN6Z927Gh8XFrXabde62NuH5smYPhEEn2OuwB125VuQ/rliPrexjEwEFUSq+yh+oaNrtfu9Uhfoq3r3TAaPaZJnfTFr30J6+PaqrZVmWkf4bVN04Fy0iZ21tORsvO52pDvvnvmXpf+c8dznT9XnJb+xXcPa/5Oo8ZKGw8AcZS4QTKOK49QP6OFbr12Clmuutemv8t57pxCjBL0dYZEWrmXvr4rzcJV8qP73lbntYO7iSD1zjfH037f9QvRdJnpcV1e6KnjXlUvF4uiuq94bWGrrcV1GiHBtjYfqwr6sqnr9iO+OaZPJ3DvoW+uq8eLUD/sG0tCmkzaPM1to53STR1gu67F3XYXcn0kx93y1nXLnfO7Tyzo9qK/u2Oj9EN6vLc2eUrM2uT4nj3duX5NXh34QQAHxMetMcY64uwjxpg7jTH3WGufzJnWtiRtB7VXgm0nHVU3hRzfotfX4bYiNPFJW/z7Jj1pEyh30pB1h9A3eal9z+HDNk9n7rvWbgxaG4GeAOl7uVVJE4r0sVA7cv+HPveiDEOC83oJtqEXfYTiTUuvVZgskzcRYPSipZ1Fh0+IcBcyckyH0RPCpnrhsQB2F/c6fMO5zv80S5EQ3e6HJD1fXkILipB4I396kegjq7AleUjbAPXVI3czwLXU9C2CdJ70XMMngsmfLOLcF5wIoTlEqC6HcBfP60ma5VIUofaSKW0dDPgfRdUuDbTg4u1r1Yu80tqLi9Q/+SzXoO+tLHKAuqisj2sxSxbxEp/+qy3uywPJ/VxtFND1OdrqVYtb8rt+1F0WQdryTNALLd3XuO5b3Loux8X1h4iJQCJcrK01W/O6CzZ9f3Q/0FCWlQIiYzGw2lz39TXpF7354pZy0OKH229kMYxw+6tW/Wda/+Y7v5XgovtWX9vtlfGDNrTQabj51W3CHQ8lz1pIA5rHJ6nzEjaKgEq5gIqNEF+r1+88gq3uw92nP0TIc9czcv1a2BJxQZDvhUJ13Co3duLxNSAuDyR90dV6vK5ArfPopinXlbjCaOwHXTHUNyfT7UP3heIeR47pJwFC9dUtH12nfGswXx51PGnzaLmXLccQZ07t28x31y6h+Yocl/ujNx1Cc0CdjtStwcHG+ELX4M5FWs1F9dyiVT/jtkNX9A/1A6GyyYqvL8gy72y16djO5r9PExC6PQfeLLj9f6i+dbIJ3Kmgrueyuu7qOVMvyCvYLjsvJNtnjNljrX1BDlhrzxlj7gfwZM60+gZ3wtQNK4GtQCsRVNNNgbddfGKeS5rYo3Ff6qPPDQm2euLjDS/+pMrN5wHq8ZKASwTJUzt1cqPuRa9w61dI9Go1KLf6Tf561Qf4BoW0PPomY75FprtL6Rto3Amdr07HcaOPTx/uZM2diLuT0vXuS9PqhuBbPOjj8jnU5tvND9C4CNJEUV2cCZ2f1p71JFyLAGlCqgi2WqBzRSeg+XFs97/u+3yWZqF8uPW3E9wFkm8x4VtQuYsVHZ+7wHPzKMfFss5dJLqiqpvX0MLQlx8dn/yuBUVXgHCtolx8wj/QKAKINQHQKAi4lgxadNKPjLrnaFFN0hTBTaxI5ZjrM9jti9xxVX4HGt2I1MSWSqPoqcutycK2PIC1uIDy1aSMr11rLAexsJX7rq3xJF0titZEzPJA8hbva41lJ/G416avW4QMLQzpuUBIIAkd9y2i9Z+1ESo2AuLGR/dFeNXlJnkRQaAxnkbBVt+X0Liatinluw59X11BLEvbS5vXSv8o1mY6j3r8lvqlx10dj5RFHNfvo643ut3q/j80J/CNXyF88yBtQeRrzz6h0b3n0v+trVXF6qqwHV9vHhf0Z/ltdbXZ+s8N46IFPC1+63P1fEeHEUFU58kn7AH1ewPULQzLqztQsRHsS419iIR3r1fatVuOgh4/tD9f152RrsPuvdH1T98/3X/auNDgqkL7sEW58Rx9H3xlo69D8i35kGvWbVr6QX2P3O/62vQ16/utz9FjiK8/0+K3Ozdt7ufQET6x0zfea0ESaN7wdTdPC4XmFyIJUu4yD9PXr90AyXfJF5BsYLniu/zuzoGkzzOwTX2xrx/W8yMXfe2+NZs+zzUmcOuGL253/RTqF3UefNcSynuaIBs6P9Rnd/p7q3y2Gy4rafF1Ky3dVwqhjRb5rP9r0ub2kpakp/tZ3adKOKnTvhfY7tqV/7p95BVs3a5sCcAxAJ/MGW/f4xvMO21ELp0o/psJmZi71xnq7DVZyjRrZ5fWIWcdqNdbeNYiQ0iw1QuFduLtdLepF+QtV93JpwkS3bh3vSy3dvIo7QpoLWx189rTJjc+6w9fm9bh0gZmIH3x7PvuE7b0cd9vIbEgFF7OceN126K+9jSRP2TJIfFL/kLXoP1nitCkJ656QQeEReuGCTT8L9XphJBQ4pucaVrV67Rz3AWSmxcJkzap8y2mhVAZ6jS7sSB0NxPc3yQ+ETu0GKDbmvwuYoVcX9MLtsrN5aIX767AGloky5+Ie65oIC8g0+Ur13H9euNCVsQkbdVZqSThxD2BO9GO48Ttgo5fh9HuMLTYoq+1JtiuDWK1UsDAS0lcItjK39pafVEt+dFCgy47QC0MqvHilXrZuW4T9H2uld3/bx6r/+lzsIUKooEk0shYrFYSIaYQVStF9dFnW4kQV+rTfxNVEEUWNjZAZAFjUds4tib5K1SS/3EEayPE555G+fA7IC9eAxotQ0P1MjRmaMFWX7cuJzcu18LWZ+WnXWrosPpPx60tbNPGr4Y2UhW3tGgkbU2/yFDcgfjilnKR465gq9N1fW26fZR7XH+WcG47FeFSX5eIbT4/or60dFvR/WWtL4oN0GKtlGeMcedivoW9vn7Av3Hom0+Exh4pN3EtEFkLVN3MDA6GBVvJp2/zyM2vIOF9+XXvtXuNeqyS+lMTlAvl2qYsgMSlw0D1mPJ/rzdbdZ/v1g19HXpO2s747Rvn3LFTwunfJE1XsNXGNWL1q+dSevMRqPctoXeRdELamlOuI1RfJY+9Wm9qYV+uu+U5MM0qUAq+Oauea6fNiXtx7Xp+LmNPlnRcIVi/+Lcf1s+kjjtX8s1PBfe30NrWN5+WtKQN9YK8gq0BAGPM7QBGrbVPGmNOG2OestY+rcJNYIuJuO6A2C3SxJ+mjiTwciqhXzsPfY1pQkrouxwLxd0tull+rmjj6xTqgev31c2DDCzGAKbFS8dcUcL97l5bPwq2efOSdn63Rcs0ZFLSbrztiu56su7iE6Hcx0F9L18RQnG7jwW75/jicvPjK79ONkyk3ut25ebZPa4X+u61tnPP3MW8jA/6Tbl6kaE3E2KnL3cfb/al5Ssf6R+0ZZRco5sXoNFSUe8my19t4VPta4wjNOnFvVh+aTFFwrSyYtHXBfS2D9JWLpK/NMHWnYzpvGrfodqq0EWEo3K57o9Rztf1Vcct//WEU+qLtgTThAQf+U3Xz9Dit13BVuqUzn/IwrZSqYtAup5K3dSPj0serl+vC7G6v3D99ZXLSTh3bNV5FjFO+5AVwSXkLsQ7Xjv+W3V7dO+n25bc++vGW7ERrCMea/FBC3u1e/E7/xXx018Fxt7eUO4WpvZJMKi/2AzWIkZUDWeTTRknvIuphrKHDsH8/N+C8bQZ3eZ9fXxoQ6phg8g2Xm+a2CFxNpRlysIr7f66C/esfZGBbboeyZfuX0XwknqnRW5X0HDLFah/z9tHaoFIf9b3UPI3ONj8IsZ2BFvp/wYLcfKiOuWTV8pCtx93HqJ9+Eo6vrLW5Sv31BU3JYx+GZy7MaNFVWlnIRE3jpXVY6GC+NzTwM//DQDAYFSpbZZE1Q2QyNha/5HEXXWDUt0Y0cKpWDEaA8SVAhBHGIiSMqzEBnFcqFt3Gwt84APA/VNN+fXN9RtEBbGmla9VC1sDC7taL1ux8BVCT3RJ3QYaLV99yHzC7Yt9oofbZrXQptuxnCvx6rw2bUSnzDO7vSZKm9O3mu9LP+iOte7nTvPqbh6lhYki1N1kVef/7kt1dR2UfkSPZ24/k9bG3OvsFu66XI6F5t96Lqj7K3dtvVXIqoGkbcS0s0mTJQ33v3x2j+sNjl5scvjmeXrO1gtyCbbW2keMMb8BYBrAPgD7AXwUwDljzCKAIoBxJC8m2/QYY+4DcN/Bg3d4J1G+z77vaYQW4kB7g4fE0a+dRysLslBj1Md8yGCQRQwO/e7mMw3p3OW+hBYWeiEdWji4wmzsvFjGXXBnvbWhCYpvEufLdy/Imk436q++LrdzbZVG2vW3WkAKrlgeypevTug6E8qPb/LmHnPzGkpLo9tCyCWCfrSsVd7c60w7pgdb370Dkt/k8Wp5/Fi3pZCQ7qaX9gIn3/d2NnKkTLUVj7dvM9YrVuh09eLRtRDTCxYRsrT4JvdJfhO0YKv/y4JJFsrlOEpE5YBgK6KdlLsIhrq85JrcBZx89r0gxFf+7RI6N22s1YQWeSI4aoHAV5f1dWsBVe4H0DzuaLcBrnCg26tP8Mqz0dhqQekTuXyLm5BgK1Z7uh7rc7SFpVzr1auJEKtfPBTHdWtFnb7ui1rNo/R8SpdZy4VznIglldggWqsAKHjrh9vHauHHJ2gBgDExCiZGxTTOY3T/IXVP9yXGANG73oXC5/4Toh31OI24VqjO9G0BycShDBixJK0AGKyGKQNmAIgGgEjarwUiCwxUX+QWxUChWtaDO+p50C970/dJW73qa/bVXzku1yT/sy4aXas/+XP7X9fvsPa9K3VocLAeXosNPpGqEFlEzhjiWvu6gq0ed/RY30qw1b5AJc+6HrkiqpSpFlR0OtoiXW+K6L7KdX+j76WMFZKuW/YSvrYxqjYDfMKHr+20mi/q86TO+eZW+rvrnsIXTlsbuvdWn1Mr55//BcRxVNvvqNgINk6+lD2CbWwNYlgUTFz7roVTKa/IWJTjqBaHxF2xESC7vOfPA9Yg/gdTDdfgazupber8eeD974c99zTiQ3fCVuqbse7mtvvSHn1M2mNWdH8s8xct9Am6boXqgV4n6/zq/9In+OZjui+Ra5ax2p1vatzxMTSv9x3X/YWOT4dppSWERCR3LijXKv/FZYn0edIf6H5D+xWOYzQYGei5gM6rPkfXGT3f1nNY97r1fdZh9HfX2jtUfroc3d/dtbdPZ/Gtj/S4ttXodw2pFXps0XMpd97la4tA86aP7pekLxTjA4nn2rV6newFeS1sYa39uDFmQX1fMMYcQyLc3gVgyVr7UN50+gFr7WMAHjty5MgD7Z/benGYpWE0CAspL6fKs8B1cSdROi/9SFYxOItgG+qI9aDuTn71gKUHGDlP/+Z75BJRMnlD1EJ4NnWLGN8EzE0bgXDbGXenN0RaXfEtqoSQgCKdvruoA5ondO3eL7ethhYj7m+h9Na7vmTdDXUHZHfiLb+16gs6XVRkDe/6jpO8adEqrhQSC9aqHzERo9xJrEygy+XGR321Dz5txemKSFnLVi9WAXgtCnV9cl1x6MWUW8d9f72wUAiNWzrPrpARaishQU5bZKX5exQBW4sgYhEqcWnLJXnbrJsXLZD4fAgD9fLWflX1uCTxyO9SR/UCShbK168ngqn4uzMmeWt9HNfdFGgLXl0/JV1drpVKUmdFABGXBgMDibuCSiWJX/JYLifHy+VGMTCO623EFX21KAw0WjFKeWu/ke79K11cwdc/fQYvXXwe8WoZtmJhrYWNk9H2B+e+DVs5lET+1n+BN39oDNENu/Cqu9+G1//I65pcIog/UrluLdzpco9jADbZGJF2LPfGvX9S1rVyjQ3KcdRgQR9FdYtifd+lnPRvuj5rdxM6Tf1dwsoGkPafq+vrtWt1cUTfay1S6PYvedL3Wu6NiKgavZiSsBK3WIXKy8VckVvqvyvYyqJLyl8LO3LdrpBRrhgYY5r8uYvQJcekzrpzPn0dUm/kmNsnyfjhEygEKVM990jbEMuC7gPdvt910eA7F0CDdbcruPnGJ13H5bOUqR4ndB8tfanE7bOw1f2wTkP3ffJd4tbitxbzdNxrf38Klb87Vc+bI4BLOCkzyat11g1A472LIqBcfUIDA8lfHCMx6iggWQP+rb8BnDuP+P1/M1kbGouKTaxkTdR4U6w1QKVQ3Y2JYc+dR3znIeAXfgHiaq3yrjHY+34uico0jhNpawt3TA/NGdwNCYlTyl7qSGg+4I6P+ukNadc6rH6aRfsy1xt2vrFE8qANPHz1V19rO+1Mp9+NuY/bN+jrlmP6P9DY5+u+T7dJd0xYrRSSvl3Va92v641FXR7uHLhdwVZv/us5vqTbDXwagttXSbhW8YTW8D7cNFtpFFn1irQ4QoTmzZsJ37rQJ9jKZ/1ft0m3/uq2sJ7kFmwBwFp70fm+gC1iVdst0nZt3N8yV4IUlwgNcXjCpaXhG4R8C1bfOe5CNxS/b6DXuLvl64FvZ98lVDbaOsd3rlsubjqyi5scTBZtcaV5wHDvayU2iMuNnZAuN3fnEPAPIq746NKrHcRW8eZNNySq+iaKvRBsQ21AC3at4ulkANf10Ze2W//0YsFXZ3pJSFTTk2cZNNsRk9sRKLOiJ4puvrVFqSATZqBxctC0oBHrmhZisJ5I6nCh++32Ae4us6/+S9wNYeXxt5RzQ3XNLRMfuixD7bCdia++T25/p9tI2g582gQOaHxcWAQm95FRoN6uZLE7NNQossdx/ZjUK4nDtViUxZQIgbo89DzCmGYLQlf0kd9FeHIfaZTr0y+ak3S15Zn8pvs0yYOIRFI2Uua6fCV/Iorpl6Hohd3QELBzZ30hKJY1+kV3IohpK1u51jgGcP06nvvDCxgcTCwiYwtEJsn8d//bs3j5ey/iW0t/kZT9np3Ye8fNiAYiGGMQDUYwkcGrf/QAbvjzr8DCoPjCzfirhfOI12J87ZN/hLf+90cQ7RrC2z58N4ZuGGwQ4HReRCjQgmAcA7XNWudFce64oBeqABpeeiXl774gUIeXein/tWgp5QfUF+6+tuezSvIRalduHCL2SH5dgVJfj26v2upP+thKpe4/1BXCfH2Yb1GnxTJffyDtFUge9Y+MbWqv+rpcC1+JyxWWtFCl64suGxe37/bh28iV/z5BzZ2n6vy54VqNs7rfDAmzrrWmtXWxXZA+1B1rfesn37Xq+uG7fi3K6eO+jU+33PRY4ptP6zHSFdLc8ve1OTecjiOKgOhv/XyydohNrT8Qi1xxvyAuUmJrsFp9AdxAFCN++10w778P5u8+APzdqdqaBAAKa80vTpT+Qc+FdHvUgrpsYrjXp61nXdc9euPD3VDV4p5r3S2C7epqkoZsIvncB0k+ZK2k64bErecQelxLo915p1tvXdFY/uvrlry4bVo20HRZ6s++//JZ3x+9oaDXqPJbHAOr5QFExqJwvfnJFhn3dV3Q6cp1SLvXT4kJvrovdV3i1vMJ/ZRXqC/w9XFpn/V8Ss8XQ5tXvjFxvfSLjcRX50Nr37Q2lCWeLPcydL7bb+p2pcdcoHEOrOe6rjHCrl2N9TuKgN27/XnJS1cEWwAwxtyDxFftKBJXCF+x1v52t+LvZ7KKdEC6YOvrANITrgux3dqdC+HGnzmPLQgt6F1BJKuY7bsP7nm+Bi+dsbsrrMlSvnlEolpnoSynQ0KgiCiRsd5w7oRPD4brIcL1E6Hd5VBd0aT9Hqojva4nWdATOnfhGav+wifW+epML2k1sdGTpHbx7ZQLoYW4+7vvvLTPeiEicchgL5NZvRiJIiAuVBLBVr3JV8Qrty8UsUeEM1nQ68mlvvZejQu+/sUVPnU/lFbX9HFfftu997pO+d4ErT+7grpeHMikTk/GJJ/uYs4tA40rDsl9l8WPCLYSp6TnE2wlHe3XUV+PzmO5nFisui+DcutYHDe+HEeEaBG9du6snzc01OhewxWQ3HKQctQLYcmjtnDcudNvYasX3zt31q9D+6O99JfP41tfLOLSXzyPv37qmzCRwdrLq3jl+y9hcPcgbnjVTbh+5Rpe/FYptd5EQwXcfOh1eON734q7fv0nvU/ArK0Blb95GuU4wt3/5X/D7t3AH/0vv4c/+zdfRvE//ylWr1zDy98uYezXfxr73norBgZMrS1IHIODjWXSLnpDQtDtMUt70fXUrZfaetTXj/g2g7VPYsG1vHT/fP1r2vW6bU7H4+bHbce+tu+2dx1GW7jqfluEAkm/XEbtpWO+R8TddFptMmqBxH05kqBFHV2OWshy65cIY5I/aXu6TUkcWrCUNNxrCl1faP5dqQAmjhCbupGBjl/6Bd1Xu+WpN4Hks/5Nyk8L3OJ+Qq5N+zKVY3rsccc1GWv1yw3dOaWM71JuWtTX8wJ9Lfq4u7Eg+XU301wBv2Fc+dUp4FenGscg5wkLLbjHq/X4dFxSjq6FuQjnQ0ONm2ruuC/XqDeLpP/WluzunMD9HNoocudt7vxC1yW5HqkrOoxci1vvJZy+DjcubXGv76W0W/feuPl2j0t91JtSLhKn3lyTMUWQfOly1vdBftPn6WvTZF2j1Nq2aXQPqOPwrcF8aFHUncfq65Q4dVnqNNtF+krd9+v0pc3o9uMrL/d76FpbaRSbRejVdUTy7N5v97752rSgy1gf0/HosU+HzVLWenzyzQn0NblzA41eV6T5bu42uQXb6gvHFgCMAShVDw9XfzsL4Ki19tm86fQrocWl21jbabjtEhI9m/KUIT++30KdSzdE4jSRVE+O3byE3tyZNmF0P7uT1DT0RNEdKOR8nwDhThDcQd6dqGmXCPFAcxz63Kj6mJMvnJu+e32++ikDr6+sut0BufGGBqhOhU0dvyx83JfW+B7jbpVPjTsxcyf7+ny3TsoLiOR8qet6EeouTEP4duT1tfrK0Lfg9g1MEtY3sdbfQ4OUWybNdbg5Hh23/u+7F2n5cvPo4mvDvt995/mQ/Omy900o9fm18kmxYPWJAD7czT/fJLxb6MWu/q9fHuH2lXoRLQsJnwWcjk/oZJx0672ko32euWO1fhRdCxu+OqtdHOg/9wU97nVoizHdB+jr9I1R7nWEjrvfpZ8L9flufFos0H2R2160AKnx9Ve6vug6IuOqXoTqzQ6dTzknrsSw18vAGvCDP/ke/vPkf0D5ar0THLxxCK8+8noUXr8Xrz7yBpSvrgKVGPYNe/G6nzmIPbeNYPR9d9TyGUVAZABbGMCe20dqj8/7+qeaKCSPDVfryzt+9Wfw1umfQWHtGv7T++fx7Of+HM9+7s8xsHsQt469AW//5Z/EyJ23YXBH1CT21a4rBlD1U6kfuXPFOam7DY+iiwWd2mCIY79LBGuT42KRJNcg91vuRaVSf4mbFvP1olbi1PVYtzktGLrXocPLOZJfN8+rq80ioqSry1CXq1yHdh2j25rrEkHquaQl8cvmhYSRctNW9WvlgeScq0ncenzVZSZuROQ+6fzq+xZFSVidbz2+aKtifU2uP0eNPi6fZV6kxV0tvIXmBGJRp++93DPX4lnKYG0NQJzUf1tuHA+0AKvHD2lzrgAl4X1PM0jd0Net8yNlqeuvnCsWmrp8REgT9PigX5SoF/kSpzsP03WiQTx1+mBtQazbtduGfGWt77HeJHNF6+vXG8dlPYeVc/R9kXbkjhXu2KD7T30teqM6ND64x0JjWqhe+pB49NpGW33q+N3NgZCI6bsOLfr57mnaeOuuRVoRWntnEWxls9D31IxsAuu6JJvJem0Rx0A0UE7mrTvqaUpfoEVu/YJFidNdI0n9FR+6csydw+l76bPclfIUdHvR90DypttZk3siNIq2utx9GzudzFF9yDVvJsHW7V8B/7oqSxmFBF03Pr2eSlvHuXHosDoO132Xby3m/q033bCwXQAwB+CUtfaKHDTGHAAwCWDBGHOvtfaFLqTVF+jJlsbtvPXOQ6hD9lVgt0MTpFHU4pbHXZwXl+hdqihKwsXWwHreVu7mVw/ybuel0RM2oPmxC/3ZnTzp3UTBnbhLGpJOKK/rgW/AEEILZxf3nFaTDd/uXFNayq9kWjh3gqAnl26efCJHL5D0dPy63mo6ude+RZ3eDZNBX6eRdt987dEVbAXfAOX+l4Wwzo87sdNxhCa67jE9aXHj86Ul164fS9JlrR9tC6Xt1i8dr0zmfdeSdsyXnq8sWx1rlZ705UDjgiVLm3ZxhT05Josc7XtUh6tUAFMpoBIbmKr/RPGjKHG4O8li4agXca5FmFyfnuTKglT+tAWjtiaUP9dXoCBxuQtQXU7aZ6QeS1wrPD1BEtz25k68fehFjKTj3gudH9+ETyZuIljp+PQiROddLI5kkaEtiSSMFgrcR9VdcVDn2S0Hn4jo4ptY6rYvYXQe9MLOnazGcaNP5ZW/WsHKXz6Pa1eu4+rzL6MwABQGC4iGCtg5vAs79u4ATITXvPsNGNhRqLWnchkov3IdX//tP8PTc19CVDDYe/Bm7L55d3IdQ0N456/9DDAyVMtzpQK88N2X8PyfPAeDGC98/a/xx//iScAZJ25+52tw10d+Gq/5iYPYceNgQ3nLPYnjpF3FcWJVKGHkurTlXWh81r8Z2IbyjWNg5w078YHf+zU8++QFPPufn8b3/rCI71b/zECE1/3UQdx652uq98Ng3w+9Bq/9sdswdOPO5N4UkkEpUnXKrZNA8+aPbPjotqqtQLQYroUFGXN1+5T+Q4vpO3Yk+XEFW7EqlLyIJbYreMpnd5PGHfNDPmylr3EtBeVlOW59lXS1AKifcBCr0nI5eXxR98mDg/Vr15bVEkbnsfZIdqEMC9MgJrr9hAgarRaA2s2KpKPLQ8pcL5Bl/qx9M+v64RNE5Z5oMcI3D/fNtyWsb6GsjSn0b4UCUDBx7b0LErcei33jh5Sfrp/a8lsTmo+4+Xc3E90FfCt02bezmdqqDIHmsUnnU29uuXNnXx+vLXMlXrnveixyx1/3mrRrHKmPut9wryOOkz5D31MR/uR3CS/xSF61qxG9kaf7Cp0HPX7qfl/yqvMn1ybtwJ2L6XHezWeobNzjrniv626aMC1hfPN5fVz3IW5blc0mff61a41l4IaR+pDW3rzzaucJX42v/9PzM9+8xdf29PXpPMh6RafjM2zQ81J9X3T/J2m7bUDnSec9JJZ3i1ZrUfez73sIt8/Ieh2hOZE71oXmo4Le4EkjLR7dV2fdtNkq5BJsjTEfATDp+rAFgOqx2eoLyR6q/m0ZsggMQrcERlew9UWXVoF1w3Ibqx5MpHNLa1RZOwhf3nyNP9Qh6ElNnrTz0O1OIW1BWAsD07POyN0dBOqfQxYLvegcfZOh0L1t1cH74tbnxZ5JBdA48U4bwNwJm56chcQWX1p64RxF9R1tXRbuZBxIH+h8aYeuw7VaaLdcs8QpaCFOT6q05YYsun11Qb9NXuID6pNwvXDTj6i5Aplr8egKhCJG+RbBbtppZXb1aqNICSQTwmvX6vkT34q6/CsVAGsDWIsLiF5JwrqCrU5X8q+FVQnnWuVpi5jV1WSjQB7JlsccX3mlsW8W67tyuf6Spkol2fRDuT7p1xse168n/7Ug4NvQkHvmLmha9enuQsLFnTj66p6E03+hhb0shtzJqNQT93wtJPisOqQ8RLSS42J55paDiEJ6A1XyIBZM7qaxK0Jcv97oq0uXn/yu24qgF4RSf9fWgGt/fQWP/Y3fxNqL18M3ymHH8C6svbKKeE3MfNW1DEZ46bmXYABcW3kFAPDV3/xjwAC7br4RN7z6JgwN78J3/6DYFO+rf/Q2vO7uN2Hwxh249Z2vwcg7XovCgKnlV4spxtQXpHLNIZHL2sbNNDmmRYFKBdW3u0fecSCKgNf99EGMThwEYFH6s+/h3L/+Y3zvv30D3/7C1/HtL3y96Xp2v+pGRIUIu6/8MADglv/X47j74ffW7pUrRmQZi7Vgq8U0oNG6SsYhQfoHOc+YRHwRX7y6DmkRVLt90WlpochtjzqvElb+p42zerz2xa033S4983388T/9HF7+bgm2EsNEBlEh2eje++ZX4S0f+GFEEXDlG5dx9dLLqFSAG1+7F4f+0Y8jjo1XjHCtiWAMDJrbkj5H5zH0F6pP7hgfEjdC/aQ+rtu2a0Xpzj0kLddftha25Jp9T0voMSxJo/70mBbiQptn2iWA9IX6d998VedF4nTHAr1ZtXNnc3jtJsbapP5rK3NdZtK3yjn6+n3zEo1uN74xS0RJCSNWkHpzVfKsxxV93b4ykA1X172CLkc9jmlL9d2769eq05c/mXO4rnZCgq3EI3nVVqJS7nr9rEVjOdedc+h7647bMk5LGu5ThWmk9QW6HOQa9XwHqM9/3afiZK7r3gc9t5OXVmpxUfcXQH1jS65X3yNpg3rzVW9I6/mH/q//tEYgbmCsskrXm/ySvq7XaRpISOSW8nD7Rl320o7E8ADw1zXfd52+O/64Iq327avLxy0z9zcX33F9rN3fs9ZfCefbVPSFlesPaVjtitdZtI9OCcXtllvoe6jOh/7c+PWcvFxunFN1i7wWtsYn1mqstUVjzErOdPoOvQsnpDWa0GQ11DB9DUk6kboFbHJyrCbfbnxRBLg+UaVSpzVWn78fjU/0A5oti3Q6ukH4BFs5LuG0GCEDVdruZkg4kjR9g6sQKgvdcbvh9f0MTazdePU9Cg1QYjnbi46t1fXrwbGVlUVe3HqYNoCk1VUfvroXul++yVYoHjmmy8Z1z+GGBRqFRTknLU+trkeTdh994Xx1wFceIWFff3etmHy4kyV3EhRazId243UdTbNSccP48iWTNN1v+epDpk0W2ygeC7Iokvh8b0C3BYsYFoWB+u9iCeYKtnpxZ23jQkj6Fzkmj9/rc2SxI3mSRY68gV1PjCXvNgJs3FjW2lJUi+tpfaMW6n0LVffeuH1EqI61s+Bq1YfpsUjidscVGYdDj0C6Ezpfmjqc1EF38qg3GqR83Tbj5te91lZ9tyuGuffwzD9/DBd/+2kgtojLMd75D4/gjffcgRveMIJdI7uw44YCKqsVlF9Zw8vPvQjA4rtf+hZe+OYVvPjdF7Djph3Yc/u+Wjns2Lcbb/jZO3DLW/fXJriFgsVT//tX8MoPXkHlpau49Mz38f1z30FhqIBbDr0Or/2pURx475ux59W7cNNt+xvKSAsOTS4G1PWIf1yp61I2rqgifbNYXgKNFn0DA0A8uIZyHGFgZ92qtFJJXkAxMJDEsWMHEEUGe3/8tXjdu49idbWx7f3gz3+Ar/3OX+DFb15GVABe+cErWPv9Z3HplV34+qlzeN+/fG9twS3tUD82H8fKt/DgGiqxwY6d9fojFrFSBlJW8ru+x9pX9uCg5L1+nut/UtDW2e7L96TOyn1PayNp7aNVvb363BW8ePF5wAA79uzE/h96FeLVZNO7+F//FE/+4/9UO2fHvl2AtXjjPXfg65/9U7z8nSv47hf+0ht/8be/ip/4xM/jlne+Gq55hJ67JcYTtmZxLehxVL63+tNz4FB5hRaMPiEiNO7pcGluFCT/uh9x8xDKpzuXTzamCsnxcl0AlLy41seywajbpSs6hR551n2pK/TKpo7ePBVRUEQxiUvamxaCtCW+bGzKNeo66+tbpMzlqRbpT+QxdTkmG3Z601PcaKUJto3rw3peRcyS8UPGLmnX8pu+v/oJEy3YSt/ipq/vmw5z7Vq9X/H1p7qcZXNIu5pw67v7EjOfYKs3ybXQKWWs651+2kDfJxFJtX9WXR6Sd912ZbNbz4ekDg8N1e+hXgvIi/WkHmp03Vpba/RbL9fjzlPlv09ck990XfPNwXUa2spZ2mEUAXGUvGgxdqz2s7rwahd3PeJejxzzzd/dflHWLS6+J6P0GkLqiTsfTetz3bTTcOMJ9d9paXUL33yyG/FniSftun3/pR6HztVx+MZIt664x0N/Oryu970SpfMKtqWM4XqU/e1HVuGsoXNzBFvf4s49t1UnExI/W3UwrY67wqoeULTQ4+bPFbTc30MdepY8ZhUD2qWVYOubmDfkxeMSodUOZjt561WHLbgCSNZ8uGTd5fMN5mmDusZ33B0g0vKqNxSA9EVY031Gd+tgVsHWdw1uPrKImG4ddtui+9ieDgvUxRX5LjuX+nHYkIWtL16hnbbtEw/c+y2TdG35KBYH8l2u31382hioxAa2eq5M4OUtx5JfnZ+Qha3uV1z3Az7c9uOrx9aioU/y/a53mGXBo8PJIlAfdxdJgh6nxHIjDbf/1ws5n7WHhJE86UVaQ1+MxgWizqN+jFDH5eZVwuj7pV1OZOnfdLlIHnSd94XRZSIioj4Wx41vVm6eAFuc+//+Eb71+DO46bYRHHjvm7FrZBfu+ic/jtiaBjczAxbYMQLc8Pp9iCLg1iO3NaWlrQ90W03CGLzt7/0I1tYaX3CmH30UiynXWrhp/KzizpMkDi2+pIlc+niWsTPLOKTnLrf80C3Yc/AWGKM2cSY+id/7xu34yvd24qv/5zJufO0evOrdt2Fgz2DL9OWpnE42VaX9uhsvIiyJmOBziSDClbRTLRq5ArpP2NOsrcZ48VtXEFXKeP7rK7j+wvVEFKgknVIUJZ/jikV8vYxnn7iAb33hr1pe35GHxvGOf/huDOxK3GUMDQE/MftzuPLNK9i5CxgoAIgi7LltHy4Vr+CLv/ZZPPflb+KxvzWPm944jB//f0zgTX/rLTCFCOWra7j059/HDbfuxtDITTBDg9XHg02D8CTo9q99iupxohORQ7dZbYnqbggCje3DvR+yUec+Yuxu2Ov+2NeP+vpXt++NVL/vpuFDpytzBd9c3j3H/e5LR7fX0KaXD31NvrmU/K6fjAhdm7bWlWOVSuMTFnLtMma4Y5xOW8YgyZfUR72hC/jHOWOAV55/BYO7BxHtGKzVFS1WtWrDck16Dub6ufWJ/+68oOZqJGpOx/Vz7RNsZcweGKj7jXbHbne89/Wbeu0pv+v86Hus50a+9au4OpH+R4uD+k302jJP1y0Rs91xyb02oHFuIHHr9bPvs3sftfjkztt95aSvdz3R810gvMYS2vUXrDWXVutRX5/USktxw7Y6L023aHd9nha+m2vO9aKVRuFb4+pjeYRWObeXbSCvYJv18vbnTIcoap2jEmKBxk68QdR0BFshS8V2SdvNkmOdVnp3l8+Xl1adpRbRdF70xMG30HOvVS/Q9QJcHxdhRU9GQkKRHsj1ZMRdOAMAKgWU4wjxaj0tuZaGuKsvKInLjenLpMn1WepOIN0JjHv9WYXQbhAaCFtNonVdd8/Tn12xxaXVJkWrtqLTTBtkff/dz3IP3QWTTObd8nAfr3Lz4F6/bxLjLgb0cT3Jl4mnzo88Zu/GqRcUYuGgJ8h6ku2WBdD4whxpN1K3MT+PtYXfQTmOUDAxBmS3v7qJIZ/LcYSBKPm9lq9qGPGnt1opIFa/FyKbtGlja33sWqUAi+o50harPrwkTOX6jkQ0GbpWW5nauABbLiS+KY2FtRFsoQxrxSYrRhwXEJ/7KirvOALEjeKeWz5AvayvXas//i0WMBJWxJWrV+vWLWIho+/PK1fWUHruGoZGbsDAQJLAtWvNVjKr5YGkr6laJon7B0Fe4AM0ulvQdVUWZdpqSfLhtk+3H+1UsNXjga//1z5BtbVvSJBw09R/elNGh9X11v3T44eu47ru67jkPusxyHWXotuVLgN3/PA9ngkAL37/Kp75t1/B2U98sXbsHf/kHvzw3zuCQgG4eq2xfPVb211BR3/XL7mShanU8YEB4KWXGi3WZHzVmzLa4kmuxWdh61of6foki1wpX3ezR/zcaqFDL15XV4F4dSjpe16sW+yJUHD1atIn7thRL5+1teS3HTsS0Vks6sSfYE1ku7YTQ4UyYIHFf/xYrfyH9uzEvjffgrWra7jlztdjx8gNGH7rq/Gm+96KF76xgpXnb0YlNhj6XBGFoQIGbtiByouvJHUDqNmHynWvJu9hQ+XqKl76zgsY2lXADbfdjBvf+nrs2F2oWaBdfXENV3/wck3wt1EBO2+5CUBdsAWS65U+RspVwqyWXkHl6irWrpax+vwLiArJBtUrz7+CF799BS995wpevHgJcTnGc1/+RvZVRZUbbxvBwZ97O179I7fhB+e/AwD467PfwdUfvIgde3Zg7KH34MaDr0LZGJSVu4w1O4CBV+3H4K66peUrrwCFkb0Y/49/H99ZegZf+mefw4vfLOHxf3gajwfSf9WP3o5XPfdq3LL7Fdy+Wp/baSFUxkptrSd9j6/PySJk6s8SvzGNLncEV8xw05Xvug92RTWfsOUaHfjiSxN45CkLvX7wrQPE6lun4YpbkqbeEBKk/9B9gcThzq+lT5S43HJxx49ScQUXH/tT7LxpEDe8bhjXr1xFFJmqb2OTvNAQyYbKjj078Kp3vxGXiyV8748vYter96BQMIgQ1++rBVbLwP47b8O+2/fAGIMoarTO1OkDFq98/yU894cX8NxXvonKaqUW5qVvX0FltYwde3fieukqXvneC7DWYuCGHVi9crWh7NZeXkW8mlTKnSO7sf8dr8GNrx9GYaiAnXuHYAYHUSqu4JXvXE7cfwwWsGd0BFEhwsvfewG2HMNaC5gIO0Z2422Tb8cb7j6Il//6JVx65q9x85v348aDww19t9wLfV9kPNFtIU1U9dEtAdEXjx4v3XWD/iyWqfopBAnjWq3Kdeqnllx0Oen66Prc1cekPCVdybOem+u5gu6TJKz0LTIPl7xaGAC2pYi53rh9COBfi+sx3Sf6unM7IOzySovioXeFuOekHUv7vddrcl0ekq6+91uZTutyOxt+ecgr2F42xtxvrf1kKIAx5mEAF3Km01e0EndCtHNOmuhTiysg2IY6ibxk2RV3G7pGvrt+HuU8N163A/XF6cbtfvaJpG5HFIrPl7buvNpt3K7QretDg5WTCEVqouCKp3L/dTg96WmVN32f3GsEwi91ENZTzHXz4RtsXUILE9+91H7cfPG0Kiu33el4QvVXLwzknukFsN7V1d99u70+cagdwVaEA9dyDWgWbGUyoi055bF7n2ju+t/0tblWbVov/mtlvPCfUFn+KuJ33gkTmZp4KmKs/qyPyfGKjRq+698jW52EAjWlQ74bI9PURHA1qIu6BrY6ia0jwq7EX4kNyiaqfbcmQsVGsO+6E/H7/waMGvSlTmS1sBVxC6hP2OWFEzt2AM9/7Xms/NUlVK68nCwQ4wq+9M8+DwAYGt6FO39jHHvvuBm73/IGrK6aBuFwtbqJhKpYKD5rJU/aDytQf+RMW83ouuu+PMUdD1zBVvqbtMWMzo9ui2LVInHqxYyOXz8a7Lon0OfpNN1FmYjj7uN2Om35E6EOSEQ8ETB1+9XWcvq+xnHdP58rKmgLMJ2+W77aLYsc++N/8QTO/ss/rIX7of/hLtz+D+7Bnlt3Nrk+kc/azYuuu24/re+NtjaSOORxT21hq+/N4GD9ZVHags0n2Op03BcxuX2hK9hKv6UX1fqexzFgCzEKJkZhR6PvSv1iLhHsJF+++ZMWreIYQBTjLTdfwut+539H5fKL+NYXL6D4X57Bi99cwUvfKeHl772IlT97rnb+hZMH8Z3fuwDgYHLgv/v3yMNbp34Kb/1778ZLf3YJqFSweP9JrL202hDmh/7BuzH263dj6KZdjY/KRhY/OPst/OWp84jLMV51+PW4+Pm/wLdbWcAaYPerbkI0EGFoz07sveMWvPOBd8MMDWHPgf3YsStCJU5e6DW009T63kLBAIMDGLppZ60dvfl9o4jj5peXlct1kTyK6nXN9ckJ1M99++Tb8Ka//Va8+J0X8c3P/xmwWkZ5tYK1q2UM3jCEwZ0FfOX/8wf4/lPP4q8rr8ENg9fx9hvrGxOSJ2kXO3fW+zD3T/fl0melvXRMfwbq9Tk05/PNFUJzIv27br9p8XYDyZ9ryajbpKwdQo+Qy72Oosb5U2ju9/JzL+CJ/+E/YO3lVex7y6141btvw4H3vw0jbxpJzWtcjvHlh5/A1R+8gq+fPt+dAvCw65Yb8KP/z/fjjp9LfFvruiHrmWf+7Vdq4zgAFHYOYPetNwJIRNXCzkG8cPESdu7bjVcdeT2igQirL61i1803YujGwYa5/NBNO1C+uobi5/8SV/7qB1j5s+dQvl5u8Fu+d3QEe16/B5e+9n08d/bbSTqFCKuOb/O/PHker/+J2/Did1/AlYuXMXxwBA989R8DaBx73XonfWi5nMxbZB6hx3TdJvTaR69/dPvyiZzuusId19w/Hc5duwla+Au1C6mjgp7DueO2r85qJA09R9d51Osbid9dD0v8ehNJfnM3B/T9stWdwNCmTagcfOu5VvgERF//JWHde+R+DpWhG8adT/r6UC1y6/vnu1/6PKGdtfR6iOO+NNrp/0PXrH/LUi6hY+56V8/9WsXpeyLBnTOGNlJ9dU6Hk7z08v7kEmyttY8aY37LGDMN4DMALiJxkzAMYBTANIBla+2WeuGY7Di5uI+fuo9R+ATbUAUNCbZ6cRvFSaC43Py7fI8iAHHjC2N0HL7Fna9CSnxZ8VnfutfnW+B1A99ALGmGJr6+PLr3TPtnk0WgFiFCA7tGdww+EWFoCEChklgIqsdm3I4xTbCVMkhDD+DtkufcbuCKmXnRnbRvMA8NSG7dSRts3IFCJmn6UWVtOecbWCQ/ctxXd7VFoW8iJXG5n91Hu938S56l3GVRK32Ir65rfPXTfZTLjUPSEv+Kkp/BQSAqVBAdfgfKjz1WE3z0ZL0mRpWbhRd3URddB6IBda8HgLgCxABsVXhbq/phi6qPpMnjwwBgqy4b1krVxxn31BcE5VUkVl1DSlByHlmtVO915RoAJbj7rAT0fy16itgYslBae/EaPnffb8KW/TOl1dJVfPmfJhZ9o8fG8NZfuRdDe3fXFkbSJw0N1S0GdbkODDS+bEILCfr+yH0FGn1eumOert/6WDuCrfYbrdudWz66rHVa7ue0hZv8aYEwLZy+h74FhpSRT/h18yPpaWsxN+9SR3Q/F8dApWxR+vrz+MbjfwEDi/O/+SXc8No9uP19b8G7/8mPY+jWYays1C1D5R7IHEjfE7eNuegNITlPW9hK+9i9u55H8WMp1nQi2AKN91f3m7U6v9Z4/3Wfpy3qXMFW4t61qy666usaGAAwuJrctxvqj6nGcV1sFvcNcg/Ff6G0JxFc1tbqYnQcAxgoIzIWA6/ZjZ0HduM1h16FsV/98Vpbu/5yGeU1i++d+Q6+/PCTKL90Da86/Drc/tyXMLLrFQx94mFc/f6LWLtWxt7X3ohoZ+MFNFjYVoDIALtevQfxS1fxOx/8d/ja/B/ga/N/0HDOvrfcgsO/+uOwlQqe+PX/gj//N1/Bn/+br2D3rTfijT97EN/98jdx7fJVrF651nDeX556GgBww2tuwqHpH8Gu/Tfghlt3Y+feHQCSTa8b3ziCXft3Y2hnctNkg2nnzvoYs2NHfc4l5ST3W/r7oaHGubZPsNV9lHY1I08EuPUjufcGg7fvwat/7cea/HYODgI/8n/7CaytWnzhbb+CP/vBrTj7L38fd/7aTyIqRLX24LpJcMdl/eSBWNwXCvUnHfSmltQteXJCtyFpJ3INQGO/pwXRKKpbhcv16A1jiUM/sSHoOSvQ7GtU3xvpo8rlqnuNSpSUg+fpEX3trpW+r9xarUd8m3Byzve/VMTy//p7+OunvlkL/9K3r+BbT3wdZx5ewu3vfXOyERwDtmLrG7XW4pUfvIwfPP292nk3vGYP3jj+Jrz23a9H+VoZr/3x2zB0wyDWVpM6Mjhgk3t8rYxv/+FFPPW//iFgDN589J248Q3DGBgwOHD3bTBRveP+xh98C2f+5R+g9FeX8IVfWcCX/tnn8POnfgkDe3bjptv2YNeNBZTLwNP/5zk88398GTv27sC9H38f3nD3Qey85UYMDJha+cZxfWyQ/kzKVcYFoX4v31c7N46B+JVruPbiGob239T00jG5F2svXEX5WhmD+27At//om/jDf/4Evv1Hz9bifuHZEn73H/1O7V6+5effirf+7begUkFSpl+7hOED+3DjG2+q1Rt56ZgWNWVzT4vW+k/PkfXmqB4X3ZcxSnj5za2/ofFc6pnEpedgvvlb2rsr9GaOxOvO+WSjSa5TX78OlzbH0OP1kJqX6jbilqura0QRauvP0PzGncvruYn+TfqkNAFdh3HnO7r8tFFLVnzrd/d/6LMum04tM4H2BNu0dWYrdDmm4da9UPzdXou3S6eakd7AdNfCvu++8VqXj8zl5Gkwd97YLfJa2MJa+2FjzBSAjyERaqv7LgCAaWvtI3nT6Deko3QrqR68dCcAhCt8lsbXS2vGLHG7ljJuhQUa33IpEwQ3XlfokvASpys068eCdTmGLCF1Xn1ppwlXvvjSdpXcOHxWlb70fWHcPLk+bPXisiFujw9bX3yh63YX95q0ehEaEFsNlPp3LZrpvLnpuhMFvbnQrTbhiu6tcOux28bThAtX3NCLxVDd1vkM7cRr5Dp0ObkTKEFP6twJoxtGiyuyANRvZg1Zo0kcupxkwuWKS/qY1E8RbOWah4aQCLbG1kYw32RdxxFCh5fP2mrMnUj6Hj+TiaP8Jm9U1+fp766PQR2fCD16gh5yiSATg9276/HIRFuOAcCL37yMP/rnn4Mtx3jXr/003v533oUb9g1icEcBsSlgLRrCtdJ1vPDn38Z/PvYfUTy1jJ3Du3DoI+O48caq2DS0inIcYejG+j0SAU2Qx6iB+sRaJuq63LRAodu/OyHW7UyErVbjqC5LedmJdi0hosTgYP3xez3hb+qL0ezGQ9AuBfQjhe6Lwtz0tVsIsRTTbUzilnrrzjX047q6/NwyTF6AYvHycy/hle+WULm2hpd/8Aou/8X38cLFFXxj8S9RvroG9xH0t/y9H8U7p38MO3fVRSMRuKSdyHgU6i9998kVbOXa5JieDEtZS1lJPdL3QvofH2n30zf+63Jsx5+oHpfduiBzIi04uPdR6nXtkdNyAWtxAeXVep60cFIxA7ADwM1Hbsf7T/+Dmrh97b2PoRxH2HnXbbXzXOtsoN63iQsTuZ87duzDLzw+jS/9iyfw/LlvYeimHbj7438TsTW4+Z2vxc4bBzAwALzmJ0Zx4b8+g+/8wUU8d+bb+NrJRJQd2rsTP/wP7sLgUIQ3/cLb8cqlq/jmk1/H/re/Fm/70KFantz+s1wGKlZZ8quNQP1Zrl+XtxzXfo4lXvG9K5ug0u61BevLL9f7ANmEMCYRPqV/k3h0m5X6KOJxpWJw6w0v4U++/2r84f/8BfzJf/wq3vvJSbzm0Ktq1yT3QdwH6acPJL81UdPW3X9oNza63l6/Xj9X7qP2oe72V5KW9CWy6aat7KT/cudout7o++GOk7qeShg9l796FSiXB5NxW7kQkfKobYDaen50f6i/t0Lqgis8yN+X/+ffxcozf43Bm3bgrv/xJ/Hu//EncLV0DX/678/ja58+jxe/VQKMgalGZAqmOhcwiAoGb7znIF595PV41z/6SURDA7X6IGlKeQwONm4y3Py2W3DogXc3+EXXmzvCm141goMfeBeufmcFT/yT/4zv/NGz+PQ9n0yuYyDCj/xPP4HymsWf/Ntl2HKMH/7v7sQP/51DtXuo/Sa7Y4PUGxmr9L2V9qHrURwDQzt3YmBgZ80FkxzXa97BG3Zhx43JPX31j96OX/zdv4/PvP/f4oVvXsGtd74OP/jqd1FcKgIAXvz2C/jqvz2PW95+K6wFnv+z79fyMPl//X3cdOBmDO7d3dAHlsv1OYUeU6UPle9SJ+W/foJOj6m+tYcW/NoRg/Q8Uc8HBwaAH5z7Fr7+O3+OXXuGcMd9b8POV+3Brlt2YXDQNJ0vQrTk13VnoAVbPY+WflyvQeSYjANyTK9B9DH9XbddvZml81SJwoKtiMH6Prjzf8Ftn24f4qYv7cx9f4XeGPMJsPqz/h+aU/pwBXKNnhdJvKG45f662kqv6YWxlW9jQRO612mkxePrz31PnQihOZDMKd21vy9+/eeuCaWe9lKnq+W9G5FYa+cBzBtjDiCxrC1aay92I+5+xdcY3cm/SytByDdIuAJkwwDjCJO+HaooqgYE4PNh26rhuPlKG8gk/VAD0OnKf7fT0vly/yT9NAFKJvV56WTAdvPky2PodymLUNzub1GEVAvb0Hedh7RBrBNa7bZl+R3w/x76zbczqwnVI1+9ytoefGm4edKLS6D+X/uzFL+G0qb1C4BckU6/VdgVrrWAoRe5of5EP/ok5+uJt1yDKwq7Ey3X4qXdQcud4Lhiqy4z+V7r/6xp2PCRc2TBohcU+nr09UZRfWfUnbT7LA7cMtcLW8mn6+NK3hosuAsKbfWoLZ30/XcFO7fM5Xr1ppf8f+bfPYUv/d8/BwDY//ZX483H78TIHcMNjwSXXwF27N2J2+69A/f/xUfw73/sX+N66WrLfj7Uv2gfgK5PNC28tELfM21N7MMVKOK4cTNB11uxgtX1TU/63EWCPqb7C0mj4ZF2NItSEk7i8G1manQ/Ke1Vt5XvfPk7uPLs5do9tBaJteJr9yAaLOCFb12BLVfwzKfO47kvP4vK9WaVo7BjADe+cR+G3/Ya7HvLrRh+66uw48YhrF0t46YffiOuXk3SFz/J2nJYL6rE6lGu270fGi1Q6TKTOK9ebfR7LPVT3vKt65SEkXxJPFqE8AlIUr5Sbno+petmaFO+1qdUn26KnHPcONy26orRul+pVABjo4bNWv2XtknqumLJih4j9t62Dz/9vx3FwECy4WNMY98FAHtv34dDv/zjOPTLP45yGSj9xXNYffE6hn/oddh100CDn9HbJ97UdL6LFtbcOaPU/3avI6389Rgmbd61atP3SG8eugs0SbdSAd649wX8nXecxxf3/By+80fP4kv/7ydw2z2j2PPGfXjdPW9pumaJz+075L/eqPO5RJBy3bGjPpaJmOJ76Zjk2U2zUqmLhVrAlzqpBVu9SSNtWOc5tDDXZVdzPeS5J6F7BtTbyYvPvYwrF57H0K17cenMs7DXGq26df8ifOsLf4UXvlnCi9+8XDtWuV7Bmz80hp/5xH3YsSPZsxraswuHfvnHMPaPfqyWHxlT9UuiZJ7jiuPis1qXgX7aQotd+vqk/uk6LOfsOziCX/idv4dnP/81XC1dx5/+u3N47ivfxH87UbeC/5nZv4FDD9zVNB/Q/bSUjU5bxFldVnoTUM9N9RMBEk7ikDFeXNzUrdsj/O3f/vu1zYWdO+tlePF3v44//w/LtXzd+Mb9+M4fXMDaS6s4/f7/AwBw0237cPt73ow3/8IP4+Y731AbB6T/1q4TtGgH1DeP4zjxSy2be1Ku16/Xf5d5mztf0HNAPV948fuvYGDnAHbcONQwBwCAr/32M/jqv/5DXPmrH0BM18qv1DvBL534/aRs9uzA/rfdCgC48o3LuH7lGm54zR68/qcO1PJ489tfjYEbhvCn/+YpWBiM/tw78Kaf+yFcKV7C4K4B7H/HaxvmJXFcf0JB5gZA3ZJe6pVs1mnr/FdeqZ8r91Dqr9RLd8N1rRKhYkxtc1HKLNmYqYfV58hnd5NAzwPcMVv6KolT6uDLLyf5E7cZUl/lXutNJN0H6bzpeHV+5TzdJ0VRfY3mtuO0+Zy7Pg1pCzIGdrJRILRav/rmZf2Er2zcPOvv7txN4siyBpWy88095L+eA7jzu1b57gVdEWyFqki7pYVaICwY+kQvvcBrJdjqTtVd8LnIJN1UzWN6XWF8nY5MeHUYbYmjy8MVZPV/wXf98t1n9ZdWlu75afcmlJdeN0B3cgrIoi2xnA0JNfUI6ha2WQaMUIfkHksjrcxaHdf3Vw+iWigJdbYhETdr55wFLR6m4S6u3ONAfRLrE/Vqi+yA4OlamQGN1lruRFz/d4VFdyErExQ9gfKVgxZBs9Lu7m0rsT3L+XKu+9iz1CmZALmTLD3BlHIV3Hbh7ti7i1CZ2LqPnunfdPw+cU/yIH/6dy1qSJw6n2nl/Z3fv4Ad+3bhrl/7Mfzwh3+q4aVjPnbdfAOGbtqBlT/9Ln5w5lmMvCex2Et7/E3nRf+5m2t68q+tSVwhRa5VylJ+a1ewlTakfb3qx+SFKAKiT85j4LdPNryQDlU/x1GlAFiDqPpiO6AqPFQKQHkAhaFrGNqxBlQKiOIIQ2L9XQ1nKhEKkQUqyQvodg6UMViIUY4jlNeSN8wPDZST86rui0wc1cq8XBkAYIDY4rlXbsB//Yu3NvhgTsPA4i37n8drbnwRN+1YRWyB/buuYvfgGtbiAla/UcDgt2LYRdRetnd1bQCDhRg7B9eA8gB2Xd2JnYNrGBosJ95DDWp+oAsmxkChAgOLwUK9A9Q+oWvlXL02C4MBU0Ehsg3hCmuDsHGEgYFy3T90pYCoUoAxFohiYKAMG0d1QdtYxCbJNyILYw2MiYHIAnEEWJOcZ2zyOSlJRNUXDjbcV1v9Xikk+RooJ+dq5L6fPw8cOlQvZ6d/kDavLXK0uK8tpaRel8tAjBg4//9n773DJLmq8+G3qsOEndmck7SSVnm1WmWBEEpICBAIIYSxsY2NWTD+2ThgYxyx8YeNwTmCbGzjQDZZAiVQRnmV067SrsLmPDvT0131/VH9dr91+tzqnt2RkG2d5+mnu2/deO65J91zb90HXHxx1n4aAUmMNE6Rxo3mRlWMpJHhIK3UM5yuuR/pilUdBozKJNVndFNIjWNGetLg5XqxsoN1TDt8PqKovTGleZmHBrSVr/oiG09HscarF5BAsJsF5DMqB/TOZOU7PHat0XfEiWdAa19bsjWNUC0luPjr78bnz/wHPHPN43jmmscBAH3TB3DR134G846dk+NLdJgp3vkSOm7m8mP7QT7OjQxu/KkTUXUj3bxgPZpGvOkYvSgi1V1Ur+gm80MbuXSKAvl70ImT0ZEEOx5+HltueBgP/fMtSBv7p5T3z56CJecfhaFF07I5aABLL1qJPXvyzj119pBeG432SSggv5Gjmy4DA3l5rFencW5Yh42wtfrvyIiutwgLzz0K9Tow74LjUYoSbL/3GSRphLknL0W1GuUiyWl/2as0FOdKB54DRMfF+fOO81unvQfevB903nIcdN7yllyu1YD6WANbH3wBe57cjDV/fwt2PLYZ919+G+6//DZMWTCMRWctx5QFUzEwewpmHz0Pi05blF1d1QCSCNh45wbc+gfXYGTTbgzMGcaJv3E2Djmn7QClrkUdW/UA1T+sbkPavf+fbsNdf34DRreNoNRXwjtu+SD65wy38Lj98S248+NXY+8LuzA4fyqWXXgkSk2+vvDM5aiUEux8ZifWX7cW9b2jLbzMPHo+Nnx/LXY9uQ0PPbkNg3OnYGTT3g6cbbxjPW79nSta/0t9JQw1X3JXGawgTYHxkXFUBquYcficNh0253rqomEcdvGx2L1xBPNOPRjD86d0tGE3Me2GlerS5ThBfO89wFvemF3jU64DjQjReB+SKEVSGW/zoDRCK3CMMplAOR2lbTnN/8xLOZgCSfOFvkmtijhOkJYbSKMEaJSyKkpNeV+ud9bN9oBWvVESyTizfsUXX4r0PatzfEvlukYpK89gGmnKi2JXnkdQWpvoJmWI9/bi/AyVmyybeqJwoH6sIE4+8xngC1/I5t7qdE39Mi41WvofkNFCHCeI6mVESQlRlCCKU8SNGHESt2ml1EDUKCFqlBHXS9npz8o4cMtV+z+QAPTksI2i6G0AZjiP7kzTdI3kmwbgXADXpGm6a1J6+DIFz6nabfF4wtMTlh50c2yoMtxRD1964+xGhPpRtIsRchaxn57DVp1J1hkFdB7joiC3delumJa3Tivtfxznj6V5uzIWt6rMamRQkrQNE9Zr70oscrzrf+IrTdu7m40GUGq+kX18pH18VxXIVt3NFwEltbxhQqWdApZ0qbgLMfIgDTl5e03nOL00qxiFmHXIoTxZTvXQJkwvYMsUbQ5oJA9foqORZsxDxdLSOJ/Z40b8Zj2MmlEa15c0sB1usFCJ5R2l1pBmfutU1Gf2+JbFiacEW5xbvhH6pkMspGTb/tGAIU70GClxQ1AjhGVUWbPjIz7ohNFoHALrt3OnkYAhhy2Qd6CHxtzqV6OBu//6Vtz+yevRGK1j4asOxqkfeg327IELnAc6D6YfPhfrr34Ut//ut3DE+f+vnXHNGkQXvh5xKUFpvIxyuZEp6QDK4xUkjVLLyViujGcKdlOxieMEpThB2oiQpNkR0rjUaClJSKP2SzTBMYvSTkXLKlutzLQs20ZBWqsgRYSkXAeiFEkSo9EgkTYdpnSM3v4DxGggOf2szGkbZQ7JCGnGY9Pm5ij5d1Omjicl1JIy6kkjX584bMeTEpJmPY00zr2sLsrdINWeazo2kzTFeCPCY1tn4+b1S5E0HbWnLFyP5bO2odzEx8h4BSNN528lbmBa/yhqjTKGq2Moxe22xpNsjkpxinqS9ZFO2FKUII0ilOIU5ThBOW6+WCtOW5+o+VZooBnhjjae4qT90j11xKqTt/2yvQhpgHlH9o6Gjgxt/HETAWnW56RJRzoH/N3a5I7ysibDc7t/oZcV6rxj5SrgojfDRgrqx27KqSxW/pCLXL74YiCtIE5SlKIEcVNwcgzETSOKgAitMSerjgPeeKHr9KTsTZL81TdKbzyGqw5WyzutfkMZRlzaO6ltWZUpntPPfuuHBi5lk5dPx6N162/rWNf5KZJfCpbflssAmk7/chm49OrVqO+tob5rBHf99c148N/vwcbbnsLUOX1A/yBK1XLLQUwnsupucZw5kSmbeKyeQLkNtO/utZGHHJPKWXUQUu7w5XrEk90cLHKaE18avKE6iDr32K/WVUayWafOwCTJj/exf7wOD19+c6v9RWctR//sKdixdgtKfWWc/RdvRnVqf2ucjXrmjK1UZEMgjlAe6s/d12mjLtX5zvERH1Z3tXSrDmd18is+uf75zXXmBW1oe95GcaUaY+mZB7f0eX25of1YmvU2rdVO0Lyc00Yjo0cgs3f4gky7Ru2Re+o8pAsbpcw2WlG91RIGT1uE6pmLcPSPH4+xvXVsvedpPPhvd+HxbzyMxz5/N3qF3c/swJXv+Bx+8ZkPYWhoShtPjQaQJujry5DW39+2M1VHY7+2P7EdV/3Kd9AYq+OFu59DZUoVM5bPwvbHt+IHv/Bl9E3tx6FvOBzje2u4/revBgCs/PnTcfrvn9/S70dG2nei1+vAip8+IYeLWg3Yt6eBnU/vwNT5g5i+YAA7n9mJHU9sQ5ICA7OmAKUSHv/WIxh5bgdKfWUkY3XsfGYHRreOYOrSaWiMjiNNgOdvX4+xbSPYs2EH5q1amOE6BTaveQ7PAXjkP9s4nH/KEsxdMQ+v/eMLUG1e68F5VjpQGlQ+G731YpTiBqI023zNNqpj9KUNlKIEfeVGxhuitCWXs/5ELb0FQEu/ooyjjOVvyjjmox5ST2KU4wR9pXqW1lx33DDvL9c76mZ7QCY7G2mMeqPtsC3HCbBmTbZR/v7VHQ592jlWxoYg5PeZKNjNM/apCPY3oCm0ufZigacHdINQAI3yWUKSAPj8F4E19yI57gRXp+O399LqRpJ94lKECElOD8v1SXXSqPP5ZECvEbZ3A/g0MmcsAHwGwDUAntBMaZrujKLoHgDviKLoEACfTtP0qUnq68sG0jTvAFThqwIaaC8uCiULIYet5+hT52EUIYs+iVIk8rIi23YcA2DEiOwkq8Bm/7QfWp89QqAOD8UB86iT1SpjoTvnJhOKGJV1bBc5H0OGl+486/8iRsp81jDRMtx5sxG2KhRydZu7bnXsOj9UqDlHatB48x8aA/tr+27L2HRVfDX6QO9PA4oFRYdTyjwLGVkhJbaboP1RgHViekLaU8YVip57delGgBq1k4mbkNHTbXOgyIi39zfrtx7J92jSOmz5Ai1Co9G+goLl+UIXvSvN8kVGmY2O5pVxKyu0X7y7L0k6yzG/OlFYhps8GjE7sifBY/91J+762JWttPmnHYxVv3Z2LlqLhiXHQYOTeHvN374DP/y97+DJL9+NL73uclz67XcjedPFqNfLKKd1xCnQSGMkadKh3LRw7Di+GmmMepq98d3LQ6BjTZV2KtkhYHnrKE0RoZxkShYdphHajkU663DKWUje8VYkP7c6m5sYSBMgigHUgMY4gBKQqtO/BoztAspTgOq09p2QkOOIpAvOc60GlAYANI+O1/Y2jd0BIJYjnqTPXc9sx7ff/u+t47xH/tjxOPJdJ2La0QsxNBy3jMzpRg6Xy3naaBlf40BcAuIyEI0C0RgQN420qAQkDSDdl/UPg0A6AqTbAUwBokFxLjWAuMm/Izp8yiJ3RR4hauKx3k6PKkDJvJihsi+rszogTqIaWnpLuQxU+4FYdSBxOMSlrP4WD2y2F9PRWAeQyhHWRubfb+kkSTN/rfndn5XNExpQGs9H3dirNLiGK5VO407LAG39qMWfPrAaWL06M54H2nOqZZIEKDfndnCw/Z9OB85RpZKX8ewfj82rzB8YaDtdk6R9B7a2rZtLQPv+UaAdLa/3dbLvGm1sHZPqJNL/+oJXxZWCJx8JrIfOLNVB2Bbn3duYZJ0ci72WgPW1xioO276BEvoHB9C3eABnfexcPPjv9+DG37wCN/7mFZh34mJcdtV7WnVxvhghS4c6HUlxnDlRdEORm4PEE5B3NrNudUiq3FEardezuY+idiQv9QLKSZbR8vy29Bly2LbkcGU849GD+bFXKu3gBzr+azWgtnknBucO4cJ/eTuWnrG0FQ1LWTk01B53FLXvJOYRfnUEqMOWLy+kc1hxZJ2KHs4IqgfwJIc6ZOlQp4zlOlAaLZfzL1MkvtRRyrXHOSd98Jnaa6zDzofStrUBVf9jXr3ndTLBc6goz2jZuaUylrz2UCw791CMj6cY3ZedAtm85llsuGEdypUoN44IwJLXHoLZKxbg3n+5Gzf/9pX4xk//N6JyGVE5Rn3PGDbc+CQAYNFrluE1/9/rsWjVXKy7ah12Pr0T+zbtwo4ntiOKUgzMGsSGW9dj0z3PAQDmHDsP809chFUfOA1zT1qK7/7slzG+ewxPXvU4nrzq8dZYTv2tc3DMe07tuMs+5GAivqsDJcxcPqs1P8OLp2F48bQcH135gVfnnMrElV7hsHvbOEae3YEZS4cwOCsTIGNjwMiOGtZ+8W40xsYxsn0MWx7YiOduXIcXbl+P+/75Tkw9eCaWv/NEnPRLr2rVy2+uOeqK5Om1d61G+d2ZrCqXATRpcqwZaBT3t3mQ6q9JgpznqduVCCjneREoz/dkh12S/kyXSJtXPyRVAHGWnrBM3PwArZe0J+Vsg2dc+F5cAXDeeUiSqIMmQ7Tq5Qk9U5r30m05wPcrFf22ab3achO1++w6LuqLfWb7rvLUe65gTzioD8OLAUgSAEkMHHcCxq+4GonxQfHO+qTapnegzfP3jTRttD4gqYgeX2qXU/sqqQLxIDAYRsN+Q08O2zRNn4yi6H0APgHgw0X30zafXQ4AURT9ehRFd6Vpet2k9PZlCiQ2VZr2N7Q75Nig0NfoTkYV2QXesWB6jLBVxyTHAbQj8OI4f0+jKghWiaECpQ4hvVvS4ibniBZnwv5E2DKPvSvQMqQihd9LtwqQKvZx3I42UfypYCUebR4+bymGzd3HpJyPXNR+Z4p4Pp8VduqU1L5o1IR17lll1UJO+TY4K0q3c6sOWzr0vTWjdVqmzud2bBa/qlQrHdFRxvyeo9OjGYLtb9EaLBL8uiZ03npx2E5GhDHX5osBGuXULV9o7l1lqYvDVnlwNyVE8UzgHHA92DfSWoVb6dh7Zv9r22yfjg3r5LFGk3U8MO/NH/wynrnqEQDAyb/+WpzyoTMxWotz+byyHeMoRzj07Sdiz5Nbsen2pzCycTcG3rca+NnVQH/mmGvsBep9QKNp7CcjQFJDSzFOBpvKcj3jT0k5S6/XhNdXgVjuvFReqBtKLZ5eRlBjoXGuddSaEcUVcT41KMuazqyU79yK2wqbpSlupNn1zTQb0WfB8hCVh6F1F8fAvhd24guv+hukjRSD84ZwwT9fhoPOWNJSGNWJYPmNRmmzDzSayiJX9Lge14y9r1bLqCNGX67CNlmPxaF1DNApo0Dc8x5Uiw+NYvfq9dYcZaWNDNQIwiLZb59peeXXobYVOO/qlKf80fHzo0fnra6jz7ROyy/suqIjoSbrUJ1aPIrNsXRz2OpLgLjxZdeQRthqf6wuR70A6Ly3Wfto5VVIn2U9Kv/p0EuS9jVDdo5VV7Av5mJf9G7uWg2ojzdfpjXSNgAbDQBTpuCCz/04RjbuxtNXPIRnfrAOly//JF7z8ddj2RuOAqaVW5s5xCGdp7Va/q5NQrncfqEi0N5MVDphfnuXo87HyEh+rJxPjfpVXIcM9IkAo5D0vQv2Hl+mffsnvoB1Vz6K2SsWYPGrlrryN6S/M00DBCwPVv2TOONHo2Rzege66xQqD1jG2kd0CqjjwdNZlTeQPqxOy+dcP1ZfsrJLn3n8QtuzgRXKZyy/0r7zt45NNzg0GGV8PKNhrq16vX3PKnWwej1qOukjTF+xBLOOX9JyynNTR3W+hWcfgbkn3I9nvv9Ea8wzj5qHGUfMwfZHN+PZG5/EF878BwzOHcLIpsDRIwAzj5qLIy5dgRM/+GqkzSCaeh14wxd+ClEEPH3N43j08/dgYM4gTv3IuSgNDSBJsvEA+Y0DT+cnvUwWlPormH74HPQPtNPiGOifWsWqD5yGOBbcpg088OlbsOupbXjy6rV45HO3Y8qMKg46/3BUZ011ZZrqB2rbex992ZvaAZbnWv5t5UcIb6QX8kzr+FUZqza0VzfHVCoBqbn+a7LnKARWF/F0/xcLNFhnImX2J4LXA7VJgDA/1z72GnzXS5+72dpqm6ncoG6ktKR6+WTDRKr9kzRNL5tI5WmafjKKoj+JoujO/01XJFCI2KNEdsJ1V4npdiKVyEgInqLPetSgj0oJIqRIys4OFmQBlBqZw1aMHc+xoMYnj2wpgdu+e+NRo03z2bGq0PaeUXCr0gLko9os09d6uZitQaeCRw3pIqPNS7MfvXhe82t5NYR1jtjvJGkeG5JjY3bx6/ULUdwA1qxB48LzETePvSKNkCYR0CgDUYoUyBxb5Toab7kU6XtXdyhbuntv8YnPfAbpl7/SdvBG7XsH48suBVav7ihjcalKMMdPp4M1xCwzVcND81p86Jxa/FJBVqOAUZTWCaF9t+va9s1GPmqblj4tftVoZ1l1INsd+hBMVGh6Qo5zocq2Gi2EIsUpZDTT2NN1aPNZ40bL22/SSDewvKtbXvJdzav8jUaK3j3J+eUa5csP+M2xcY0R9Hiwdc5WKu2omihqR8IpPWldcczonBS7n96K2cctwGs/8QYcfMbiLP9IO49G6OhLKYhfvdJh7soFOPKnT8Gm259CY99YyxnN47iMHrRKC/Fix6vrjIabGuo6PqUDXUtFihDXjnedBdtWsIq4VbzsGqaRQSej8s3+/vYLZ8jDdSysm7jhkVIa4ED+jkQAePLqtfj2O/8TSIGTPnwOVrznFPRN7euJ9tWIAjodgtZ46laHt97VWW3BcwCQtxStYUaia3k6rnQ+1AGg8tTyceoOqk+wT+SxHj/0+kFQvUXpQ6PoGSlI+qC8001pOkyV3kgP+hJEwI+wtbJzbKzTmWIj7xQ36rDVjXWOQ6O2lG+rY4nOTOXzSivehqb2RzewCXrXp5a1Bl0vxpkF6mne5omlb7Zpn1tZ1UpHBMj7JIgrAFj42uUAgPknL8HYyBXYeNtTuPr9/w0AmLNyAaYdNB2v+tiF6Js9nItq1HVmYSLyns5JW5eeLiFNaDQz2+eHafZFckoj6uBTekuS7GVEpXolC0hoRsMxUjZJgH17G3jq6rV45D/vQhwDz3x/HWYftwjH/9o5rXw2wtbaG6RrvUKDfdR+cq0p/9eIXMo7izN19Gq9unlj72ZmPoIY7fY0AAEAAElEQVRuLlpdgn1Re0+/k6RTVug6txtRugZ7cTIrXXNc5AfqcA19WFa/PXmj65l4su8ACPVX8aq/tf6hRdPwlm+9B/H4GHZuGkPf7CFU++IMV7U6bvroNXjwn2/DyKY9WPbGo7Difa/GlAXD6J8xgJ2PPI/xvTXMOekg9A1VWuvDvn8iTbO1veis5Tl6aDTQetFaudz+TX6qvJJySANIPPlJG8YGclj5yjkjrdOhqe/AYL5SqYSV/+81Gb39wbW4/+9vwg2/8R3gN76D6UfOw8LXHIo5Jy7FzMNmYuYRc3Lyipt+yqvU1uJ4rc2ma8luVtiNE/3t0Zm1HT061L4pL6TcszIpTdE+9ZW058jbPNRxeH4C/rbr2wM7r1rWQlGeXvJ73/sjT9lv7cNE27f5ip5be9TrQ6+2odXr9Tonpnv3FduTJtZuYPqP1GEbRdGHAKzumtGHPwbwkebnfw2oIhJyClgnbreFq4wkVI96+qM44/yNUpsZA70tvm4LTZ3RKhQ0X9GuBBeXhwP2URWTUB91URBUqFtQ/KmiwPo0XxGeugmAojnSNm2ebkpTknQKDDumVt/f/mNoNCrZEeM0BZC0jh5nL6XJOp6kEZJ77kXSKAM/l3ewaqSOHX8UAfGXvox0zb1IVq5qP0uj7KUrQEd9HqiRS7pQ5djiyJtXb4dUy1DBBsIC067ZbuAZnJpGnFmlRI0VQq8OWypzqhwB+ZdUsF41wtgmlSgVSGqUaBQPgcfkeYRWx9QLjuw6UXzpWtG5VWcLBS2d1PYuQY3E45HJUtzIjuWLMFWe1us8q/LNfh0I2A0oayirIc71YI2kKOq8tkAVR6WJvdvGcPe/3Yq7PnU9AODwH1uF6ccuxuho27BlPaOj+WsXaKQzWovtjzSjxNJq5jn+jzM+g0MvXoHjfuVszFk+IxcBQ168d2/+2gg1RHhMmu0pT7NOK8Ud++jRmOWlSuNalt/66ZW2vbm19R8Ivdj1oPS784mtQAqc+fELcMS7TkZ1oJQbS5Ex22s71kjodSy2rxMdr93wJuhRa9KIzpsnc3vZjLGbspYWlO66Kd7qGKHjxirx1Fns5o5G62ukMPO3NuLF8c/+kl+yD+RZbJv8QjdGihy21uhVZ4nFkf3ofNGxyvvPudZVT+F9jXad25NYKrO4wcTyLMd6bDSpnSfKVeJjfDzbVCHfofNPN8Ct848yhZsyKodUbmfHIMdQihIMDLXlKPMzmnL6qjl483//NEbWb8VDn7sTu5/dhXXffhib730ea7/5MN5+zXsx85iFLdphdB6PwCve2T7vwGeUbhy3r8nQsXCspBleFVGrta+/IA7UjtA5I93oRpMFzymnuit1W++Kv+t+8etY+7UHAABzjpuP2ccuwMpfOxfzTlsWdNaEwDoJdd0yipjzzmsLdN6VznRdt/RiYwcRr8pLrd3CuinTNY+NMGaUs+ew7YXnsm72156GIF7Id7hmWb86azl+8iXruLAODOXdQJ636EZ27ioYtOeHG8Lj49l1HYwe57xZR4kXWc60/ml9SCp9ORouD5Zx+kcvwIr3nobhOX0oDw3k6lh0+tJcHUr7xKs9pWE36O1cEHR99OpcsrxR67M6rz0d4+mNdl0CwAm/fi6O+NlXY+P1j+C+v78JOx7ZiB2PbAQuvwUAcPAbjsJJv30BBuZPy9EFca4fykXyG86/6sb21ALtHnWienWrTWw3t4rsdU3TDVHST8752yhlNnQ9v5HgbXzZzSzWoe1rGiGUruVsIFCvvyeapum96FQHAt76UL5Huab90Py2vOWHnKeJbmhaG0P7xP+UBXrNncpXfoCMNw2+CHci9OoHPjlN00/tTwPNe20P2Z+yL2eYiFNAwXMCAfldHAUyBLv7FEVA1Ix09I5r6jffzgzZYbZ5NdpC04vG0e15N+XCc/gqeMad3YX1xqEGno2Cnihwoep/jYTkjqniVQWQd9xK+8sx0FkXRW2BoYKExiUV5SQB8O7VqL+reediGYioRNWBtIb26k4AvOUCxEmCuNzp3LS79YAYMqUEOHEFkqu/18qfJADOOw9x1ADEiLFj8nCo9XdzPnhg50ONviJhph8aHHp0SxU6gj1mnXOWI2+02fFb2rd5Od+arrRr7zmzR+Yo3LSPWocq3LpxYumVtMp81tCxuLdKk023+e1RROLVCmSdV8/pmab5iPu4UUYjjTFey9c9NpZ3ens8Tfuq0Q3ELedH+Yc6PhWPqmAyssA6Y9WA1SPoOpdA/liW3ajSiIA2L0zx9BUPtJy1B194FFb+/KsKnS2hD/mZKv5zT16KU3/nPNz2R9dg3dfvR73WwAX/9HZ4YBWlIjry0oog5JzttmmmxrNt31OYlY7tJoMaQ8qTPWeW5SP63BpblPu2rcZoRpDHv+dEoFJqyRG+FJC/NeIXyPMDNcp1vYecutaZG8KZLVMEnsHpGevEE7+JF88QpbHcS/va717pzhrB3eoNGZXKJ+31F3pck2MO6ZKec1wj8MgT6OxQPqFySGWc9kv5nxd1XIRjzoFuwCovsHj0xqfz0u34sP0/EcPMK+P1Ub8Vz17UTKs/zTtsbRnm0TpmHzEL53ziggy3jXGs+cwduO43r8a+F3ahvHJhi+/TERviJ/o75xQNyGLFvR23x8c0r41kB/JOK5VVxAGdmEzjS8dKcYqo0n7RXaUC3PWXN+LZG57A7BXzcc6n3oCDzliCsbFsIzBJ8i8iI2/znOyKa/bb4l/nRtMsX9e2vE1DD6+9gtJ8iKaVZu3VHtSHtA8cK9es9ll1IMsHld9aXtmrc9Era+0h73kU5U9RWHtIdT918ul8U1fjGGiXMZ8GO5B+x+sR+uZNR9zfjsq2dK8R2dT5PJ6t5TzepePVeVSdTudW27A6jc6DJ888fqZ3mXODjfTCjYEsXz8WvPt4HPdTx2Nk5zj2PrcTL9y5Hrf+7nfx1BUP46krHsahFx+Lle87DQtPXpSTJeVyfpONGyFp2j4xpjaKbm4Qt+yfzpPKMc63rnnyGt1EsLqzpum82LZaOItSAAnSuHOjNKQXWRnFb0/PtHlsOumE82n5TbffE01juvK/buOg7pC7ohNtHBMUf0B7XZM/a51x3Hkis6jPIT3B01+7gdrK2ndPJvZqU70Y8CIF7v7vB8uQe4XQDkDIeRkivKzNqPW2Os8IbTEibmfHxXVbA7JoDFZQefVwLJ4hG1KSbT2hukOLwlO6bXtem57xqEahFZwhgQx0GuAKVHKVSbE+Rt6USw0kaYK4r+00UmGjjiSWtbv0KtiSBCjFWadiZ1dbcaJKeK/GrZ2nXudFjY1enPccS6ger/1eGHeIMXtG6GRBL2vCGkT89pw+3nMqs+r4oMBUIUplmMokBafFnWdAe+vRzoXncOvm8GA64BvxSKMO4UrlgOtD+ZSdW9sfdXTRAaF45TrXI85qQDCPpWdL5zrP9jcVT410tnm5rp+7YwO++/PfwtaHNwERsPqJDyPq72/lVaWV33Tu9fe3X5ASx+3x8+7QlvHSX8Ypv/JqnPTzJ+OLF/4r6ntGMTCQf/sz61ElnW0QH0xn37yoJRoQOu9KS1ah9+jMppEWLE/j3OhmjOJZ5bOdx17kI+tQIw3oXGPENce8/akd+K9zPos9z+/O2o4jlPvLqMtRTI3wKFor9jfz2LVnx6kneKwMnCh4uo7ixNapm0wWdB50I8SjAR2T13YIWGcvTuhewdMfenUy69z20icrG7zn/GhUHf/Hcd6JxrrIk4rWp8dPuVbspiTxYZ0k5KvkDeq4UAOeck3XsXeCBWhH6jHyhfPLCFvlUdSXmLdUat+tacfNcaRpc6OuEaMUpzlnDEHbZjmOo1qt4ODXHwn85tV48D/WYOdze3HQOYdi4OjprkxkPzxjmuvNOpXYRzsOOsooI9SxxXwalUv863wU2Se2b/osbT6r7anhrs/cils//gP0zxjAMT95AhacsiQ3HiBP32qnhBwe7J9n1Nt8nt0U0nW6zUVRmj4L8ZmQEy6kU/A50Kkjq9PVG5uWAdobN+QN3vrr5pAk2P7pPFqcan6lqSIdyuJMx2L1QHXkWWee3Tz30tS5SFxoxLGnz1knotVDdT5Zj70iUHVQ1RXIs+08agCI6hgs49G03WThOKpTKug/YjZmLJ+NlT+9Cjf/wTW4+69vxrqvP4B1X38AS157CM7887dgaOHUrnNldbMivuHNbZF9QFnD35MJqgsrnotsNqbpb/u8COwafinBrmGPZ+kzddjqqUilOasv6/UXIf+Ozqn2Q+sgaKCNlXu5cTRfWuzZbJauLM3ZzS27SR7iWy8G9OqwnX6A7RxygOVfVqAKEO9sIUMG2sQDtIlAo+eYR59rGStEVbHVPHESIRYi2d+xhBaq9kH7yDFTgKvCzDxcuLrraw1VEr22ocCINY1Ks/c/2T6zXi4gHndSg9+2zX57Y46i9lEzLl49DqZKro0c1Dnhc/aN/dXL27vNTZGi1w3SFB0vnrN91F3vVtvyYjsdC9IIKaLsbeFdhEw3pVidKJ5jHPCVKCDsyPGURzqOdC3yiBWNVCtsma79VFrTvtn2tS69Q0rHr8dFWZZHQJUumEeP8nltaiQ6kF8rGn2lkZz6xmoea/V4lUZFq3IcctjqvFIhVHrzNiLoGND1wDGxLkbqJGmEuNoej9bFOfX67PWbc83f7A/bJu40us+C1sPxW2WABrsq56pksx69o5Lpz1z3OK79pW8iqTUwun1fhpvBCs77+0sQ9fe3Xnaj/dHIYBroo6P5dkZH83xJj/aMjwPlviqqU/ux57ld2Hj/JixYObfDMFA5pQaFOgrYnlWs1CkAdK5dbSdkbNZMpLXKGy2rkQshBV/njb/16gaVZ2NjbeePjpX1UFfgywpUdiRJ9n/jHc/g1t/+NrY/uhkAMLx0Opa/7TjMOmI2xutRzjlEXFD+sh2NKgfafbI4sWvSKpseLtTwVV6vijrb5LwonnRN8aMRc8STjcpjnVzP6lTTuoG87LVrwMoTz8BSmU2nOHmzgnWCkx+xbr1zWo/yW5pnNJK9BobzyLtFCaoDKY0pfpT/a5ryJXVyWh4b0l10jnoFthUyykI8uRfwHPGeXqR9tg5EID+Xno4CtOfNOpetTp4kJaRIcqdelL+zfj0hRT7ZP3sIQ4un4cnvPoonv/sobgTwY9e+B9OOXtziqyGHNJ1sKlO8KEC9r5XpWjf5sOpO5Je6MWL1Ny8tlKfRSLF17yC++diRqM/7g9x4KlMqeMO/vwPzTj6ohSNe1aT4pkORY7A6R698zaNB1WlsXr1vXfPq+C1/pM6pOjyfU4+gXlSkQxc5bD35ZO2sej180k/bJE1aHFlnu5WDof7a3xyrdcR7J45C82k/mkfnR6+A4Aa4yjDyWe+dBHoVDevQPOStOn826pM8fnCw3S/Kk3o93y7QlofU0zXqV+fS45v6XyPyLW/VzVLdWFJ90/I70vFpv3Mejv/ls/DU9x7FnX96HdZf/wT+88S/wEkfPgdH/tQpSKeU0NdXztEQ27O8OSQXiugoBFZXC21OhNJ0A52QNE8kc90QH7Z8O38xP+TvInnoObftHBJCc2+fhfJ730CxfO8mx63uB3TyE6+s108tt79+LQ9SRD3pMEUOWwukIaUl5UOTDb06bKMoiqYewIvDJhHtPzqIougiABctW3ZY17we88jqmHwiBPILN6Rce4Yof+txvV6ASgwZGpUjVSzUQGCZiYBlXkBe8SliTuyPfocUNPvb/rcOKd2dJQ5VGVDj2lPsCGpoTCZN9AqWTkgHRc6MjvKO4mfBY3xqKNDYUMZv6ywyCjTd60s3oaFCpgiUnqzjUdtURUf7o84I7+iHNTBChmgvoG1TuVSHrQpaOqTpsFVlVOvS6ASdJ3WKan7LZ9guacxGCnK83rFcfrfmWe55pkOLd51pO70oDTwapmvRGsh27osMCF1DGlUJ5B22zG8dto19NWxfvwdJI8XOh57FbZ+4HoiA0e37ML63hhU/fQKiOMLi847EzOOXYmCo1MKdOiA83KmyHsdtp5GnpCg/6J81hOduehL//cbP4sdv+nmUZk5r9Zn10HFAI4CbW+oIV0NB+xRau4ojTwYQ7Gan1sv5SpL80cuJKt5eXpXz3YxYtqvG/7Pffwx3fer72PnEVsw/eTFWvudkHHThUUjLlZx8KaI7+5x48GQw21eHgTWYLb9hGStzOQ7dVGJ+u+aZRlzxJQ/EJWnFRkB4/fFwqw6CkEETcuhZHHlGHEGPsqoBrXyHa0o38q0TjfyJbRG/yjOU/vhMaa0IL55OofwhFKntRT6zD/wu+q0fz3kQ4pna75CeZnVcptHpbetS2iM+NPJOacbKNNbNsej1I9o26WDccUiwP3SWqeOP66ZcBqrTqviZe38ZezbuxbW/+A08c+3j+MK5/4xX/eEFOOhtJwKDlY750PHopgnXM9cUx2g3VrwjxEBnJLVuplhnvpZTPkK8c51HEbD54S24+pevwLOPHAMAWPiqg7Dxrg1ojGWK0Hvv/yVUZgy1ytoNGv2vm83Kc9i29s3qQbaP9ooi1lVEe0U2hJcvxJ9tXSEosg963UTpZmN4z5mm8ju0boG8nNDyVm+y9EoI8RKbpvmL+BGQv4pG+aanm3r9KOpXt3mbKFg5qzYl9VymW96k/20eoL2O1ZmkOp7KL9WTcjZNXMbC1x2DSy48Gk985R7c8KFv4c5PXIc7P3EdKsN9eMtXfwqju8fRt2QuhuYMtDapWV77qGtO9VHFr+oWmq7XZLBu1sF5tXLZjo3jot5KGyhJ0LpnW+nG0pCll27rMOSA7MUx6en1Rb97dXR7GzG6Oac20P7YoUU8qxe+ZXU5b1zUnawvRsulKRA1A3zScmfgUDcdpdvcELrZAJMBvTpsr0b20rFPTbSB5gvLvjjRci9HSNP0WwC+deKJJ73XCn+rvJD4vchAJTxliJqPoAoIoa2MZA8TowRYw4BXIiSi5NkFo8IZyL9ggfXa3UjuCqowIZPkTmIct4/H8i2XZLYaweJF2Kqio/moQHp4UsGjeOslwlbnhe3ozqxVDjU60otAsnNiHZRqUDCPzleRstiLQpmjqSht3bHGdGuwebQ4UbAOeipHHJ+9EoIKOI1cz+iy355iFlK6bJluHwUbvcAxUahZms0pN0leMITqtm17SrPOmXXcEHTu1fFooztCykaR08k67yYCKuhVUWTftF3bH7uJpIod7+Xu5pTtVTkg6KaT5wDjR412yx80AkgNc4K9h5ttlErA+M4RfPNt/4YtD27K9WvmEXNw0DmHYt4Ji3DKL50GIIvuZIQnx0ogrya+9A2ofX35KwpU0eG3dey/+hMXYWjpDNz3NzfgX1f+JS656n2Yt3J+67nev6sGPp0pakBYvso+FEXYKj49PmXlpNbXi/Lq0X6It+h8UQZahdHWTzlJ/PP6ibv/7PvY/sgmLL/4aFz8728D0I6gJc5UbvT15eUq55VzpRG2xLc6Z1Tu8uSIvtBIN18YLVqv+zRD3s112ovD1rahYO/+BPIvrAtF2IacAFa+Ap2bdMqfQvkUrI6nNEmc6AuDVBdRuuX8KK8gT+QYNdJL51DrqVTad8KxfXWyEa+Kf/2tVyEAedrif42EtmvBrjflRfvjsCXvUSeEfemYnQfVPRV0Leq86Nx4vIj9p64MdG6kKi6jCK2ryULg8RjqtxxDdcYUnPOZd+CxL63BLR/5Nm75ve+hXurDip9a1WE8c+16R0dt/dpf+9zyO+ph2o7Nw3btCYb67n24+WPXYue6bRjdthf9M6dgeNFUPP61B9CotYX56w5Zi2Vf/j2ke0ew9rtrMbxgCH2zhlonAih7bLv6n7KOZTj3eoJD7RF13Gg+XQvEsQaieCcryL9ox1jZ4EUla/SyXcOe49DyzyJaIh9R2eht7nVz+nq60v7oT95v6xj09OHQZo3djCviKQTlp9bZZG3dAwFPf7UfD6d2/KQR3VCzQQuqL9u29D9/63dIxydOQ8/Uyc4+RlGEo37iBEw5eA42370BO9Ztxdov3oWvnH95azwzVyzEG7723pYvQGWunf+Qw1bHQNrRfiq/oF1v7WqNGGZdejqam8Rab5qUchvIUZTp2UDnuy5Kpc4XMOqJKDvPVhewgQacJ3uCgzRs9QmrW+mcKY/RvhFURwDyznUFbw31AtaGYt0WJ72AdYzq76J13Oq7k8byRbyXtKdyUGlI5QnzTAZfCUFPDts0TT8ZRdG2KIquTtP03l4rj6JoFYCPAFi2vx18OUJI+VIoIspedkw0LcSU4RxX79a2XUDMS8bkjSUEqtBYhy3Q3v0oUj66QUhIeX3xnnsCzJszVRg0X0iZ8uoqmkv7PHS/YC+g+NAdZNZjj9AlCRAnMepJjFgEowoazmNHxEZzNyARZTZN0aI9mDGpMqTKAMFTuvjZn/HbuZioUCkCz3HH9kP9UoWLddjdYCCvpDC/HqcI0U8va4j4UUFj58LOQwhvB6Lcsh+97PhqGW/N87uFm+YueEgRVWFr21Z+5R051agkNfjV0UJQZ4o6G/iM9ahDRDezymVgdPc4djy1Hbs37MLXL/1PAMDyi4/GIRcejmnzBzHrmPkYWjDc6rtupnntAfm7ZdUBE8e+8806fViW4+ofrmDVL56BqfP6cdPvXIUtazZgwfFzUS7HLcdRmradK6xDI+etQu4ZXkoDBwqe892jeavYen2yz5S/dYsk4GfPpr3Y8cwuVMrA9EVTMGXBVIzvqeGQi47G6y9/W05u2ugRtkMHaUj2qFyhwaF5rOFC5zDByvJeN0Q8HHiOIu2jZ7x4cnmywYv6Ajr1or6+vCzUPPqtkcKVSlvvUUejNaDU0a71ce0AnZv0nsNWN0jUEanyxzozukXaWfq31+vo/KjDVh20Xhsh2U8IOW26yY5uG5j60ehMy4tUb9E+9YQzZ0Pc63+RLExTICqXsPzHTsQh5x2C/zj5r/HMlQ+if0oJh5y7DFPmD7fy0img19eobmB1Bea3zlClJ7vWQmuD/I9j3bd5N27/4+vwyOfXtPLMXjEfO5/cil1Pb8Pw4mmYu2ohDn3rcVj857+CSilFVI3QP3UKjn7nyhxts35PNti0A42wZTm7wab9sXJQrzDR50D7+jXts9aj/7Wfdm3bteddx6BR0KRdbm7p6QltV/mQxbWCbu6SlxStW6ULy+e0vyrfLY/XYA3KINXfxsfz91bbvHb+1RYJ3ZeutpLWoWtG00J3x+u60fr40YhQ2mt2HJTDXFtqm7Ft9sc6/5mHMl3nyMrcer39Yl722/JCfnQTnnJG18Ki05Zg4alLsG93HdMOmgaMZ3c/bbjpaWz84VN48O9/gKPfewaq1XIH7dlgKW996Nq2655zl6aZnKa+S9lbKrWvHSJPp67CflAH5vVDLf4QNzJcmU1V1mP1Rktf3EzTwCQL1rZh/ZaOdY57saEm4ly1di3HZvkh8eWte49PW7CyIyT7u42LoPLK2nGePpUkQNwoIUmjXHR1N9ucaXTs65yoHs08Sh8eHiYDorRHjTiKokuRRcpemqbp13rI/zYAXwLw9jRN//uAevkyg6GDh9Pjf+fEwh08u8i6KX4hpwiZpAq71o7j/fdlP447rqOM1hvdf1+W1sznKaS2bW8x6XiVOC0OdDeIRqY1wsmcLH6KxmH7EjISczhyynmKaVHbIUatAlEdA7Y9r192HFpndN+9Wf7jVrp4DtWracQ9/8cP3Jddn7FiRUddVBJsPUCbxtIVhnbu66S9Ihq39VPRsQ7BovWh9TDN/vYcjNq2jtWO17Yd6pNdM7o2bb9CdRWtIQ8Hlp/oOLRN4pXPrQHAtrUdvXNPDVc7dtKU0j3TdS3rGFWZsePy1n6RsZzD0f1tevbw6NG0NxbFl23Lrnmtx+JeDQPLO9MUSOoNRIgQleMcraZJiq2PbMa+bSOtMsMLp2J4yXTETWdoiF95soFgFT/dOFNlSWnG0gPLcWwAkI7X8cJdG7J+LpqGaUunIypFubqt4qk4UWON/fBkqLd+iniFVdSsvPHm0cOZ9sUq+qxH02g8qYxrjb2eYnzfONIkxei2Eex5bmduTEPzhzGyaS/6Z0/BjMNmufzbjlf7aOWn1TuUtm09nNM0zTslrVyggWk3Kiz+vf/evCrOLd2yv7Y/du3ps5C88PplZU63fntKt+LQzhHLaKRKiIa8dU2wePBo35Pd2mdLw3b+2UYHzTrr1eMv2obXR7vObD77m/+VX1lebuuxYOtSHFgasrj09AYgP5ee/ODv9P4HECFFvHJFB93bvlgjWfMo333h7mdR39f23AwvnoYIERABlaE+9E0fyOHG0rb2QfurOhgdM8xvad7De1Y2xZ7ndiFtpNi1fkcr/4xDZ2Fw7hDiUuTSBO6/P4tGPu64lh4Rwr06K/Rklo7D669HVx5uLB+yurwdv9XTQvXY9rw+eXaDtz51rF69hFCabdvjRRZPlqfYNkN4D/Fmjx9o+9oG6+W6s9dzeDzF1m3x6+Ha8mjtr6fPh/Dm/Ve5q3zMm0OLe48WLA4Vb9pfHbeV+Qrq8FLHop17Dx9eH62dP7JtFNsf3YSkkWD2MfMxMKO/UG53Wy8h3OvGr6fvh2Ss0rmlqygCcO+92bhWrGyNX4OibN12PN4cWR1D+6IQWh/6OyQ/tU6vP0XtAb4ObcH2r9v4vL6F6N8Dj6ep7ambSSE+D6Dlr0iOPS7IP1QOKD9S+zgkT711f+N7ftAjVnqHniJsASBN069EUfQRAF+NouhOZM7bawE8kabpriiKpiJ7udh5AN4B4AQAv/m/zVkLABE6Cc7+tkRhf0+oPVMutFBfSpjIGD3GpgxY83jlutWlizrERLu11UvbRX3ptZ6ifrRwkiJ3QbZ+ewpZr2174NGxN4dFbdn8Nq/3247FU5Y1v6WbDoZsnnVL95i7t840PSSsyLy9cb4Y6zSkHHjfVMiKxtmNjnp5XkQ3tm1PoSjCl02LY2RMOE2Roi1YrXIOdCpwTLMO2qJ56uBVSYqk0U6IyxGiZgVWsUwTYM/G3dixbisAYGDWFFQGKyhVS6gMVbHp3ucBAH1T+zFlwTBK5Rj9MwaC+A7Rvv2v9G4VXvuc0G2eAaDUV8bcFfOx9dEt2P3sTux+diemHTQdfTOmoNTfedei4sRbf/qxfTiQNdTLWHqBUP/SFKjtrmHX09tQ2z2KCBHiaglRKUZcilAfGUfihFcMzh1GqRJj7/O7sXfTXkQRUB6sduUd3oZCEdg1p8ZQN35g6/D4jTdfXnn9bWkt9NvjTyEe0wtteLyxiM9Y3aKXeovwWoRfT751a1PLhMp5Yy0avzVuu+HHSw/RnFdfUf1F9GB1g2648voTmreifoZw3U5PO8p5a0Wfd5N5c49fhPHROvY9vwt7X9iN3Rt2IkKEtNlWJAWHl0zD1CXTAeQ3CgheJFWva6rDYK4n2P3cLux6ZkfmQAYwMHMQM5fPQlQ2IeluPRGQth2ylM2WXdIIZrt2k9oGTACdjk5vDDafOrCKyjCtSKZ63/rcK+e114te34vN5LVV1L/Qx9Kypz8oFK0ju34sfSmOlD51c1rzqY6rtBHqh9KS56AM8R/bL69eu2ntbQLbcSnu7ThCPMQbq6frejxb+UPoow6piUL/9H7MWTEfG9c8h/rIODCjP9fnkPxVXHrf+rwIH0V1AmFZ3frfRV5245khOuoFDrTebjJxIm1req82mzcPFvdMC9G2N7eh+jRa19u4afc9zfEKBeUftl2PRvS3tbNebOg5wrZVIIrOA/BpZNcceIUjAE8AeF+aptcecA9fhnDiiSelt956Z+uON71vDsi+GXqtd3FpZJNVLJKkfeRDiZ7h2fYu1jgGyq8/DwDQ+N41LWJkHiCrp1QCyhecmx0fvvqa4N2v9lik3mvH+vROOx5Z4NjslQilUnb0Io6zN2XqcY0oyh9D0DZUwVAFzrvDlqCLlRFBekQQaB8x0RcT2bpZF9vR6EDtK9+yXq3mXywSOnLF//bojpZTeilf+LrsLZVXXNWqQ/EMtF8OkSsnR0VGR/N3Ffe/+XzUGiXE37uyRV/E0+Bg/lhQDh+vOzfr79XX5pSR6HXnZXftXnttB93pPXoayaM0Mj7ephP+J70qUyUedf65HkhH7LM9xkDgcSrOjx5X6utr3wPorQ3SmjJ19olHjvWuSfaVbzNWXHPelB60LP9zHlX5Gh3N6qhW2y/s0bvaeFR6376sPc5prdbmQXp0V3nV6Gj2ieNs3fMttVGUX+Ojo83j8f3Z2uYc1WpZms4754plrGC1vNDOs6Un/ucLAuILXod6EqP2re+1+BXXEe9d5It/SqX2NQBsj7xodDQby8BAnq/o0ap6Hdi1tYZnrngIj37+LrxwxwYoDC+Zhvc++EHc9rd3YMMP1rXGVSrHWHflo0gbxTJ2yWuX4by/fjOGFk9vzT95DI91KU1yHBwrjzAqD+cRsZGRNg8eHc3ykOYpp1iONLVnT3tOhoay/oyMZP8HB7O619+5Ebd+9Ht49sYnW22e+tELMG3JVEw9eBbmr5yHKGrTCY+L8q6nRqN9lI3Hjdgnts35IF/3js4SOAa+5EbTNC/nnf3RO8+IRz1mxTxjY206Ii+77U9/gLv/7HrMO2kx5h4zB/f/2z25OZ1z3ALMPHwOqjMGMDijHwtOOyi3xtMU2L0bOfpVXtDX1+Y3HBf5V62Wv0OeY9C5HB1ty2ldQ/y/Z0/2f2goL/cURyMjWb7h4aw/umaVNyiOPZlnZbTlR0DW3zQFpkzJzyvXsH1RmfIRlefavvIZrhd7X6mWS9NsrlV3U1AZo3hSvI+MtOmbfSCvJk8vuhKB/VRas8emidf+/vzVN/piLEbV6/UkKk/0CgrKi7172zoBx+vdd018at28y5k05L3Yzrvqg5AkGe5KpYwGrN6p9RDfPKauclnbIc4oh6rVfLQmP6q/az2Up1yfrJv8gDKndv6bEEcp+q/9Tseckufxugx75YzSB/W54eGs7ZGRbC44HwCw/bHN+O4HvoUX7ljfShtePA0Hv/4IDM4ZxOkfOgNRuZST89TFowh49qYn0RgZxQv3b8HOp3egXIlw2JuOwKLXHIpqf/sECGmvUWvg2RvWYt23H8Gme1/A5vtfAABEpQirH/kV9M8ezumx1KUs3e7dC+CiixBHKaLvfLvFozgvll/XalmZKMp4FPMo7sjHKbd1jbMe1bWUfkhTet+7nphQR67yXqCtX6gtoWtP7Qa2T32CeppGh6ldQv0xTfPvDeG6StM839fj3DbqUPVKve7M8k/StdWdgDbtcn4VZ+QzHLOVAVovacS2XavldUvKJuof5Feqy2pdVsakaVt/ZVn2iXjauzcbI/ke+RfnDPDv31d8Wp1f8U2deGgoP6+2PPFEHm7XgvJXrmGla6W7ej2jK14HoHmUp5G2dE3wmgTKJdovlkepLGYfmTYw0Nb5a1t24fMn/wUUBucNIS7FOPNP34DDLjwcURyhtnsM9//bPdj66GYcdO5yLH/zkS36oD5o75PmvJNGqtVsHq18V91Z6ZH30dKOIV2Vy811de7r0EhjjH7jezk9iHjkOwhUT1R9QnmP0qbyKc6H9k/1PF0vNo+n3+g8k24JzE87VHGh/VYdxuubZ7Pp+Fif0pp1ZKrNoutMfV/Uk/TufeUveh3B6Gg2j/39bdlpZXmSAPH552VXInzn6tz8sE9cd0nSXgtMGxnpzEP9m/mop1LvmzIFGB7OXZ07KdBzhC0hTdNrABzavCLhPAAnAZgOYAeAOwFcnabpVyexjy87IKGQYIsctiR0j+Ctw1YVWHV66IsF9A6luHmPaOg+1NYCSCM00hhp4D5H/ebvokXXC3Bx6Zj1f5r6hpP2XftARqZKAkGNESo+KtS1XnvERtuwCoc+mwioo1K/7T1NZEyqqANA0ighRYSGMExVGHSXWw1B1mnfjAoA9eYdtiXnrmJ1YFoDtZREHfmTBEASZw5bKcO+WVoiqHPE3r2rc66bDzp+/a0CUO8aZR6gcxfP0hvpQV9GYg1IXbd2946Gnz0uTKGlaaRfK7C9smqEWoWe61+NTcWvOsptHuUhalTSEapCUudGaQ/Ib2ZQCdC2dC7tdQvWccB+eWteBTP/UyjG9TLGGzHGRvKGixrHXFeqSLM+ddiOjqao7cl2dEae3Y7RrXuxb9s+jDy/E8lYHXte2I2HP3dnq18zj56HZW84CnF/FZvuXI+nv/swPnPUX2LPs7sAALOOnQ8A2LNhZ/P/Arz6Yxe0HHaNPfuw4ZZnEEUpqgNlzDttGUrVEkZG2vNPI0Pxbv/bO0rV4AXaGzrkg8yv+Fe8qNHq0ZB+Zhw5D2/60k+hr5riqasewzff+QXc9tHvAQD6Zw3iPY/8esfmG/mV8i+mKyht6KZTL+C1aTczda0rPhS/qmyTjqMIqI+n+NY7/wu7nt6O0W0jKE+p4pLvvAeDg8DpHz0fL9z1HKYuGsasI+fk1p1VZIlvpnPeVe7oWtb1qHOmeFRlVp1AClrO4/v63xqgGqGgbSov0W/PmNb1T2B5GpJKx1SEPT2Bco86geKVeaxDwuObtl77whfimPSr+FU8MZ2OHPIznQulPe2H6n1Kt0VrkP21ebXPiie7NryP1RtsnYofjpkGJtujPGE51dUUT5Q5WjedEpR3TC9y2BLXqvMqjVk8anveHPC/buh46yYXVNHUh3TNqTMmNHf2t+pvXhkAmHH4HLz56z+DF374FMpxgvW3rMeDn7sLj3xhDcb31DC2fQSIIiw561Accv5y3Hv57di6dhs2r3kOL9zedvIqPPCvd2HG8tlY/JqDkTYSJI0UST1BUk+x4cYnMLJxT4bvgTIWnroES885BMf/3EmYMncoN/fdotziKEE5ThBV2g4S3YhRfp0k+Y0q1av4jPSger7+V/6k+p/Okepg5CfqsNW8ms8D9t97rs/UjvHsJMo9faa2E/kw82p5q2+pDmnlqdeutq08zPsAbSd0CJSXFq1D8k2gzS9VFlvZzbKew5Y8wfJmzh3b4odjVNzoGlQdWPMrj9J+0ilI/kQZ7zlsqUMzXXU55tOAF47F8hnVyy3tKk/TQBBvzjmn5Nt2zknbSoNsk+PrnzsVb/jyu7H5/hew4ZpHsHPdFozvrWF8Tw1XvOsL6J85gGXnH46Hv3BvC99Pfe9R7Nu0C8f8zMkA2u+n6CYHPRmo86s4AtrOfG6gdeA1jdFI4w4Za2XoRKCXMkW8YyKg+jPQKddeSuC4i8akPJ+0rvQJTF7frV7HupWOPN4Z4tGUTconGEz3YsCEHbaENE2/AuArk9iX/1EQUqC95/zvPdddhRBRKrErw80OR0WtdI+ZE0IKPQVtyCmguzIqkFRYWKGpQleNFS8PwTpnrOHqGTlqOHrKvdZBJq2Xp1v8ePgKOZ75HTIKtO9WoLCf1nhqKSzNF33Z3XKOjWUp2FmWzC5J8jukABA3ShhrlFGudTr8aBypg4J9LzXKiKMUiUQSJwmARilz2NY6DWIyMp1PRsMSb6q4qDKiyoTiWmnKGsdqOGn9KgA86MXI0LwExY8Fj16sYq51qLFg5zrUX09ZscYe59S+RVnxxPTRUWDPjjp2PLYJfX0pBqaUMXToXERx5EbYqkKp0V10krJeRgUQL8QBlWnrvKbhb/tpI2yTJKPnp3ZMx5O/fQWmHzkfx/zkCa31sXfTXtz7F9ehvq+ORgIc8rZVWHrmwS0cNBrAzmf3YO2X7sbar96Hkc17UN8z1olw4qgSY3D+VMw5cQlWffBMzDpqbqutxecfjb6ZA0AjQb0OHP6uk7HopIWtcemudSsCYHAAC846omUs1utAo5afU50365xTBb7IGaFzTvx6RpwavXZTiwY113a1mo946+uPcORbDscDbzgS2x7fgr3P7cTo1hHc9anv49Rffw3i/qxyvpSMPBtoRz2rQaNrQQ134ioUYcsy3n2sigutS9sK4Uf50K4nt+Ka934JWx/ehCkLhlEZrGLhmUtbMrIy1I9FrzkkF/3ENr2P8utQfv3v1dXVQeIY1xqRxXlXXFp8kwaskakREDoflscpT7ObMra/oTGorGfd6vj3DCmr61he6UEIpxMx1LiuFB/2t6Vdi38gT+s2wpZlNE0NbqBTbyzqg6YxkoTpGmFLWtd+UWbbDVHlJ/bFiPzWTVDqLaxL69HxWhzxmV3HVsZotBzT+PEibCnDyPesE5CbvWkKJHGCOEqD/Ik4UGeNtmudQBrtT56rc1Xvj7DsnGXo7wcOOudQnPE7Z+HZ2zbgS+f/M9b84+0AgGeuXYfh2f34wW9ciVJfCaVqGQOzBrHip1fh6EuPRq0eY2DhDNQ2bcdXL/4PjGzag7XffAhRHGX3p5diRKUIfcNVTF20ABd99q2YcfhsRFHkyhflvXrCLRcJWWqgHCdApZ1eqXTSsUb3ccz6UceGrktr6Bc5Cjx+z7Z1Hi2t8TfL87lGzbN9br6T91n9lnSlNGCdfNo/8kH2RR0MXG/Eh86PtyGoeC2SgWzPCyTohmP2sRvvtMEQoXqsjqPReTo2GxyjZbrZA1qH8lXSMPUu1Vd17WqfqPOxXuvwJX5ttDbtVaA9DhtoYfmM2kbWlrM8zW4+Wn2iaD6Yrjq9rplyOfu/6FUHYd4pB2HV+09t8fQnr16LWz96FXY+uRWPfvV+RHGEVb/4aiCKcPdf3ojrP3wlrv/wlZh60AyU+koYmDWIWUfOxsimEWx+cCMOf9sKHPamIwBE6F82H3Ec5X0iEsRj5a4F9rljcy+NcjSijlTrRCZuLY3Z3+rn0XTNawMpdF51nqwua+fZ6jZKP6RLjs+LsLVriLxY8an0rHRs13qonNVpbRnlYcxrfQohvdriP0kAmBdUK9hyvWwQFH1042myYb8dtv+XQR1MyiSto8oSpYIKdrvjZYGLhuWs8D6QcXg7R7bfXsSNFRyT4bC1TlK7oFmO/dQL3bsxTxXgLKNKpVXKdH5U8dQ8NMw551bRswoDx6H9VcWoXm8ax+UMOfW+fB/4m0JR+8q2KRT06BgA9JfrSBGhZJRjNch0rK164wZKcYqkmm8fpUbmsBVjzhohOvY4bh85UjriOJQ2VFmIYwCf+QzwxS9m/5MYcRKj3DSQ0ChlykDcAB3dcZSCEcD8HTXLlOOkVQcaJVRLDVTLdSRp1M5P2kmjVnoO0jh7wUhTCJTirFyalBAhRbnUQEKHdrOeCCmyy6/pZYiy/sZJlpbESBslpHEKyFgQpdlnvIyoUUYUJUApAUrNPGmU3UsTAUiBZLyMelJCvVxHPYkx3igDcXOuStnuTL1ZdxQBpSjBU9tm4oanD8J40hYH/eVxHDRtB4685CjM/egvIEmA3c/vwcZb1yGq17F30wga45lnOIlKmLpgCo58x3FIm1H/pIV9+4CxXaPYfNuTGJjRj4WvXtYRLaXGl40kBIB133kYo9tGMLZzDLuf3YVSnGLf2sPw1M4ZwLo7AACPfe42lAcrGN89hp3rtgAAyoMV1EfG8fQ378PUQ2aj3FdCqa+M3c9k0ZGEmSsXY/6pB6FvxiCqUyqYvnwOor4KhpfMQP/0fiSIW8em9E3QUQQMLZqG13ziIlSr2RGtFs2i/dvyaM8o0vxW0VS+pbhlmsoardvKFZaz0RXKX1VJ76a4AOQJES78t3egVgNeuGktvvfer+CHn7gBjfEEK1afjoFZg+5OuzqLPb6hymkIV1qXdVhRZqpCrsaFlbXKnzT/trXb8PCX7sez16/D1oc34fBLjsUZHzsfU+YPY3S07dAk77WONU0D8sZzUSSV9k9lfcjJa79V1ii9hDYXPXrRqwjUecC50Ygtaxyp7OI6UN5ur0RQXCnoerNzpv2xctc+t7jzIKSzFeHIrlcbeeHhw3O+altKy73wCdK6d9LE2+iweg7/eydW7FrRjWClY5XlGi1GHUP75PE3XfM8qgz4VyLoN59ZHVbbYb0TddjaCHjFSbmcbToBQNrUh+i0s2Pk0UniT/mLx++9j47P24wZmid3iQDY9tgW/Ne5nwUAvOGfLsHhFx/dyq9HPWcvmo8Prv9Qa84ULN51Tdi5JA2qPO8F7Iaz3djrVkb1aXUaWHlmwTqlenEaFpUv6ivzTwQ8B6XFiUfzni1n+ZpXDxCmPXWI7Q90K6s8XvvkyS2C1XsUB5ovRI9F+o06JT3+rtGn/Lb82KYVOUDts142De1Y7caFbhqG+GHRHHsbupZXeg5b6kNsj7y/XAaWve4wHHTuYR1XLtbrwIm/9Grc95lbsee53ajtrqG2exQbbnoKz936TCvvnX92A+78sxsAABf8x7uw8DWHdqxhlUUET1dU524RfSvdMSDGnmL1dAX+1k2VkL5m69Fv1T1CfbP5Pf1GT7gW6Tjsc72evz5IwWuH+NB+hsqFTozFcfukFf8zP2WCbpJ4J1HsmLI8sdsfbyx0uLIPPOWl+OFVjEzjGBoNYGz7Ptz+2Vvwpr84t7OxA4RXHLb7CR6RdFMQisAyCzJnVWDYbqsPTYdSEePupV3tt93V4++QcdKLotktD5Bnoh7jtPlDDNkKIubhgtcde2tYsV7FZWis7LNV4q3CzjkEfAPaGpTVKtBHh21/fjxJ0mYK2jb/e/cls97+plMyquQjbBVH7E+u3jhFOU6QiPGVJADoMHWis0LGj50rO4/WKG3l/dIXgHvXAMcf33Kq2k85bi8MOkqtA5YO21Zf06iV1qvDtiVIorT1vOkyzeYXUStd60Hr9RxJrm7ma7UVWLwpotzHQoQ0H8ERpShFCUpRNk+RuW681oixfuc07Kr14e7nFwEApvWN4rTFz+C+jfPx/J6peHTrHDx6+Rbg8j/A8retwONfvd/tG2Htf92BOasWYWznKKpTKuibMYjxceCx/7wDtZ3ZGf8ojlAZzqzc8d1jKPWVs5c1AeibPoBVv/gqxOUSxneP4bk7NuCJbz7Y0U51Wj/ivUOYNTCChT9zPvZs2Il9G3cirSfoXzIN1al9GFowFef8w6V4/JsP4ekrH0EUpRjdsgdpI8GCU5diyuLpmHv8Qiy54GjU01JLgdRoFyp0VFyoiHJdA3ljnhsm6oiyETFR1D4y4zkQrHPFuz8y5Ozh+ilSQr1oF43wYBQz03ifE68AYlu885jt8o65ua86DG+95hfw5Vf/Je7485twx5/fhCXnHYFD3ngkph82GzOOXQREUYuX8S5rj28ov9HNHY+neEffmMbNOka86FyoslgbbeDpa9di8/0bsfPJbdj1zA6gkeTuilz46oNx5l9ejFKl1FLkiHeNpAkp0ZonjttXfCgPtMf01DEBtHFWZABom56RxzsK9fi+bproyRs7Ho1G2R9dw8pRgpfuGb1Kz0GZ4Tz3ZHlR+6F8IaetlvE2afbXiRX6APk5tg4N8p6QIeN9Wld/mE13K+NptJCOQ1FkyjNYH/Gka4f18mSQRrJpPzgGjQbSO/sOxKm0P9CiA+oijp4Tx3nDkqB8TIMa7Id38Gugga5P4mloyQy848p3ozEyijkr5uP5e55HBKAyUMb8Vy1z55/rn32woHxI+6zzak/FsI+a3jLSqfMU0B+drTaajR/roLGgdNyNFqxTcKLgBYvoeiRO7JUBHm9WOBA67mVMXt2UkZavUZ+wp3FC/Nqmcc70RIa1UZIkr1/ZDSTiiu1qfeyj8gc9sWftjWq1zTN4z6nqVWxDbUbVQ5gnitrz6kVJl8vtjSeuCb1nVXkfdUz2j+Ddo078qo7INaN4VZ5oHfJq+2l7dgPWowU7B/p+EM4l+5Sm6NCtk6TzHTn1OhAP9uGs3z+rVUepBCSNFPf/610Y3VVDZeogHvvGQ6jtGMELdz6L0U27Oxzjva4ZrhHr5CYvD43f8h4r/1lOy1tQmlRdwfISfof4hOpj3gaNjpWOTuKVY1Hbn2U0Un+iOotXxuOR6tz1xmZ1RR2Pba+oHNCUKYg6bOAQqE8spOd518sAwNiuMTz2b7fhnr+86RWH7csF4jhjxNz5V4Gmi5GMyzJSPuPiIWOlgqOKtgoAIL9zTEcTRIhaBlSpAOXm7n9SLTaKOTZlqOxDHIdfOqZXJvCjBqh1YlrFQMFbmCx3IIq4VfzUUPccthSs6nDhM71fkvlY1os+9u7s0zwUerwyIGpkBNEYz0dfsS57DYAqhMxnI2zjRgnjjRiotXfMqERQ0bBGUb0OlOolJKWopysRtF+W0apBoO0RPMOwVU8SA8edgPR717QdPOW80Ydqvv6WE6QEJPXmp9z88H8NWeRw0zGOuPmx82TSGo1mvTKPUQQkzflLqlndcHDQ4rgJgHrzf9z8XWv+rzb/A1kgbgQkI0DafB5VgbgfiOvNegTf8QhQqgPlQSBOsjIaER5FwF1/8gPc+cnrW2MqD5RxxqcuxrI3HYPBQeDoKjCycxzPn/eTeHLHDDyydwmevuoxVIaqWHr2YTj3UxcA1Sqqw31o1BJsWbcT17zn89ixbgs23/sc+qb1Y3xvDUk961yapJh2yEwse91hiGIgTYAX7noWL9z5LOr7xrHsjIOwfd1W7HhiO67/0Hdg4YQPnIrj33syyoMV9M2cgv7BEkoXnIdaPUbtDz+BNO186R7xseLHjsUxlx2Lcjn/IgY6Buh0Y6QUDQaNLKrX2y/x0yh21mWvCeALYtgXoD0HvKORPHOiDlvStfJuy189J61noKshpAqsp8x6YJUZ4mdowTB+6oFfx12f/D4e+fwarL/mUay/5lEAQKm/jNN+/wIc8vYTkSRRh8FO0P+q4PE/x0rQta8KKvNTNjMtHa8DcYQtD23Gw/95NzbduR5bH3yhVV9ciTG0aDqGl0zDotccgoVnL8cRl67E8LyBoIzyoMjxxue9GueK73I5f4ejleOkEfJ4L5KZdMOXW2mftQ5V8jnPE3XWTgZYox/Iy0ZLF9YpoGk2kpDltB5v49Hmt4q8GspqGKnMDco5tMvpJm8R/ei61sgUoH2ViXUWUm6qU5V8jjqIbnbYsVs+of0o6qfFY7d6vQ1u+613UHuRTMoL7FzZPoZ0FuXjipPchxuvSee41PFYBN5cM03pgX0A8vpfmgJzTzmota4POn9aa7yjo9m1Ozr+Wq3zzmDb96KNIdZDuiMNAdlvfY8HZW7SiDNcNZ9pHr4ASDcQ9+3LzzWdQ/YIueqseh2Y6po6NzWjz+rat3xAv1Wm8L8eZbbzr/LIk28heTtZGw9F9ShNar91I5P97+VORjtGQi+6hK2D+UMOZKbrmrdOM+XJ7AdBoyvJk0lXLGvr1qApdbiqI1mfe1H57I912LJ+vc8ZyOt/Sku6JvXllDqHxGevQFopKqP0RNxoRKvKE11P7L+dEx27104URzj+505CkmS8YPllxwOjo/iHgz6B63/tG7j/8h/ipA+fgyPffPgB6SM5Oitw2BZ9dDx2vDpOxaE6/UIOQp3rUN+9ADcLStM6ZqBT/5uIXtoNdHzarp40ofPYOrMtvRCHlIl2Y1PXLNtuNIAoAUoOTry+sm6VBVbmU/7yhXs3fvjbePaGJ7Bn/fYDR1gBvOKw3Q+gogFkhEKlh8RER4BVAKyyaI8b2SghvR9SnbGt42/jFSRphHrzdK86LFhPpQKUalU07rkPOOtCVHg8GshFEI7Ws04wchDNKM8kjVovVEhKjdbLqxidWIoSNNIYtaYDL45S1JvHz1tplfHsDX2Sp9Y6yp4gQpqLNGzhuXnkvJHGrcjI8eax8zrvwmoCj3lrfzXycmS8eUbjsjeh8Z7VOed4yGFLRcxGtHoOWwpbawBYocVymqdczuZ5bKw5x/Vy9tKxfe08WpfSlL7tlrSntNUyEhsl1JMYkVH8SXc2qgsg7WXzlDbyyl12FD9CWm8z3l4MEt1NnCioICkSmhRMExW2niHNdAtelCOFjz3+qXkooJXePEVPQWmUz/VYqrYVGlOaptj15DZc80vfxKZ7n8fUpdNx1DtX4oT3nYzytCnYuzc/J+WBCpZM24VlM3bgvKv+oRVtScdn66UIfSXMOHQm3nXrL3REPzYa2dt4uYvPvrRoc7SWRdwOZmtz3/ZR7HxyGxq1BmYdMRuNJEJ5sIJKX9taaDn6k2ydc+1ZI7cbWMVTfwOdBnZIebFGdktBEAeNbccqMKH+FfW5CFSptx9vfLqe9GibGi/errm3u818A9P7cdYnLsTpf/h6jG4dwZ6nt+C+y2/H2m88hJs/8h3c/JHv4ODXH4GLPvtWVAf6ckYQkOdzOpZQhC1/6/rSuljPo/9xBx68/BbsXr8DURwhbbQHsfC0pVh69qE49C3HYMZhM9FoRC16tS8W1Xa9NUdezL5TNjBSW6NN0jQzuiz/0Uhtpitv6eawpRNHeYrimbi0vISORvaZa8zOf5ERoXPopYe+bRnLY60DT/vzcgE1SDRNN3o8OiJQ17Nz5skcTdNrn4CJO9bVscg2Qs6m0Ji7yVX91rsGdZyWX4bqZB7bf9alDhZLa5ru0ZyXR41YDapIEnR12FocEZTv6n9NVxxpHzRf0dHQbjIjFClm+2PBzgH5XhG9ZSeQACR5+yZJ2g5b9kcd0fYYsjpKdXwajcw+2eAAlrfOJNUdPJqx+gV5I2mNfdJTkaq3K7Aejk3TgHy6nWPbJ63T67vShsoIz07RcdVq+XlPkvx9seTHtJG0/1rOvr1d+xLH7RfF6pjHxtr2Db9tPUojOg7Or5X/IfD0wF7+A/6GUmgd6n91CLG/5N9Kr7r2SFekNx03n3ttKV9k/Uq7nCOrS7NfQP5UptIr29V+sx47RnUq22AdfQGl8i1v7Q1M78e5f3URbv7Yddj28EZc9e7PY8sHz8CJHzobaRTn8OIFAnk6+2Q5JxV61ZH0t/Ijq7dZ2afrV+vgGrHATTlPhyZN2c3lycIJZZlGpOvYtP9qP+mY9Dk/Oo+WFxDGx4EoKSFFkuMLuvb4P03bG5nsA/kT8ao23r7ddTzyzzfj0f+6C8MHzcIhl67C7GPnY8VPrpwcxBl4xWG7n6DHiOzuvXUgAL7AtoaQddjqroHW0VKImo5Te/Sow/F70duQ1MuIGimQxm3GKA7bWjOqkw5bderSAQog57DNnLZRh5OUztPWm3PZT5MnO7bdVvJ4nLw1lmYbjTRuHRU/EIcf1qwBKuPAe1bnlA7PYUsGSSbDfDoPajzzSgL74iVVTnSONA8dcFGU1cHrC+pSv9bFHW97fLuvrz0WpcM0BarN+0vj/k7HZ19fno51JzguNbKyfe0ySQLwPtSknI+09nabFRfsuxokufY8Q7bpdE/kqAYdgOyTCijPmPPAGlDdDJOiNFVgi2AiBrTXz5BDsRu8cMcGfP2izwIA+qb148w/uRCHXnh4a7NA70BsRefF7WOeVpm3EUdWiSNd6t0/qmTHMVCuVpGi7fyNBvox89iFrXqTOtBIkUUWN6EVKdN8iV5tLE9rVhGzG2ccC/swOprnw+wrN+Gq1Qw/6rAjvxofzysOo6OdERDEC2meEUTENdcN2yb+GelGJbeFE5kH1mXHRFxbp4I6X1T5V8Wdc0ulRJVvVZBYXuUg82g/Go0IlelTMG/uFLzu5INw7Puew6Ofvxub1jyHp777KK583zcwMGdK5rQcquKYnzwefKlNZeoA7v3HW1HbPYYl5x6OJWcuQzxU7pClIaPq3n+8Bc9ctw5IgTRJsO3Rzdi3eS8A4PC3H4e0kWB8pI6DLjwKh7zxKAxOq7hOKx0zcWMdK5aPWDlFByp/W6dpUX2sk9+hPPbIqjoT9gesYUPw0jwI5bE6UTfDwON/Xh7W9T8RijYzezEmQ85A725nq6taOgTyc2Nljc5fS3czfSbthOaDGxqebA05QWzb2h+PRovoZaKgOhP7n+M7CF+JwN+90ridn1A+rnd1CFvHvs6t3fjSCKcDBUt/doOZv2NzlZaOg7yrVMp0Ut2A6O9vv7hTdYj+/jYtsax+FJd2M1zxozqOHsNnPo6J+XRdqQ6qUamKB+XxTKe+bzcWrP5qacJu5jCPprEeXROhcaltwb4pfljW8helHbU3+F+f6Tg0XWlANyD12p+i9cB+9LK2lOfovHH8yg8Vd9pvywf2B4r6a/Uzbds6bMfH87w9STr9BVaXUV2N0eosp3qoOsG4dnXjmvnK5bYOzaCOWi3/olrqTDaNwL5QF1Y7U+mYY6vXgaN+4gQsecsqPP29R3HLh7+Ju//qJgwsmIZD3no8oqici4CkHk/ck7boiGO9bR2vnAWYjbbXC+tp2SriMLebQTq/9nStBU+O6WZSka4VSivKb59bHUxpvxf7uJveauv2cOHpPp5ObftA3cOecHSvEeHVh+XOOlVOqT5D+cJn9Xqbjur17NnmO5/Fmr/4ASpTqjj1Dy7EgjMORbXaPmU52fCKw3Y/II7zVyJYYlUlpehKBD2aCBQ7bD2nYrlayxx7Q+10ZYYtZeRXVyP55dW5utmHllAebZdJEv9KhEoFiMeBuJ4n8iRB62h8HGfPy+V2WnWwyQDGRWDW8ouLTN0aBvwQR/pGer0nh0fIkyT7rXMBAOURAG96E8rxOFDKC8OQchFFnfdNttpAXghQ4dCompDyrsB2JrrDZx0xFl9Fjm2WDfWpqM2W8HciSujQ0XFYgTQRIJNvvahLFC1V4EKCpdvHRq94wobpRWmKY0vDrTEE6icP8JxA2pbSlxeFaxV5NRSipIGNtz8NAHjd31yEIy5biUp/qVUn17wKvygC0lI9M0KNc5wvFNAxMkLQKrm8qoB1qhFixxCiSQ9nZSOAPUNV6/MUADW+rRBnmm7YeHPD+dA3XSttclx2nHbNs99UAqm4WoetddAyr3WUqgzR6B+rsIX4g6Vhu870TruWnInbG1Y52YD2XC84cSEWnbwQuzeO4BsX/TOeveVppABGt2bHRO76m1s6OwTg/s/eibgc4+QPvQZJI8XSsw5FdShzsPZP68fGNc9j6yObMqV/rIGnr12HTfc+n6tj9or5OOiCI3HUO4/HktMXt/BiN6rUIFN5zXEzncq8F8Fq+TDr9RRmz9nkKdX2meW9mledOJMdOeKtF/1t00JKv+brVqe9bsrWD3Ti+0cJNrqGa1t5SYs/S1QL83Jta+SV0o9ulBRt3um6Jdg5IU+xMobPvLvaWHdRm/a3l4dzpgb6ROnVOnhDRqG3znqlF51PL3Is5Vs/A+DhwdsUsjqc3ThTR4DKba89K7OKNpo82QaE0/nMfnOd9uqwpR6v+j3Ls89APo+nQyif6DZO22fFj+q4lv/q3FjeFdo0tPn0t16H5+HVzgH70AvNeg4SK5NVV9PxasCF5b9sX2WhgtZp00MRtuyvylFuROj8eE54LV+EC48P6jzb0wk6FluPxetkgeqcGo2ozzVfiMY83Y2g86bOxF6c3kBYd1GepeuS8243GUIBNkzn+lBd3m4qVioRDnvTkZi5fCa+es4/4Obf/A7ipIETfv7Ulu3Bda18gunkJ3zeor/mVZMN0XFV/9D+ah85Nqs/2tMTCkpjdGoDnX4lxZPHHyzkZFMXfhHKE0VA/E+fQfzlLwL2HS9plKVdchni968ulCG92P26NmlPWd8ZnwH5ABLOG20wXn2Xw0W5nr1wvN/HJ21UzhfHwTuu4ziTTbw6b3y86X8aHQMAvOVrP4UZxyxqXVnnRThPBrzisN1PCEWfAL5BFcqjz9TYoqHuRdi2K/EjbHXnTRkekCdkFZzcObILRI0D1m2VBs3DHawkae9KqSOZdVuGZHepPDxSGNk7o3TX0VPKidOJythejV2r4KkgLKIPBb2LrW7m1Rp4HGuplO1o6lEWxbXOOxql7EoKJ+KQtFav53fgazUgbkZeQyIlkySrD0Dublt1CnkRAPbYi+LAHl2h0EtTALzuQupnnaQxHvdgutZnI0LtFRDEnVWgPeXcrlsVdnZnlH0JCURL1x7fIPSipIfauf1Pf4A7/+ImIAKWX3QkStVSR95uEVFAXqG0+WzEs+K9XM4EnRqb3qXtFtd2A4tpmUDMHlIA6x22Ogeq7OkdtnrvYZIAAwN5xQ5ol1FlTmlUow+4A5um+bESp1QCGMkQx+18vH4FyN8pTZq0ijujj8izuXGohhbxwV1jRtEzTaOryHsYBdqKYk7akU2cS93N5qkC7S+jKLoZyENzB/FTd/5iq67x0QbWX/sYkvFssJsf3IRN929E/7R+HPeeE3HD71yNF+7YgNv+5HoAwB2fvCFIp4QFpyzBaR85C9Wp/eif0Y/py2a2osm5UaEfvYKAoHIwjvObFRMx3FTZ358yqrCqYW0NHzWwub6ULtRwVkeK5Td87tF+pdKWwx2KMfJtKT+wffQMjRDYSCGV+yHjxOoBRfqYtnOg4OkNTPP4fDeasIYi4BtHln8W/dayxEXIEWCdAAqek8vmtfPGbyvLPXnbC3gbTNqu8vuQbuil87elHfJI9nt8HKg1StnJNHOiROugnkUcaxQd86huopt2Vidv6Yp1X58hPlhGo/M490xTvHnOAHsHNr8t/VhetD9OrW7rb382oMirFFRXA9oyTGW1xyv0NAr/E+y9uqxX+SBBX9hHsPSvdKR6i+VxdmNY6dpbn964bLr+Jz3ZdTJZEOKXVj7rBrHlX5Y+gfxaUPlJ2cb/dr16vFadvgciI4roV9uwTj7Sj/JmHZPigd+U/578pf5nT2qqDq26p6eLaH1WZnhyXm1Ly2dCm1keTVr6nb58Lt5xwwfw1ddfjpt//yo88K93YnjxNJz0C6egXo8w/5QlKM1sv+XM1tXxaZ7q1ahjHpHnyTfV6/UUIfVi4p56tcWJ9oVA3kE5wXn0eJWW1TpVl7d5KF/spg3lsJ4kbp2W/a//RnzvA0hWrmq9yDqKMhwl99yL+ngF8c+u7rBZrP0TwruOVXkc69N+kwY9fqZX0WjgCvFKHwJ9ELrGrJ9FZamVx8Tb2J5x3PPXP8Rdf3VzVra/L+dnIJ1MNrzisN0PUKchJ0l335Kk8yiwKkpAO08HYZk2NAS/Q1h2cdgq0/cWtyoISrQa0aGRW5VKm4GFHLZA/sUVupD1mAsXjm0/NzyzuMkwrWAhUAlmG+p8azSASO69VAWWbSmwP2naPq5BJsg7bIH23Uo6xzrXnhGi/bZMAmg7bO1xCsWF1ucxMDsuXi+BpBNvylQ7hDt31awR1dxpS3sQtEzXqBDNo0zWCqMkQc45bKMJ9W31xB/pRHHbaLR34JQBE+hEVKNDI6LsHKjQ0w0WPtfx6JxZ4ap9soKfEMftO6ZU6bF5uMbYfpIA1/7iN7DuG/djaNFUXPTvl2Fg1mDLMLH0okIvTdG+nsShqZCyb9O0XnVYqFFtDQ6tw4IqVUkadVXoQunWgOqmIBaN0UbFqlKgNKbKEfMB+Reg2A0Nz3nh9dUzvD0FUetg3iJni1eXtm15PJV8jsM7NUJa1Q22qFzCIW88qpXv0Lfk1/DF33oP4jhFtQo8d9sGjGzZizgC9u2sYf0NTyKuxDjh/70aMw+bITiJWnNAx7jl1TwSpzKIY1MntpXVQHusE4lgmMgmoKXRiYKlE6CYxtm/idTdLY+OYzKjkry6JqP+yTLKvbWn/+3mkucgsoa4yhJtR8scCHgOW8+JB+QdAdr3XtoIOaD5HXIKeE4AdUAQGNGlc8h8dvPCc+btL6SIcnxU55N83+oF7LfHe4HeeHlHP4yM1fSQ8UwZbaMmSZ/WYdfrBnJIrhSBxyt0Qznk3AM6HUg6bptP8yt+da0RB0znf40EVH5h14HOmb2CQm0KllWZz7qUXjgXSjch+rCOVk8PIui1VkDeaWH1Eu2rhUKdLUA7xIN32q2XD/PbOvlRmtH0kAzx0nXtUJ9Q/aUXvdFbB3Z+WLeehmJZ1aG7gfoilK9bGaKbsXRi8Tl/26uWNMqRvFejEkPjp93m2VT0cyhYm5q2DXFAOzyKgKFlc3DGn7wRG36wDs9c+zi2P7Yluw4LwHHvOw2v/fgFHbp16ONtDltd3MoXD/d2Dj3wdDNvvfa61qzNqsFtIVDdVMfQguOPB678bhZUWwKiGEAC4HUXAKYPVm8twhPHoL4Yuw64fvk/dNrHbkzZNsDrNU09oY2sovUMAN999xfw7A1PAABO+tUzMf3QWRgX/8Nk6roKrzhs9wOSJGMWdLRw90UZnnXYKqGQ0Rc5bNmOGrwdC7TLHbbq5C0SpPpcDXir6FBJsM8VdNeOTC53PFsWSxTlFWgLuqD0zZmsU9+Oru3bfgA86pAivvceRG96I6IkQhSlzbE1wJdoIaJ0yQabRinSpJSl8yVndVZaz/I1SpkDs9TIvtMo++Zv/ue4kghJ2hx0lCKKUyCJECUlxHED8QP3IF15QqGyroYK58AeeSLNpClajlfPEFIjaiKMJkLaYYBN1LiYKITasm1qvlAfgc5oCoVuwmai+byxTJSx91ImGW9gw03rcfufXo/n71iPGctn4+QPvRYLTlpUWE7XdTfwjD8LvPuVuFYFV9e98hzLD62B1ooSHa9g33gZY3uyMqEIW0avcidcFco4BkZG8vyakZejo+2obTr6aFTokTKgTUOjo23+a4+1qdLKMRF/3hur1flvccDnGjWmvJJKjldW17ldE0UGvt2gs3JD27LrbH/Whl1T2f/sJZTzTlrSwnujARx52XGtfJwblX0hJxwVQUt3fNZtLUzE+apz2Q1svUWOFm8evHyEImUUyNPORPocGofyWaW5zrmdWFuKI2v8vVzBcxjxd5HDwctjr4jwZGDRb82rBpte/2SPm+s40jSvgwC+/sFvOlH1P9Cpq9job9bbSzmCPY5Inkw5oeNOU3+zWPVT1u9FqhNfpShB6d57EF94Qab28TzXJZcgem/7OjLPkaTrwfLhkA4Y0n9sWbshF+JX3uYOx0kDWtenypWQoWs3ES1P83gZ++jxf4/fqfPM9sH2z0YKq32iuJ2Iw1bn0jptoyhvo/C0i8612jV2/Erj1hHm8YL9hSI5ZvGuUeFe+SI7U595zn/PSRaij4mANzdW5lAX4BryHD9a34HqN0B+ffYqc9UW79a2zks3XcU+pyxgQIkeT7fRv5Y/qkzQtUIZoHyceewaY/2qzwLZN69C1Cv4qlVgxU+sxLE/vhJIU2x7eCPitIFvv+druO/TP8R9n/kh4lKMKI6AOMJxq0/DeX98bqu/ehVQUm6gkSSoV9syQHmERi9TPtirWCwPUz7ebQ5CtqqnO9j/pAt7zabKU3tto9phWp+lf9JoER3ZdaNRqeyPBvd5DnwLlrcXrQ0Pz3EMQPwfyvNJX0UfO97N9z6P7Y9txoJTl+DVH38j5h03L5ORSeecTTa84rDdD6CSB+QJzjN2VADtj1NssvprDfeifATtrwoIq6yTYekum71rCEBusbD+kMPWClll5GSs1mHL+tTRkxMWl7wFcWU8e/laU6HmyyIipEjRftlaHGX/I2THAHhnJoDcNyP9SnGKaqmRe2kbf+tL3ACgEccYbwB7alVEzWMGSRKhnpYw0FdD/0nHon7JxahX8zi0CpsqjRQe1mAiHtnXuNxmemqc0cExIYftvWsQveFCRFGCOE4QJ3H2ibP/2US2K4wbpSbTTFqO7JYjWV5Ip+XiOAHuXZPt8vVgsFgaiSI/ehvoXKtAp3NjIg4ES+eeUWzzW3yHBE6RAFH44R9ehfs/fWvr/9CiaXj1x16PBacf3DoJYB2h3JXlDjg/Ceek3hlxwSh+1mePoQD5KOYi/mONAlWgLT9qzVfz2JI6RL259AycEFg+6c09lQI16vUZeZ9ePQC029f/un6t8ahHolg3+8MXoXEuyAeV/uh4Zp/0CgC7+cU+00HN+ugcp9JOxZg8lnUpPbCsXsdA3sT2oqgdvepFESpYx37Z8C9LU1of58ceh1YcsM+VSvu6AzooxsY6Nxs7FEHk141HexpVbBVEPQ7Gjx659pwojLbnc46RZXPrxJQPrQ+rZBO4hnUtemVC4PFV3bTQueKYtC17HNADfWbHqrLT1hUyYtWAtvXuzybbZIF1/E9GP7o50ghFcz3RjQvW1wtt6m/lxxrIYOW77Y/n6PHWsspqttWLw7ZUAiqXvgXlSr31clcA2Utuy3Xgl1a36E5lKH/rsVf2S19o29fX5t86fnWkkIfrnfQ6Jt0wsVedWGeEBatXqnOLuAzJSs8hECFF0f1kOjec95Ahbdeq0k2RXeHRxIGA4lbXpycv7MamV4+uCy+f1XU9Hkg6YJqdR3WSaR0acUn8UJazHPUAO84Q7q18t31UG1rHrJ+iO2w9/ITwxrqol7D/noyn7WvrsBuQln9wvLpBFHISsR+tYIRyG7dqd6tDWXVUvcqJH32ngocfD0dcZzbaWkHb9uZI54l1sP+2fK+g80NcETf6vEXvUYQ5K+ajWgXO/Ys3Yf2NTyFKE6RpCiQpHv7Kg3jk8/dgcEYfjv9/Z+T0jiQB0qSU09U828TyEeKfNhaQv+KgF7B8zOpyFrzNEy2vznqVAxrk1Y232BO26lS2TlDlySEdk7otx0W9mbZHSP/QwArVF+31Bd6Y9EoEtVNVL9Rytk6e6k4SYMdTO/Dl8y9HmqQ46h3HYdbR84Lz+WLAKw7b/QAqUUVHOEhwuuukjk9lCJ6SBOSJ1os4oBOOs6jGJdA2QrkItL+6QxXH7XzsW6WSZxZ2QbI9MnhrQHu7HZ6gJVhnsSo9vTA869ixEEUAVr8X+H/vBWoA6gBiICoBcV87Xws/cvwiEmUHAMrNoxjlfmR3uDaj7yp9bZxZOtDxjm4awTd+7At47r71Hf2MyzEu+Ns3AaUSlo2Mo2+o0hqfZWRje8exd1sNlWmDGNm6D8/fuBalMlDqq2Bg/lTMOGQm+qb1Z7uKBlfqLLdRKxoFHtNRbRW9yy5BXMoIqOV0NZ+OsTnPupWLoxRYtRK47O2YiMPWGgpeXlUoSNvdwNJ0L7TpKSlFjgJbLqQUKZDWtj7wPIaXTMeJH3wVZh27ELOOW4i+vqgVZarKnwpyrv+JQGgnmGMhv1Oj0PJFglWQrCLCMbaurig1UE9ioK+tGNsIW90Br1Sye2rtmuR/Xi5vI8sGB/NKNHfiNcJV60nTtrLsKcyqwGkUgsoCzWsjEVhXr0qv3Z22yieVKDv3fGYVFlsHv/XIr73axzOsPEOnSFbYcuxDaDNGlVkqiKR79ptjtIqbjlvzekbPiwHenBHsHCitK215c6Xp3fLY59aJah2aIbB0AhQ7dzwHjEbXdGuzmyPT0p06fWw9Hk6U71s86e9QP4vyFRk5egWXneei+rz69ZnS9IE4o0OBCra9Xvtrf3vjDY1T6cWOVde89vtAIIqA6H2rgQ+sBmQzDOed5+b3DH1+vLXh9dHjA1qHdYDZSCc1TO2mZ1E7TFO+q+/M0HTLm1uGcwzwKK1eb6XBL0r7Ol/MayNrtQ37Dg8epdb61EHuzUfoOyT/dK50vnQTT3FKnNvTkUB+/LZciNaLwJO1ClY2W/6oaXYDw/JFW6dXr83Xi41HXdLqvZMBKnu8Z17/VD/Staa6Ri88z6uzl3zWacj67ZF4b35Yt3cyV3Uh/QbyOpFuKnj8R3VLvWZN9UPVc6hTKKi+H8ed7/PhiTZra+t45516MOaecnCOBqOpw7jto9/FzX9wLW7+g2txyMXHYeqyGVlAwkAZgxvnYtu+Aez55a9j9jHzsPL9p3c4sC0/YZq3GROirSIoChrhc6VLxbn1wSifDPlkFHJrN3QlYkGf2AevHaZ7Gy+e/e7xJsBfG3asEwHPlrUbvM/duA7fe9d/AABO/4MLsPI9J6FRIIdfDHjFYbsfEMftt6KHDEwgmzQ9SqD5VImciMNWDcdWNGiAqHWnyy4gu6g08kuZpNdPTVOnkueU6oYjuzhqe2pY+42HMD7WwN7ndmHf1r0YmDWI+Svn4YhLjmn3f2wc9UaKR776EO7+9B3Y/vgW9M8cxDHvWoWRLSM4+PzDsfg1B4OcJuT88naciDsdT4h5hBa4h4eknuD+f1+D737gWwCA6tQ+nP+Xb0AUA0kS4Y6/vhWb1jyPK9//zWbJr2HucfNRHe7DaR86o8UcZhw+BzvWbsHX3/YffoMCpb4SLvn2z2JhGqGRREjq+Ts2yWCt04Zz7/hdM1i9Gnj/aqAOpBGQlICk3vyUsw9gDKtaNh2JbizEzbR6+7eWS2RtTFToEUJOT63TE252vpVGuMurDgLrANZ2tE4qn6psAL4QCwkhpjXqCXY8sR0RUlz5vm9g033PY9FrDsGq957cup+TfSdOQ/fVeY4L+1yVsiJ6D+Gd0M148CC37mR3V53CypsIys9CffDow+MVdNh6ZTQqtpvDNsfHu/BHDw9FeT18W1CF0EYL2DSlo5DB6jkbvLlgOuckpOSE2tH1atefjsdGhOo6tGPX+nWTUsejL+cgdJsHm4/16yauGsBaD40upSEgH3nHTQrSno6D9fTKM1U+UvYpDdv+Kb6LlFPPsRFyiCjNcV7ZJ/ajF56hhow3Lx4v6AbaF/b1xQBdh+TT1iHm4VSNaQJluPe7yFHn6W0ehHikx48sL7SbxOyfbiKr7hviafzP+rhJZ/Hj6Wh2k8MDOx90LqizQ50Suf41o3ogkd32fm/m57yS15bLnZH0WjdfNsuyekqGfdK50CvaiNuxsfYpgnLZP5rqORSts8eeBiA+1VHKPqD5cjbUMjyoE0bHS3rQfqtTSXFndRu2q1cX2c06dSKxzzomXS92nVlepjizcos82HNwAXl6tGuB/+3GruWX3r3DBKWJItlt01UHCOW1fMO2HcKJzdeLk2V/N5IUvE02q1fwt7dhp+mcV89hG8ftl8vySi5d86r3k3bsKRZLZ3ajiWWSJK/PsD+U4WqT6FjsGta11Q2HpGfPwWzxZPtIUFkK5K8UIOgaZBktp3Lc07fVr6Ky6Pj3nYpDLz4WD336Rqz5h9vwxNfvM6M8JPv66r148psxTviF03NRzzyJlab5wD3OIV9UrDJNZZuCXS/eiTOrR3PMmq4yKoryLwNW/HbTWzo2GponXZU2SfuNRgn1JEZs3gvRCqop+/ShY1C9gX0s0ieLIOSH6rWst3lH+m00gO3rtgEAzvj4hTjsHSciLZVQb969rHoBcfBiwCsO2/0AKhJcEPqmei5eG4XiCbaQ4UKwi2siUVW9EK91YgKdTJL5QgagMoGc4V9PsPXhLRic0YfBw6e57adpih1PbEdjrI6xfQ0k4wmeuOIR3PHnN7n5113xKEoDVWy85zlsvvf5jue13TXc+v99HwBw76dvQ2Woih///nsxbdkMJGmm1VjGMT7WQJQASQqUKqWcAq2KVmi+Go0Utb11bH58E4bmDKA8UMam+zdhz3O7kNYbeOKqtS08v3DXc9i7cQ8A4Mh3HIfXfuxcTF00tUUvy958LEae34VSKcUtH78eI1tG8OzNT6O2ewxfuflpFycDswcx94TFiKtlLDlzGZadczBGtuzDtse3YsfaLbjrr27Gg/96B7ZvnoMYKWY8vBFDB89GVCnllFXLYKh0JEkJpSRtGR1A3jhhOUb/8C3sntHEdWIda6roEP9qXCjY6BG+dMwzIliWSj/TyFhHRzPhy77QkWqNKG+jQneEreGkyo8dD2lBHRCsj/disy4V7vv2NZW/nXvw8L/8EI19NdRH63jyikcwun1fK191aj8Ofecp2LMnyz8+nikV9Xo7ap740KOYvKeVwrZeB5J6Obubr2lI8a5u9o98QaNkSDucKy96JaToh/ggochBHHrmRTpoFIJGElgj3PZXnYFeVKqnnPRi0PwowO6G2807/qbyOTbWdoZoxDS/7QaE0r2HBxtZpYockDeEWI9+6zh0ndjNFu0X0z2Hrd2wCzmIFF/7A93KFm1y2H51y2c3Frw6+N/2zdKDdTKznPJdW99E0oB2f7374HQereHhGZm9OOEmAgcy5xNpw7ZncaHjt/ql5bWqy9nf+gZsWw/bCDlYbJrV/xQs/+1mMFp9lP3lt6UdxQsNLo8eQjRP8K5XUfxrdJ+2Z/ucq5e73cKLbB+Uh7LvNLiZRzdmCLVaVp8GhFCmU0bp0XbrAKfTIYraPL7RaOtDCkVH6b3vJGnjS3XBchmAnNhivyuV/J2LPDGj7SkO9MN+6akwvaZNnR6q2+m60g0eCyEnXze7zntu6wk91zy6QWnXj13vXj0ana86jdeedeAV9X0i+k2vax7w1zU/vfDskLNVnTF2HPrfc9rYejU9FAxi+UMvDmlPnhfRJ5/xm/nq9fY1T1Y261i5fqwtwjyU/VyfrItXaKjNqDoh/wNZGZ5so67H/mlbWreOz14hA3S+/DyK2o5TlXHaZ8VnvQ6UF03BBX/+epz3yQtywStjW/di/JJ3oJ7GWHPWr+DOP78R1UqCZCBu8da+vjY9DA7m9dh6ff8dtqpbaX6dL+az6fzN8epVOcQr+6h80LvTPVd3qYFSlKDR16lLxKXm6VqRQTpndixeAIDSj+p4L4auZfmCxafHY7m+7v2bG3D3pzLf0sqfOQFpqZS7u9/SXZ+c2p5MeMVhe4CgRKCKLh03GqkKdO6W8rd+2/onYmDoDthkgY1KssJOo2F2PLUD1/3yt7Ch+QY9AHjfI7+MoUXTcuWv+9Xv4P5/udNtrzKlih+/5RcQlWIMLxjCk9euw7cv+w88/MX7AQADc6ZgcO4QVn3gNCCOcNhbjkV1+iAe/fzdaNQTzD5mPm748Hew/bEt+LeT/w4AMLxkGgbnDqMxOo64WsaZf/EWbH9kI679+a8CKYAIGF48Df3T+wEASSPFql98NQZmDOCHH/8+0iRp4UDne/eGXTmHmQfDi6dhYOYABucNYfqhs3DBP12KKfOGEMdtJ2amWEXonzcNlQpwzl+9pXmELMH2h18AkgRJAqz99iNY/4MnEJdjnPXJCzHj6IWttxP39WWfZDkw/+QlSGp13P8vd+Kh/1yDh3BY1pmz/hEAcMFnL8NRlxzV4bDguIqYphqMlrm92EZtyJDsphRa0Ggyy3A95VHL0RDRMkD+wnereHlGkFWSVKh1tIsE6768Brd+JIvOrkypoDrch8pQFdMPm4XjV5+CqFzC3FcvR9xXyRl8/f1tY4xpFJr9/XkhWa22+98oJdn9zUYg8/oA1sW6rbNMceIZ4SHDOgS5O6vM/UkTobtedppDtGxp3zOyJmrQhGSBdwwLyCuHqrzRiW7r8fqnaWq46vh13jzHkf30sgZZlypx7IcXwapX8wCdGzhcj1rG4soahFQmuemiDgUbyamOA2tEtZR/ZxwW18pjPEeqxbM6O3S+rOPF4sy2Z51EimeOTe80trhjn+gQKeKPHr+0BpyXZvGrc2AVaODAdJygc03AzslLBTaCSOmSfaEDRg1uIB9ZpUabNbL4m7yCV+FoWxOV4zY6Bcg7P1RntP89/sTx2Gc6Hyp/dHNdwfJSxYHXpgU1XL3gCbvR1UEv4rD16rBQ5Pzx5KfdGFfeA+TpBmjLExrHLG+Pmk9kbXm8FWg7etQZmzVezxy2/e38en+4ddhyDuzd6eoUsM4N0gN5H+WNOrftaRjl+epApwNM01mOeLf8V2nK3hfPPPyvfNGuVXXIaBt2fop0KY5jf3VzpXP+D9GjbZtgdQcdx0TAs4OLAoi8cfSyrryAEoKm2/9efUW2hde2Te+GZyAvm9mfkKxW6NZWEc7ILzydUOuym72KF7semM62Q/cVU0YRtzbQhuV7gyg31qkLh4DBfagnMQZmZL6AXU/vQHX+zI4NfrvWQ/p/yBbQsSuf0XSdU4tbTedvDR4inyRoUIr2WfmDDYCIoxSlOEVU7uxTHDdQiqIOhy0/ll9qgJDayJw/q+uqXLLyTT+UYa4MbvYXrRfMt9ui499eH0TZRXs4joEdj25E/6xBnPlH52Nwajn3AmvtE5C3ByYbXnHY7gfEcbazEsf56FprPDGqjQoDlQjPI8/fClse2oQtj27FnOMXYWjZVDzxvcew57nd2PnUNux8cgeixw5HCmDGJ67D0KJpGJoziIVnLEM80N/BWK1BrMxH08jodLExj2X+OUFWT/DklY/imz/xJQBAFEdYcvZheObax7HlwY1ojDew+aEt2bgefAGPf/1BzDxiNo5+x3GYuXwmkqiEuFJCXIkxdel0TF08FUDW/4POPgTv/MFqNMbqmHXcIiSIc0odPyvfe0prHO+47n149pansWvtJmx9eDMe+Pd7sHv9zlZ/b//Y1ajtGkVcjvGqj5yF7U9sazlea7vHsP6Gp3DNz38tG2clxsGvW97hDCmVgKlLZ2DK4umYcehMoF5HUk8wvHQG5hwzFwPTqogqZQzOHszh0nMAkHER9+08MRaetLBFQ4tOXZxjjIyWVOOcdZYHy3jvQ7+CsV1jiN7149gyMgWbf/yDuOn3rsaOdVtyilhIcSiKalSasdFAXoStGpmeQqS/lfkpWHqk8KZiyj71Ap7DuRudA53KAX/r/NnxWCXbOmwpXEnXTNu7aS++8RNfwsZ7nkN9XyZtV/7cSXjD372xIzIxSYC9e9vRNXymb3rVvJ7Dtq+v7ZCtl+ooRQkqxkEbcthafHBM5HGqWHiOJlU+PKDAB9B6CWAiTm5PubFCNLc+HAXCGnBKq1YQW1q0dNxN0VYFwSo5XqSZjkXHyf+MpLH4sO1bZVnp0B6LtXKkbPDNb8o5femY4tk67NhPRkFYmrDR7QTPuehdaePxWB2PFw0yEYctQa/jYLvdHLYWNzp2dbRaPqP99z5ePvvb1mHHE2rrxd6II3gR+RpNE6JpC9ZAov71Uo7lxYCQg0x5iYef0PxTbnajhaK+cE5CTk1br+LfGsE0XOnsVZ1Lx+sd9WQ9Vs9i3zyHT8iQts8tTWrkYy/Rc9ofrdv2oVdjv5tjIBTprGVDkdEejRXxIS8injyOugfQ/HYibIvuM/T6Ecpny1idwMpElemKX2/j0NZ3oA5blUNalvm0HurWnLOJHLc9EEetnWPV+S3eQnJXx6ZzpFGjHq7tHNtrH7SuEP/qNXLX442h/7afNl+RbPXotYgvcwzdwPK+Ir4RyhOSl3rNDk8TKx0mSd4GVYfg2Fj2rddH2kAD5lXHIvk+ZYGW1b7o9RLsu574jKJwhK39UHdOUwCNEhppjMpw5rD9l1V/g0uufj/mHDuv1Vcdr42wVaeplUXeuuC34trjBZZ2rM2keAw5bO3Gpb3zWNtPEgDNl6Z79MEXqiPZf52qiD+F1i/B6qfWZvI2b+xz6peW59r1VN83jqFF03DEZSv3S15PFrzisJ0E8HYdVdB0c1CFlOWvvvlzGNm8F0vPPQxvvPxifOOyz+eezxoYwNZ9U4BP3SidAS69ejXmrVzQEQlGIvKiI/l/bNcY1l7xGPqmlDF1yTRseXgz5q1aiNlHzWkRtTKi2z55PZ66ai1euHNDq65j33MKTv6Ns7H18W145trH8dW35ftNOPUjZ+OE952MOG7ebyVARSVTViLMX7UAgM/wCSoASn1lLD37UFQvOBQAcNrvn48X7liP4XmD+O77v44NNz4BAFj06oNx+odf08FQN9z5PK75xW9i68ObsOSsQ/GWz/9YS7mq1drOLR4lp/OBQo7K2Iu1cBWK6K9/Wh/6p/WhPDCKKdU6ln3wdNz0e1cD9UZwF4jKWfaddFw6bpmm58B8qR226rQh7Wi9ngHTaADjtRTjFSBF1BENH3L8ek4FfRaiUVVS0zTFxjUv4Prf+h6QpkhT4JCLj8PB5xyCG3/zO6jtHUcUAaM7RrH1oU1Y/NpDMeOYBTj8rcdg4QnzW/e9KT5Iezz2wnvu+Ix5a7X2f46X1ydwLdbrwHgjuxIhreWvfqEiQLzrHV3sC9CpzKhQ1HzEoVW+PGgpIEmMehLn8OwpN+yDGpSqcFHZtOm82kOVMJ1Pi3uWt1clhAwaTWMZT0lTUHoL0WZRBEzISPGea30HAnat6Fh6MRgm0oatn0DDQnkz178qtFpW59zOIcuzPhoGVkFXJZr1aLSwzef959goC0M4876L8N4tT6h/9rn333vmldcxhhR3L7qLENKbFCw9e0ffXyrwnGYe7kJzW/SM9O21oWVD9Uw02g3Yf2eQLa/OT90Y0jSrK6h+QB2EYHUPjlM3VrQelRcKqsd4UTPqtLJROlnns4HFpTx+Q7oSgX3VMVonom6c2THqb5WLXlnFi8pfry1Lc6xfHScsxzmbTPkRonuPp/WSpxsvJYTKsX8vJlj+tz/lPf1aocgp4kWSF/H7ifQrFCzCb43aL8Kz5Xn8tmPtNcK26L/tp81XZNMzvVeamQh/9dZJN/nSrR+haGX2zc6VLav3f+pLM3WzjTqNF12quhP5jKbTjqGertc0hHRoHb+HozgGkMRI0gjLL1mB8d2juPF3r8a9f3sTTvnIORhaMqM1/omuxyI9tZf5IIT0IP0d8gcAeVmpa8z2K0lQ6LBNUwBr1gCvex2iOAFPKiOJM9kXJ9nvNMp+xwmi8TJiRIjL9cyvkEZIkxgRUsRx9j9u3v0exwniOGs0bpSyZ6VGVl8aIW6Usk9lHHGcoNQotQJ5ACBJI6SIUG7EwH1rEK9aiaTsr1Xrp1N87np6O0Y27ka5v1LIP4rsq8mCVxy2+wFJ0r47Ux12qlSNjgKju8dx35fvwq4ntmLXhp0Y2bwXfVP7cMIHTsWe53Zj+1M7MfLCbkRNxY4LdnTbPjx9zeOt9p696Ul8/vx/AQCc9ak3Ytnrj0D/jAEMXvoGjNVLGPnXL6G2ewxrv/EgfvjHP8B3f+ZLKPeVUZ3ahyPffixKfRXU9tQwbek0TF82A+WBCqozBrHu249g410bECHF5oc2Y3z3GLY/vsUd89zjF2L2MXOBKMLg/KlI6gnWffNB7HxiGwDg4AuOwPCiqTjqJ0/E1OVzEUURph+1AGf/3SXA6BgAYHDBNEyZM4j+6f0YPnhWC5f6bZV4Mn7+V4avTFkFtC66FpOa0o9FZy1HtQpcdv0vtBwyGuGl+WcdswCXXfu+VhuhiAX70V3jEFO1aUXf3jEFrZ/p9shRR/tRmt1HWokQl2OkAYetGk1JAsSlBqqlBuBEmjGPjYxTI0QNSZb1HLZ2PGoUKNgy/K9Rn+wToxt49EGPZdTrwM51W/DlCz+NZDzBm7/4ThzyusM6jvqM7RrDLZ+6Hkkjxcm//OrWVRaeI4dt73lmG+76+9tQHariVb91FkrVtoQc3TGKsZ2jePTL9+HGP/g+AGD6shkY3TmKZ3/j2+DWS9+0PsxbuQBTZg9i9iVH4+y/fisaUbl1NNDil8oDIx15z1Icd0Y9st+MflH6zR2hTlM01tyH+rkXoJ7EaDTKQJQgKdfRSEpNIdtAmsZImkIyRYQE2WTXkxj18QriKEW9KaBbu7Jx0nppIoBWOvO4ECeo80Uu992H+jEn9+Sw1RexcPzdPnajq8gw1Lmn4V7kqLTgKQl2HFo2jjudjUnSdjJrPaQNKrzW8WyVcmuM6ji4GUG8sk412pU/R5F/168q31qW/1m/jsFGSrB/xJF9uQbrK5XyL0yjw5ZjotKvyreOw1vn+nIEG11BI0U/pAmNgNaoO4+urHJsZZtXzn579Kd40jlT0PHqhkW3SEEPbNSj11ebV6G9cdjuk50PT7Za+eKtp5BSHZKhXr5uBrqOQ6PjPEPeaz+Ux6bxm/xco868ujQqkv0Ljb0IT71Ex/Rq9GudpVK4nAVrcFr6erGdarYvrfYox5x1CPiyxOMdyvuKNm6sDtoL2KikIieEJxOZznpI516+JEHLAYDAeEPjt/qlpik/sPxM+ZzyAt0kDfFSQmhuLF5sHq8uzWOf29/8rw5bawt00zGKnnvj8qLf1Wn7UoHS04GUt/zMXu3j8d5ufJfp9n8v8sDqZ15bmm43ZDx90AarJIl/qknLsS576syOy54gUvtAN9p0nux/3XRWWrM6jacrdIuw1bFZ30Gv0CGHojQL4Omv4Kh3nYC7//ZWrPvGA5iyYBgn//b5uXVSxLstT/Yc4Hxm+ZzlacSXrkmvbfK1UIQt82uQjb6EvKPNpr2VGB290QDSi98OJCXESTYo2m2NNEYpyjLXm85vILMNx5NSK522Hm26BFngUsvGE6gncWZbpknLViz6aH8AAMcfD7z9Unf+u9l5X37Dv2LPc7tw0OuPdJ+HPi8GvOKw3R94/HHgwguzXYRGCUm9hL1JCUOVGuoA9tT6sH20H8/vHsY9LywEkGJKZRx7xzMP0oYbnmxVVS3V0V/uDPMZrkZYPmsrpvftw+PbZmPn+r2Y3p9i6ef+CFO/PAoAiO+/B30rV6GyeBjAMGYe8io8ceWjGNm8F3ue24n62nFsuvvZrsMZWjiMuFLCjMNmY/ax89A/cxD1PaNI6gkG5kzBzie3Y9ujW/DM99dhdPu+1tFsADjonENxxh++DrOPmecoTBGOvmwFBgezf2QSyki840dR1DayKYw04oLlrLPJCgDmYxoNFK0rZCyxXQqAXo/XML1c7jyeaBUlza8L3EbmFhlrlsEr5BRJMrIGUOor4bnbN+D2v7kN1eE+HHzuoeifM5zDf6tOUbBDSqandFqGVrRb+2KDp6CNbNyNhz77wxYtf/1t/4mj3n4szvzo2a1Cj1/xOK770JWteu762x+ib1ofxnaOtdJe9VtnYsbhc/Cdd38VADqe3/5nNwGqdAoOBudOwRs//WYsf+NyfOOnv44HP38f4nKMN//bJTj0TUehXG1P+uhofmPIKnIUuLyTkE7aUql97YGNLqJTW+dPjzA23v5WoJSiHGdehiTNLqAvx0lLGJZLKUppA+U4QYRM0SHEUdoSzNVSI+ewLe+Hw1bLlE9cgfpFbwGq+Xt3LS/QNd/Xl78GQfkHHf668RbH+SONbIc41HWsRqTtj+LcrmtbV+hqBy1brXZedaP5i5RnC92eqaGjm0Ih3mfbPhCjC+h0fCv+qJzaqFXNZ/mmF7EZup+1SDawDV2PNgqJH26g8I3o9goM1uP9Z11FMqdIPuhvVchDRqVXh35C1zR438SxfofyeWBlhmfQhcCTS70q0b0o3Z7S7pVVZ4enQ/C3R2dFeWyafltnrFeXyoIXQy7vj4NH+cX+GN6T2ZdewBp6HdFKB+iw9YIEgO5jmchYLT/sxWHL31aWqbO2VyiKDLS4CEVIsv0i/Vz/qxOyqJyOzZb3xgD4Br+F0PNe+VVI1vVaD//bjUrAX3uWh1nwIlxte156yLGnffP4HjBxnmll4EsB3qZ90dqw9A2EZa2COoHZXi8OW+oimsfjuxrlrGMKvXy3aF0R/6Fr5bz5C61j6kbWcbw/ckPHFqVtJ2ppsB8/dd+v4XOr/hIPfe5ObFu7Da/90zdiaMFwS7ezm/bsl14VYXFt22XEMEH1edUjiXedB8VD9qLwNn5sVLKVV+ynxW+rzSRCHHVG2DYaQPqe1Yh+bjUQA41SPiAGpezTchKXgSQGaiPNNvrbekorwIPvQaH/qIy2h7KWmdFRH4AGgCRLQw3AYDNfzZRhf1lf3MxjgDi1MofP9m3di8MuWYHTP/aG1px5/N4rP9nwisN2PyCKgI17pyACcMv6JVi/axryXpk2xFGC9594B/rKDdQaMbbvG0CpGY02VK0hjtByZnBnoRSniJqendF6GctnbUN/M0JNnSLxqpXApZeCx9XLUyr4ietXt94gm9br2LN+B8b31RFVytj15FbU947hpj/6AeJSjMWvORgnffDVmL18RgezoGPCRkc2GilGtmcOqf4pZZT6yj0Tp92J9r4J3hEJW4e3i8/8tl5lyEBeuQ4pNRqZp0JAccUIa9u+RnIB+d+aps/Uia3/1ZBXJh3H7b5QSJNB0jnOtsrjFdQaJcQjwPDSmdhw41PYcONTrT4f9tZjccpvnYdpS6flrn6IxysZXY6067JzYyNseWm3nQsvkk8FiypwIbqgINVyKixZRncrt67djrXffhg7121BqRxj+vLZeOrqdXjmurWoTKngtf/f63DNL1+Bh7/8AB7+8gO59vpnDODVv3c2KoNVfPd9X285Y0//8Gtw6yduxC0fvyGXn88v/Je3Y8+zO1HbNZp7HldiTJk3jFIlxqyj5mLBiQsxPg6c/rvnYs6pyzDzkOk49NyDc+MhXm00qQpgVWA4fqUFvffMRqAwP/HaihZ8z2rE710NVJEJvRqQxkBSBZIm3aX9zXVUyrff6vNIs85+89xs1Fjlw4Wy9L0MNPYBybgvcFk3r4jQuu2VCNwQsvgmTm3d2l+FkMC3eSyoUqdzovNqFXVGoVnewLx2I4z1evX1wr+tget9tE/8qDM01I9uRrf3zX4zYlXr1jF5R3mJH6Dt2PKMjP11OGl92g+9mkH79FJtZIUiixSn1qmoR8JDtOg5MbS+/e2rGl/dnAIWPJ2A+Nd+ezCROyIVrD5hN3q170WKfREPCT2bKD29GFFzdo68lyYWjYXrZrKdKpNVp/JAvWM6xFdbVyKYdM/x4PEd8lNvk6QbeFHHISNT9VvlWR7OlK9ZHm/bLOpb2sznHWG28pB4qFTy+CF/stdRePjV/730MQQvdaRpEaic93iM1ce88RO3mkevIGEax+zxOM+uUyiSDd6G3mSAjeq0UKTP9cKbi/6zfc9hW1SvV0br88anebSeXsDKJr2iwIueDekP1MGs3qDBI9Ye1ReZ2kAA1Zlse+r4tDq71V268QTSuuK0VQ/SXPkTPnQ2bvzVr2PDNY/i86etxbsf+BAqw/0d9YV4OmmxiM6TpPN9DOT9fKFoUZAZx0Ccaz57/7blEXY+W/iQDnubXHYzp9f17G3GextIXjkrJ7wP8anfNs3SuWeHbH14IxpjDUw/dBaGZve3TrDyo/hUug1dN3mg8H/eYRtF0afTNH3fRMps3DsFX3pwRet/dWoflp51KAbnDCKuxJh52Gz0L5yOuK+K6YumoO+o2dlk1oFZcTuqjRE3SRlADCR00JUBUAEazdKT/iwPIIuNL90yx0tbjr9KGdMPm90iptlHzkYcA4dfelzOwO9VqDTxhb6p2WXcJefOjyLBZ/NNdHGynBpxExFOuii7CTYbEdQL87dMNMRUbVov356R3EubLSbSjIqMy8ClV70X43vGEDXqeOLKR/GDX78Ca7/2ANZ+7QEc++4Tce6fvQFpmqJcLiGK08I7bG27Fs+EbtEhvSrCNp+3K237dOsfXoPHv/FQR13zT1mCt339JzE0o4Jl5y/HhpufadV959/+EPu2juCwNx+F43/uZADAglOX4vnb12Pm8llYdMoiHPbmo7HloU1IGsCUhcOI4xg71+/EwWcvQ/+cYXfeSLP2yOfQwqk44h3Hd7xUaX/Arht7fL7IYUshFFrH3SIsrHPUE54efwnxiaI8aix0U5C7Cfci6JU2bfSBNZZ0bFqfVdbtWG1Zayx5YykyCiYLQkaDFynzcgKN5LN8S/OEon88WvbmQCNTxsfbmwM0PKIoi5zXNqn88colVaiB7Hmtlo9moNxnmxyXPQqsp0aKcMN6JoLPyQZPhgC+TPXyaR51OITq8trvdt+t1hviixaP3figffZirx0rrz2dI4Qnz/AN6TxFekoorRtwfVlHPMEapZqmeYpkgPJzXY9eVNn+zpXll5781vZ0vevGLHmLNy4rk5KkfVe9nevQZqW9xoZ5lPfYYAbtR60GoFFCHMVIxzKa4amhKPI3Rq1st9cbvVSbXYRuDhML3dZANx6nebUPkzXukI3VC2/qRXdif4vaD40lpA95/dH//Fa6sdGNqherrmrXj8W9XfuezOeYvY1qm0+hiIdY3aQI9pcXqV6kfbT3Xcexf3e28hB12HKjhfm1Tk1X/so8rI/9Uh5XLrf1mf0Z70T8B4e/fSUOet3huPuvbsRD/3Qr7vjE93HCr74W/QsHe24vpNMAbRmqd3/zv+bhd4iuJoM3dATFpVFLBtl51D6o3UfweAvQec0l0xmxbMHKnkaj/d4VlYUKrNOTW5qHPIL92LdrHM9c/yQe/NxdePqqxwAAfTMGc7LY4ykToaf9hf/TDtsoii4FcN5Eyw3OnoIzfuFsLD3jICRxCbNWLES1L84tpNHRjAD6+zt3NPifjEYv7wf8e2u4Y8J0oO341bqVmdnjtfY/69bdAO6C6VvfgTZj1MVodxa8xertNijjqVTy9fIZiZ912ogo7nRYhq94I460XvtyBXssXOvQ+0x5362C/tc7U/XqhyKjQfGgCkaR8aQ45P1CFtccvzoFy6VMw42rQByXMDA0iGoVmPWBk7HqZ1fh3n+5B2s+czse+Ne78MC/3gUAGFo0FUvGlmHV/OeBO9cjTYE5x81HWYhj3/ZRrL/5SWxa8xzSJMXi1x6KhacuQdyfn3TPyCHseGIb9mzci7kr5qE6VM0JtqKdKtKuFWxcW9UqcN1vXoX1NzyBRactwTu/+5OIkWBk2xjqDaA0PIjB4TL6+oC5y6dj9qHTW7he9dPHdazH+UfNwPyjZrTyLD1lPpaeMt+NOLaGkD5XelbFvdHIX0mgZe0LQjweoWuZtKGGJpUejZor2h20/IEOXd0d1/Wka5drU68JIJ2zHis4PYGvoLSgfbfrQO9n0rFbI8n+7mZYWEMylAfIO3I8RY3rV9e79inEn4v65fEQBX1e5LjzImZCxpy9K0sVIC3n9cX76HN+23scCdzwZD/0uZbXUwi89oIKseLQG7/dEAjhIjQGvbZBHRvWQa/RiOyn0oKOWyPnOWYbaUKl1jp6lD69Puu4itaigjWYihwY+txbE0XPbVpRPs3D55beQ+XsGg6BjSgpcjIXjS1kgDFdnfBF9e6PsWDpmyddPJqwoOvgR+E443evxrpd50Ce/rUuz2mqGyF0LsZx2/EJGF2OL08xp2U4Z/b4LPtDJyyNUTUydaOH99nrWlcepXKZdalz224qKk4I1rBm/4vulmQe+0byJAFa10T06LBSRy37T6eEbojtD1jna0jfDq1Z77eFojKefujVZ/OpbuM977Uem8/Tj2y6p0d54Om9E4Fu6zq0Ua0OvCL97kA2WFi2yOla5LDVshZP9kSS1ZG1jW6yxFvbml7kHC7Sk735D9GHd2UCEHbGp2nnaUDVg3QMHY5FQw92/Acy/1EEDMwcwPLLVmHtl+/B/f98O2YeOx/Hv3tVcGxFuqGFDj52+eVIvv7fLXZZT+JsUyvJro1DqeFeIzfeiNFIY0TNE9k8tV1uvv+D19Exfxyl2cnbKO24og4A4nvvA044DvXxNs1wc83qfLT7VO6oM1ZlBe0f6hqUFap72LmkfqLyUU+PuvIGnXSjdfPD+tIUuOLdX8Iz167N5r0U4dy/uwSLzzuy1U/tr9o97I+N/J5M+D/rsI2iaPr+lp22dBpe81tn5pQ1ezTFc4oAbQOcRE3DUZmfdcIxzRqjnsNUy1kHrRcxYpmvPQ6T4SrPTKyxZxdEyLhXJ4HdzdO61ZhWxY//X6qoLevc8BiB50yg0TORO2wpqDRPvZ5vWz+ko1aUdtLZr5wTs1HKGHPNYSZxGUf99MmIB6r4/q9+C41aA8vfcjQe//pDeBhz8fCWucC5n21ln3rQdJQHKohKMbY+uDFX1R1/cTMAYNrB01s4bIzVUerLCDltpIjLMcZHaigPVJDUE+x5dleu7jRJcdibjkRcLSF25nnv5hGs/dbDKFVLqE7tx9j2fagMVTEwYwDH/dzJ2PHkdjzz/SeQ1hvY/EDWvyN//Hg0ogqiMlCZ1YeoeWcQI9msUUb8A/n1yPnS+ZwMhy2v1gDaDhctq8+JV849HXSsh0LDi9YhrRUpFZ7iY6Nc9K2vnoBmPl4NQl5kFTKLF8Vztzz8WIVQoxwmAt2iTSwv0/zkU6pUd9v9t+u2aKz22xu7NRaKxmkVXfusqG2vLNOp1IUUfv3vGYiesaiKYshw9YwXSxdqaKn8DUWv2EiTiUDImWB34UPGF8fUi9EKdNIQlWrrxLEKJpVgguoL+ttex6KgNN/Lmgv12RvDyxmUzj36I4To2ntu81hDtagv+9N/1ceUb/5PwD11LLvGPHnt6VwKdr2pQ8V+VDfVcqrTJkl21Z4HdgNoomPmRqm959puBFm9nPJI34itstniR397185YutXNXn4zsKKV1ryHPg1cJ+HRupUnSpsqc63exjRPR7H6Gct5GyMhe6ZbnhdzDVmZEeI79n9RvhAv8+YpVFeobS+9qLwGBKgcAvL8SWUV66TsU5qysl7fjWJlnnfFFMHjKYoj7V+RQ9Q63fXZgUKv/LvI8ayg/GQiPCvUj4mmF9VPvNvgE8uzPL5p3zORJM00OkOrnfQ6f8Uc/MyaX8Knl/0palv3IBobRSkqodJXQrkco15vv2OCddvoZA/Ik6rVJr6//RWk96/JXpYFIEKajQHZO0HodPXe+1FK2+8Mab3zo8l3PYdtFAGlqPOdIgAQn3Qsyu94K+r9vm1jNx5Kpc4rC3XsrMNed0EfmheUA7Tlmj5PkvxVOUBe3lg+rbzAixqvVIBN92/E9sc2Y95Ji/HaT74Ji06Y17pf2Mr+yaDhicL/WYctssjaa37UnehmHHtKgj6nw5BOGxKXNbq8HS19TmcQiVidKlZg6REsq5wUOVX0Der2ThsVBrqw1cAG2s4i9klD1FX5sgq6darZnR+b3zpQVVCp42xsLPvoBex0lnp3xWifrWKkzi7OgUa+2Hnj8VimabQFHWWE8lhf5rDd1aYXjaKu14F556/Ejz+0ssXATvz9EWx722qU4hT4wz/E+u+vxei2EdRH69j15FY06imWnH8k5qyYh+UXH4vxPTU88pX7UNuxL5vnJMWT33kYKYDGaN5LXOovA1GMhWcsyy4TL8VIkwS7ntmBjbc/g3v+4bZ2PgspkCYJ5p64BIgizF45gJGNu/D8LU/hml/6Vivb0vOW4+DFM3DSh8/GjMPnYmSkjSOuE416s/epTZbD1ot88Ry2Y2Pto9PqcI+i7BmPVLMevt1TI7BIizxawnHoZfSkGVVwuDuo0TQUUszDu7HJZ9g3awyxbuLUriXiWQWb5RsdU26ifFiPfsgH7K6857hTQ7sXJdQajeyTdb5RqOtmjTcWy/fU4LdKomdA6TfpRO9U9F5w4Bl41vnqORi1jxyn9xIyz6CaLAjhBvCdCbqRofNgFXd10Nhx8P/+3GnqbaJZZzj7oxu23hyFjPOi+y1tlLzSBuvp5eVU1lj2wMrOorz63ObT/96afQXC4PGPbvMK5OWQzqPqBnYN6dqyGxxMswazdYrof5vm9cdznmj/tW82TxEPJdhTOrZ+6yC160n5R0umRAlSRB1rWfVea8ha/YB6JOu1Tgq9q5A6ndZh2wbap3jY5xfTYdvB26IUpSgJOmz1o21ZPjcZMsar40DqLdocVwjpOvZ3iI96NtP/JfCc6p4MLCrn0dpk4zK0ceJBSBYWlQ3l6XUcqperHa96NHkE89GOAHybVE8N0KbQd7zQrlX+qXaNxwu98bMe74SX+gK0j0DGl0ZG8v3VcTcaQDReQZJGGB1p10NbqFYDquU+xOUYt/7Rdbj1j65r9enInzgBx3/wtZhx0NSWDah2Vi8O21ZfGjGSFScC37qiNS7Fb1zNj1XnpNEA4j6DF+lPYvwSjQaQOleGtDZMKsiu5XR8JB49e1fqsJzOE3VfHbva3Tpv9hRH6L0iasOyDbVLPNi3dQSP/NfdeOQLa7Dtsa0AgINffyRmHDkvGMDyo+K7/2MctlEUnQDgHWmafrggz3kAXgdgHYDpAJCm6Z8G6tpvZ22a5hew3cEF8pFugO9I4OTbHQHLsEKMS59Zh1AvDhCPMXqKgnU4eQZsL1FdWq+N8lTnJBe2J/CIa+LMRhF547HfoU8I1Bkd2lVRpRkIvwVT+xIyIqxianezvLZZTvGSa7+529bNUFejY2DmIJZM24VynABnH4pFZx6aY4Aci+5UTjt6IeK4fT0EcVvb18Dm+57HwHAZs4+d7xpq/N728EbUR2qYs3IhKv2lXFueY5W/tz2+Bfu2jCCKgOGlMzBj6XCONtTYYn1qZNiobkI3h60C69T58Naaddgyj9KN3mekfdeXTdkobjqh+J2m7blQo5R94HUgHI8agUC7Lu03jULixvI+HR/rsleseMY30z1QPChu1ZBVx7V1JNj/hF4jnULGnbdumO7VXbQr6/WzyNlgDfH9hV4iQby+af88PPwoocgBrmOx0W5WHnjzYuvz2rBt6eadXqVjy3vKvTpMlBf19fkvdWM+rmn7giQ+V4NC+2ONHq3PW7dWnnUDT87ZdMtbLT1xzn7UdDZRsBGQIRlCPUvz6NzY+VFchHQ5+9s+75UPant2HWmelxrs5n5IZ1ZQfdbrd0iftnjTOW0ZtFlcVEcfe+EfilfbZzV89c75ItB2Qzz9pYIoAqI4P3bvo3zT25iy+oblGzZ60jpMqMtYo34idoyme+vaOizYX3uCiunMZ9e95vWO23q0HqrHoyfbJ/7XcqS7ouO+niywfdB2Q2Bt6hA+dM1pIJAXYavldBxa1vbZ4t7i1rM97XeIB3t48+p5sdappdeQDtStnOWNrIeBFBocpUEcSlNAng4J3pUItM96cdhqQAdxqIEsSmfMj+bVAboe+DsLhIpx3mffiR1rt6IUJdj93C48cPkP8ch/3o3qzCGc/Btnt+q3OArRvKVHJDEaSYRUrsph++RXWqfyG8WvBh3ZYBq1U1QOtvCAjD9qna3+CS1YO8gGK5Em7FyTxxfRkkdX3AjQKwhYd8dcyjdPJGvAxpNXr8WV7/5iK6Bs8WsPwRHvPAGLzzkc4+NtvI2P+1dwasCXN4bJhv8RDtvmXbOXA/hSlzzvSNP07ZJ2XhRFV6dp+jqTfWaapnfv77UISdI+Sk3HrDL3NM2eM43EbgWiErJetqxGGe/CBfJltQ5lZFz4JCBdzJZp6m4Yd7ls9CeBC5MLW40DbUcZj43aZXsUqAo2UlYdsUr8VpCzL57RCoQdnb0sMB1bqB5tR51hISNef6vTTvtqj3ZwfKQ1jYzQSMZSKTPivfbLzTttYjnaoIa6XgfA9HodiCvjmcN2MC8UFUfqsGW71mFbLpdw0KsXd6RbpSpJgIWr5rlGvaVjK8T7V8zO5fGuDCEuGbmiDltPsSZz1/963MX2kVEupHVbdxsf7bJct4x84ZxanlAuZ3diV6vtNWSjuDmX/f1t/tLXl6cXdQrRYavCvFpt90eNJpZl+0De4atC00b49fe3cWRxY+khtBZ1rBrxVKm06V5xbcvyzj9ti2Ps788714hPjWCig9zjA6qAcB2xHyFl2xoimpd1hKIv7bf38drT/ARvU4O/dTPDcz7b9rz2Q/9DZbuNrWg8dty2jHWEFClWOgc6L0rbpIlQv/htaVfb8JzBvcgcjsNzIihP0Dunu+Gs2zyFaMuWLYKiuQo999bTj8rhNFHQ+VFd0cpAAvU3LW/1LWvIqM7mGTya7tVj+1pETwTrsA0ZWCznyXyb5jme7W+LE/2/P/RQxAuo79rrqeydtgzg4FijCK37A6MAPj180TjWeS3STb0IIOJd03VjStu2zmrvSCvHpXaIGuXWwaJ5+Lv1LOGfzjz2qoI4zjtmOD6Ox+LC+21xYsHirxv9hDZ4PRskJK/0WZGc1ron0idvnSsU0ZP+Jt6sflfksPXsR6uDE4rkBa/rsbyC5ZTXUS8nrZCGVQ+z+PacdTpe5al2LOyD0qLydEvXXhmLA8vPVF4A+U0Fux4V1I7WehRCa8HSr736RX+HdDrVM+x7LrRercPTu4HOTWKLR50ffVcQ50D/axrxMjSUp4EoagaW9I0hSSNUp7b7MjaW/a5Ws88RbzwMSXIY+vuzOs770/Pxd0v+BBgbw9BQp4OU3yGaJz3SHkFlHPUkRjrQnvs4zuRMFLXtHWszMY12i+ewtafjSHuUcfRVqX6r4PEn4s+jD503rmsv4MOW09/a5yKdw/K+NM2CxZ6+6hHsfHQj9u0YQ9pIkDYaGN20B89c+zgAYM4Ji3HBP1+GgbnDrbHTSUuHLessCrphniIeeSDwsnbYRlH0CQCHAPgigCe6ZL8cwDJNSNP0miiKPhxF0eo0TT/TrPPSNE2/cmD9yu/exnF7oTGNTMketbJMsdcokYlElHiKq22Xz8nEWL9G9VnQ8dJxFTI6gPaCt04lZe5koHaH0ypA3nfI4NM67J287Ltl+F4dRW0VgTKibvXy2zIxzasCS8tYGtRrGDQvgNa9NbHjOLDOmpxDIW7eg1OAg5BAt3ksHryyxJ/31mmrhKigCtGr/T8RY9/Oo+4mhuYW6Lx43UJIiVYjim2F1rwXzWEFhiqzenWGvqyJONRdcAp6vcTd+3hj8Z7rd1FakZIZatcaoba8NV5tPRpVYJV8266W0XLaRxqXHTvmAfBoQcFeU8H6rFLA+dJ6Q21Z/FgF3+JSI9c4Pu5Uq9OCfVIjX3HK9kiP5FXetTZqoFuHCIEbgnHc2Q5Bn/XiAA1BKIomFFkVWhdaXuu10S3e/4k6o6yeEXLs/E+Dog3alxtYOROSH548Ub1MdQCV71bee/LU+x3SqyZCY5PtMLd81ZMZtn0tC/g0UTRefe6VVVneq+6wP+vK09fV+WH7q04Pixv2z9bpyUB15LJuz+HjyY1eoKOu5r2LcOTNRAMrQrI/pHt4ddk8vdpX3XR7DQpQvUrbsrq2pqvuZvvEfNbBVVQP/3v0omnKU1ReWhrUQAcLtCO1P4rforVKsE4l219ry6quzIAJHVtojasTzW58qb6vY9F6bZrtX5GdYNN0rq1t2CtM1D8QstO0rpB9VyRTlPasw9abD7X5CDaoxeJeT/epn8GTjV4+1q9O8TgG0LzLle2yb1pe+5DljdA3tQ8Pfu4urP3aA0AE8MWKp//mmTh+9SmFDlu20TqJ2LyDFn0+DTMgh+mW/xU5bG19XOuVSptHqsOWZT0a8dJCa81eFec5bJUGlMd48pt+uP7+9lgVx2zn2e+vxQ8+kLn8Sv1lVKZUUSrHKPWXsfC0pTjh187CojMORn9/hCRpX/uRpmg55OM4w2lfX5vXcK4sr6NT/8WAl7XDVq8/iKLoI6F8URStBrAtTdMdzuOrAbwPwGeiKDoEwN0H2q84BgYH80xBCUuZE3d+gPzisYaYXVxAu55Gox0lx51EICMK7iqybX50d4oGqxIRF6UyIdbB+qyg8BQAaywo6IJnGS5avedV67cOE8sYWa9GdWofbH+tsGA9yiAZJcgyBO+qC6YT/yxjF6m+AVHHoeUtzXj0YZmfVaysYLQRjwAVqGxSYxmrjRxV2iGOorgpOBzFkr9tP1TJ4W+rDOkcWeXEOuqpYHgKkiq1No8XYWuVryKF0OLeHlHV9WnXCndCvahkK/y49unE4rg0UmBsLIu2Hx3NeAqfKX1TUbXHZrQftr9Ke4on63hT+lReZYU/d2ktvVqa8dK8dPvcKibdlNmQ8aqgzkjyhaJ6vfo8mrFKhoVuis9EYX8cKLaM7bd1junudsjRq3NjZRPB0o814qwzmjStoA7bkHFLmuQzu/b0tAjHwb54zhIPf6rYW+OC7YQibENGn31BqOe8KaIxXX92ndnNBrvetMz/VKfuywWswa8vYCrSnXrJY9OK+I6XT9OtDJ7o2NSAUpmgbdqxeLqbtzHh0TvbD/XHlg+NV597ZTlf+mIToFNWsnzuupNSA1izBuXXn4O4GVnKq6n4whi+DIbP60mMqFFGuVRHkkbZG7/RfnlMiggREkT1SuZYKNeBJEbaKGf8uKRRD2nrO0liJEmcXdEQN4A4AZIYURohjtsMII4TJIyCjVIgibPvOEGkfUkjlKIkwznHFieI6+XW2EtJlL3/gHXXy8C9axCfcBwQ5/Eex/kgF3tqS0/H6Lyp7mv5rk3zXhZn53yyNiAmazMjtAnpfVvoxi+8+oryaHqRw5bPCaqHWpsoBJw3a1vYvnhpulatfmrH6jnRvLp1LFqvl6btWNvSytpu+l7Ioa/f1oZWvHVrx8Ot1RnsHBBv7JOdJ8vfe3HY2nG9VHqH0mRLn23y5lA0fQjO+Oh52HDLM+0TmCnw+DcewQ//9Abs2zqC1/7+We48UObl/CHkyQavin+dD6uH2/m3Jx7tPFka3x+HLXFo51b1XntFDE9z0tlKn1aa5nmMd40GcUBfnHXYPvSVh/Dc7Ruw6YHNAICfuW01Zh69oNUXlh8dzfL39WVt8D0wQKfDVk8I29N1qgP8n3TYTgDejnAE7hMATmhef3AegOlRW5LOAjAziqLfAHB3mqbXvNgdtdALQygyHHuJvLXGNeA7P2ybBxKNZCOykiQfDh+K+DlQJcdzLhTlncwIEYUQzr1v/vacHwqe8V30Adq4TiSywTq6yKBVaSa03jQZoD8gT5uhOxWtYeaV9RQadZ6EILQ+Qm3tr0IQiuTUiFimh5winpKiBotVfOz4KfDK5bDBaiOPvChAFa4qoNknz/HLYyF8zt8q/DU9TTvvmALyjmCCKvX2uhTlRRqNWavlXwCoTibigO2SrvXIKf+zXnUu8ne3aFnFI/NZx34RTDR6wjpJ+N0rz5sIKH/0dsO1bf1vN4I0XedSN5hCTimWUaWPoGkhXIfkph2jzoM6pXsFq9zbebI4CoEaYVzLXO92PEV1hv5r5FK3jQmO48WSkf8bIBThp7xIadPyTY/ulVdqHr0PvUhXCOl1Id3Bjsf22ZYtqtv2r1sZL6+VYR69v5RQpH9bnpiT7T92GRCliOUN3Prmbv3PtFKUtN7YHSGfL0KavcSs+ZZwfkfIO4C1jH4TKnEDpTirCwnc/ti7dwE0b+Rt500RtXRLIPvOHMppG2+mbqxaifjtl8Bz2PbCH18O4K0PgqVnz0Gp+rYty3xFMtEety2qx3M6dVuboXVpn4We2zZ0LC+FLAnZXQpFY+hWzv4O8cEXY6w6tl7bKKJXIMyX9b+mk570FB+QtwWiqH2qz9p1StfWZgDyLyrWzTDbDvV/6pY6p7qGbBr7pacOdVxolNBI41bdaZp/ZxE3+VmOfTzoouOw6MLj0N+fbRqMjwNDB8/Bzb/zXdzy8etxx1/firgcIyrFiEsRolKMcn8Zw0umY3jpDCy/ZAWWnX1w1oexvuxKnV15vGo/7Lh0jkIRtnSEknY4DuUhag9ah62WszJa+6B8i2XK5fZVoRpRrdeTKF2pw5Z9L5WysY+P54OD4hh47JuPYN23HkLaSLDtsS3YfP/GbOyDFUw/bBaGD5nbcs7qyzk18IP2J8er9p+OiX31TjX2avvtD/xvcdiehPD9tk8wD69FIDQjbi/1XkzWDUJKRpExXWRcqSGqBm/R/SfWiNOPRtiynI2wtXltHz1F2mPQWhcJm4urUmmH73ORelGgth7bRtGOnk3TyC7rgLQGf9HLwUKGgmeIh/J0q7fo22vDS7dp3vNYrkSgAPec8nbHMUWEJAWQ5BkSwSp6+6OoeI5GgiqcRQqS1xd+qADoHcNMt4ImVBf7ov0l2Hmjk8leUs48VuHSuWJ0gDoBWY55eY+trjVG0HtCOYTbIueffZkZ4L+8KERv+7PhE3IOeQ7oXuqxDjTdKCJof+1YQn1Rh546NFubIz0YAwq9jIn1em8yf7FAxzSRNa08XGnI7vJ341/6zbLKv5XuQ7gO8WUbfcU+WTnTK3hGkeVdRfzLU/ass9yOx8OXHWfRf5W5Xj7Lu16BPHRzZh+Is9vyEW/jLaQ7WYcv0KlT2bsOtV3b/170GuWjBwr/azYJVq/OPmUAnJO4+Uman3Lzf/N5lABxDYir7f9A51pPmu/QqFK3rrUNdYLm103HVmTQeDsqiVAuAyU9gSOn8DynC9Due7kMJM2TReVKXm8HgPJoOx/7RaO8KFrTA28Dmv3yeKr99sqFwOq3E3HYenKkmywIlbP5epHL+7P5+AocOLwYPMwL0Oh1/iezD70EhwH+OmO6QpEM6gW68YKiNCtfkwRAGqGRRC0bWcuHAmBs3QwAOeZnT8Wy1x+BB/71TqTjmXGWjCdoNBKk9QS7ntmBZ29+CukNT+Lh/7gbQ4um4k3/9U7MTjqvjuH3geoU6nSdCGh+z8YKtenxKa99bx49Puk5jG/5+Pdx2yduAABMP2QGSn1lLH/L0TjlQ6/BzKPnAwBKZaBRK7a3rJ1IfBWN7aWE/y0O2+kAdvSQZ9JAI8eUmKgYq4deyxCUIKn42J3TkPHvMQivXi+/zcffk70jSIeVhp7rLsVkEbpnzHqLu8g5eqAO28nEW5HDJzTXE8Ul+0xhpLtEurOZpkDSaA625h/vtwYh55iCRSMdQ0Ym201T/+iz1u+1qYaqzcPxaBTsRPCmtMMIJ3s3mfYHaDuD9FizZzgTR+qE814yxbx0BHtOfC+d+OddOzSQ2IdyOTsGoo5rjXq0x3dp3PE/HcM6BwS70aQGmfIGHR/HbyNsdZ71OhL2hUdQvPWic2KvmtE+60vR1BnO3WUduxpBdu6TpN2fkDNNx8Uyth5v/KS9Ih6mL3rwQOfEphM4d5VKeyea69Ma2Dq/rJt4t+PyNt26Hfu215rYcXGsIeM2hHvrsLV34IZ4v61T11vLySHzeiByzkbTeIYQIWQEFRlHth4re4gf+2KiVyADy3MBnzYUlI5DdE+DQdeQ3Ui1oLRi9UPbNvOrQWLXgZXVveiHXh/s2Ivoz26GFdG3bfcV6N2RqHPrgdVpuzpsm6B5QuvBfnu6jPfMM+4nG0L4sxuz9r0koTVu8abrSZ975YpkIvPxvSkWN157obo0nzcPmqdovry6QnXYvB50k7+htCJHjOXToXF0+98tTW2abnI6BEV8lNCrw7YoT69jVf1S/6suZ18mxmdWN1da9GSn1c+1PqZbvHqBVyEa0ftorf5TKgGt6wgq7XtdtSztqSTJH5nnqUTaJpTjU5ZPx2s/dp5rgyQJ0KineP7OZ3H9R76LF+58Fl947acxVF2FhcO7Me2Pr8YZv3c20jhCpb/U4j2Dg516ms6HF2Fbq+WvDVB8K65o66mObk8E2LnS01o6v9pHxbdef8NvPWHqXZnJcQDt9Tw+1sBjX34At33iBgzOnYIzfvdsrPq5E3N9K7pqkn2nHcG29RSmHROhKAiqiLcdCPxvcdgWwY7m90xNjKLoUmR32x7SfLnZF9M0vbuXCpOkHZquL/AB2kQ6GQ5bIP+WVJuPC1KJSV8WRLARito+f4fyeGMP1ePVaz/sj92dKBJsoTqLIpj43JsH/tejy1bJYR5voWpdtVoW5u857nUcylS9O2zVSeopbJbWyABbjtWk/UZDpc+WMByvoNYoIR7JM6o0bTNyvTO11cdGUzMNOGxVmJHuqTipA6Sbw5b/vaNiFn+K0xANefREIRCiS4/m2AZxrJFJOp9W4Nm149EB61cncqicXaNeXs4b178KwyTxldb9dcLYaFKvvyHcelEqIR7k1Wvzv9TQbXf2xW7bw61Gf09WH+xmBfDyc9iy7hCEjERNt86JUD6vPVXkCXrtgOaxdYf66/V9fyLWJwK9RIq+lJGPnvPE4wsh8PjjZG9Kv1gQimylLCLf5pqytAbk0zRd66JM8NomeHoav4t4+kR0R6t7heRxCEJRj7Z//xPmfn9hsvn+i81vJgKhsWm6x19DfNdzFnUbr12P6qAIrbOXgt68KC9vHYTWkuoTqseGosc8vdn2xxt3N94wGfQbKs+29XnRGDRPUZodj41AfLGhCGeebh6CEF/W/0X5rC3XS7+9NRhysIZ0ODr0GJRS5CDUNDph7cvgWzKzeS2M6jxqR3my1NOPeokYTRIgSSPMPWExLrvqPXj6u4/g1j+5AfXHn8BjW2cDf3kL7vjLWwAAc46bj5U/fzoOOvtQVA+akhuXnSP1BxHs1W7WGanzav0ZIYet2vkhu872Td8bQR8N16fm0XY8uzJJgA03PoUrV38dAHDeX78Zy994uItjryw/1u70IqhtQAdx5l31p1cqTDb8X3DYupCm6VcAfKXX/M0Xm60GgMWLl0r6pHctBxNxigD5S50JvTLSkHKu0AtzDy0QvX9zIkpFqE7Np0q/MhyOh45NLiQ6wpWxszyhm8M2STJn7b59+d1uu7C1X1qewEXuMTZtn85CNcaYRkcdy3c4bBulzGErb1vX+2H0xTw55SpliGhY4SqKCrb99IR/kUBTmEj7xB+fjY/n7yUlzpTp6lypcNP6dPdN21L6sHPEPDbatmj83ph7NTpDykNIgSj6aNsK6jTg/16MJu2jhSIl08OZNyZbJkRvXr290KbXhjrzrSLwUjkJPEXRQmgMfGbzhGghxH+L1qCnEAKdSjbz8bnyI+Xfmkd5qwVPqdJnbHcia1LHoXNNCPGjbvRn67Tp6pTvxdjp9j/klNb5sHPzozZEJ6Pel4sjan+g6IQF0J4j3fhluv4Gsv92A0Tz9KI3hujMykSPlpTWQ7LDfof6FFqjhJdys+HFBCsjPf7zYrZD6FWGFvE6my9J/HnyopZ0vN5GNL97ddgWgV03bLObg/flTm/dNumAidNVaP6K2lK5diCgtpfO9Uulh1mHrbfpZiFEfyG53ms/Xq60p8FaHj+w/4t+e/oQwVvbuuYtTeTmSxy22lcbXcw6GaGZpp2nA3sB1h/HEQ676CgcdtFRwPnnY2+tggcv/m0ktQZu/4ubsPm+F3DNz38NAHDhP74Fg/OHMW3ZTOzesAOIYyw6fSnSNMLI1n1Ip5bRN6VSaMMdKBA3yiu6tTGRzX9rX/K7NQdpgh2PZy8U+/HrfhbzTlwSnHct6/32+tgLeDbwi7n2/s86bCcKzftvPwMAq1adlOaf+UqI91vTVEmZvH72FnFQpIx5+b1y3f5bg9Y6WLrVG6qzV8ZjF5NVCDVKxVPK2F5IsdNos0qlfQxB2ygymDTC1uJDmb912HIces+ovslQ+8z+lCrj2QsqBtrCxR7r4lEO1pf1sfmjv+3otEJJj4hofy0+07Qzyk7xr+WtIalC1uLROhvYlo2m9eoNHZW3z1neHqfRcvxm9IV1olkFTnHVjdF7hro9mqfjaL2ptIsh2ytYIWYV0l6MI4XQmipK8wRuL5E3vRhWXt2hjy2vkTY2X5Hw39/xezgGDnyuuzn02UYvMo31eYo58+gLKS2fJa8h2Bf7MQ/H743d8uCJylkrq37UhlCviu7/dAjxSQu9GLPemv2f7LDtBbo5C4qMFS9PEVj5rr970fFULob4mvLSA4FufQrpu/aEm+aNY/+lJEB4c4n8ytbBerUtq1NZR3yIT3vj6KVMrzaC97tITth8tg2VAV6d+l8dKYTQJlnouxu+FLqN2+blOHrV5yyE1qp93m19dtO5QvTs3ePeiy4UAs/xor8nS0d9OUC3iOdex1rEk3op12vfWEY31r11wXTlc/alY6zLPtdoTS/ww750TGmOV+Qpz+NvngxVXZ/9UfvY2n8jI1n+KOo8+RnHAOpl1JMY42PtOsbG8tcEaD+tralBYZ5OrWVD6UgjVEoJjv/AqxDHwKpfOgN7n9+FO/7mh3jg8h/iyvd/o2Me43KM8mAFtV1jAIDhxVMRyYJLGglO/93zcNibjkR1SiWHb8sLQhG21rehZTle4lHnQ/N4NFP08fC15p/uxE2/dzXG92ZvDJt28MygvJnoho3yZnVGe/1Rv9ZLoVf+b3LYTu+Svm2yGiqKcAk5LLxnQDbx3SbaKpq9EKDnGPUWZUhoekYw05S5azShKq+s0yqj/LZ1K6PtBr1GyqiiwDLqyCKjDTlsmS+k6NA52mhkd4H293cqMVbIaPkih60tq30mnrRcyGHLcZfL9ewtvX35CBwdkzpsW30sNb2z1bYj0kYI80UX2q5H81bY6Ti0H7bvWg8dtqHdN8WjvTOHL7xj/2u1dpqHbwr40NGakEHQ7SVI9n8c54/beLwjdK2BPZqnH8+5zCO0Xn7bpv2eLMU6ZDh7wpztW15ieY1dX1GUv7vYOzkQx/krQLQujVZn37pBSNkIgeK1G0/vRU4QPIeXtucZWxoh0I0WPHoJ0QzXK+lQx6K817tDVvGnm2sWvBMbxKfmZz+5caR0peuD5W17IYVVeYTtu8cvvHsL9ZnyGVuGtDlZa3GyIBTV7UGHceKkF8nDXtsI5X8pI9//r4C3mddruV6jbX4Uc/Zy2yDxNm4B37ZQHgwUn7IheIa0/e3lC+UP5bNthOS+dzLLk21eMMj+GuwvBbzc6GqiUHSKh89DOpedj1A9RfTnlfVs5P/peJ4sUB7gPbP2tM5fEQ+wHz0V6jlstT2tR4H/dWPGBjCp/Wjnd7Lm3PoPPFA8Uc9TvZF6LvXqkF7eTbePSxGmLpmG0z96AY585/Eo1WsY2boPO5/egb6pVay/4Smg2ZfqcB/Seh2NWgNpE5cjG3fjmR88gavf/9+4YcYAVn3gdCx+1VIMLZqKgdlD2Pv8LgDA3o27Mb6vjkYDmL58LqYvnZqbd7VZ7PpUvVR9FsqzlRY0zW4W1GsJtj2yBZVyhpjWexSQ4qEv3o/7PnsX4kqMBacfhNM+fCb6Z03poDPlRfrtQVFAlPISz1dBOn0peM3/FoftEzB31ArMlDyTAso8lGhVYbBECOQdl/zUam2j1t5tCmQ7O7y7VBeLllFHT63WNoi93SwCy1pjUvN6aRy7LkL2jXeo1mrtNrRdplvnCp8lSTtak/jlgrFKmHcsXetW5wudN2oEE4f630I3JYHPQxHNmteWCz0LldX2FPdenbbfaQqkjRj1JAacO2I9pbn1LVciWHoqYmIhQ0Lzhsqr8mAZoKdI2HF44+L8qGOOxoBHr8znKSWWZnqZT7v2+TsnpOqduNM7mPXaClseaN9p/P+z9+/hkSTneS/4ZgGN7rl2NXqGF/GmQQ9JkRJFEsBIsiVLPBqAoi2PdWGjR9I5Ppa1boD0rv3Iu1aDs2fX5zneYw27ZZ/V8XptAi1f5Iuk7oZsnx3JotgYWXdLmm5wSIkaUVLX8CrxMo2uuU+jgcr9o/BVffVVRGRkVdYV7+956qmqzMiIyMjIyIg3vvxiZ6fdMljO8dChpvsMLZbVaq0dD30P6XPQD1kdVvLtciOhy8NlHaPD+iZidBvrqhOue1W7CYkVbHXd0vVGt7k+XHUlhqx2QLa7BtwhC+M8M74hS2P5rbe5/usyi0lPd3iEULshzxhdT/W3xleOtq648hqaLbftj+96223ar5W9RyReqV8xbYsrPWAwA9RRGxAXVUYh6/HQfZwVznWt7X6b7iBEKV+fJ8tC2jVwzbJMk3h9ZFksZgmbvmPtgiQ2b7LNTjjZtFy/fWnHGmNIPrLaXd2XGmbrclf5aX/gofY+VO5yDfX2ft4rrn6ubB9FYtpPuZ9D/RMbPvSMi20rdXz6uxN81w3obFvsMXq7b78P33F2vGi3a4MRPcYHWie3bZnIdZG3TOV41/0WEo0t9nlg61MvLBobdTBNUEuT6LbV9TyW/p5eN8W6PZRvMSxpYW+iPl7faS3HW7eAu068urHo2NfsX7OZ73tXI75azb3o2Jc/8SU8/n/+T7jx6a/gd/7Rr0SVye2vvhNvPfVO3P7ao5g4VEKSAFN3H8GJv/Z2pPtlJBqSdkNptRUJ82cf/zL+/Hc+i50bL2LiUAm3XtzBy9dfQm0vRbpzC3/2258BALxy/aXMvL3nn34f3vz+b8SRI+E+se4b67f6ZJ92HyljQdGjRNPS4/dQ2yf1oVfP2XERbLeQYWEbu6BYLFIh5eK5ZnlcuGa49UDNXmifCbmk4Vp0TBpQV7o6DpforAkJDrbR9j3EQ4Mam5YWSHQHOGZgFPqtH15a9JAGRcevw2b5sNXCnnQMXWKohJWGzOXDNs+MsK88XOXSEMiQv3eYpnD6sC1q9to1yJLOddZxedO1VnF2+7Aj9TbvYMPWb9dMoH64htLWHY68gm3W6+v6ng9dX1feu6kvep+rsyvlJbOtoQ60HnzHdLQljC9/unOsOz6uAanNQxGDc/usAtz/Nbqe+Tqzul7Y4/R/X0fYVwd98dn2uq1tdDwb9QKPcrxtm+xz3DfglHTkXnQJtpIfXT5J0pxoEUqlZmdS/ksetbBhy80O2CQeK4bovMtzKUsMzNseZw0quxkgu8LkHfTG0G9h3CXSyW+Nr6/o+u3rh8XmRw+araWRjcfVhhVpBddtHD7xOXbyqai60GlcWQKGDJhlbKDHB77fuq2wRh22Xy3HShidlo1bvy2g3YppgVb2+5579tyzsH0g3ySvCx2mk4mRQUyi9ZLQ5IjF9dxxxeczLnKl49sW2t8J43bdYvEZ4YhOoSeA9HWS/rHst22AS7B1Cdp6rKPRfWvpH+l6Zfu9oeP1f6C13UGSovSJj6P00HejVKoBaYKJvQlMlPaQphNAIg1JAkzs1b9L8kAuIUlqSEopkr0SsB++BKCUpPX45Fj5ThMk+/8bb7R+8kngG2eBydY8Tk3Vz1He4tQ6BtDcJoKtHDs5Cbz23a/BD/z6B7H3yi088/t/jpe+8jw+/2sV1HZT3Pnau3DszfdgYmoCt917J778yS/hMx/9NL74GxV8/P/zW7BcXgbe96+WcOfry3js4X+PvZv1Tm1aS1G+/x689OXncevFHSx+5P144+JbG239b3/o/4evPvlnLXFN3X0YU0dvQ2kiweGjR1C7VcPk7VO441V3Yu7v/oX6ee0bV01MApO3TeFrvv0Ekv0KZcddvntf1xEXLoMYrUsJMW1Cr9qNcRFsLwNY9ex7AHVBtzBkxl13UMQyFGh9wOvXzF1+YqSjMjXlXqBFZi7kBtTx61kNqYySpyNHWvPrsl5I03p47QtV8HW6dfra+lXSF+s+oBm/LhsAjRkRHaekJ+cpg2O7MqPtEOqGSjv/tgPxWKGhE8HW9yq3Kx29LdRZdA0gbMPhCmvPs9OOS+wA3TeQtNh8hWbfXQ9xex6uB3OoE6fzbe+vWB+2+gEZcokg++wgNo/loRwjYpwWM32DF9eDSw+Odd50eNc9Y8Um137B9dteb5/rAkEEYdlur6/tmIjwpa1ibZ3S10tPrIXqi60fdpY/dM/67s8s9P2k8y/5sdskf720NuhEhNP3kn1+2Hy72lUJ5/u24X3X0cbn6qDrwYEL172mny82/lC+xPWDrE7sEkX0sfZ62+/QgCPUIQ2dZ2h/TLiDhm1HQu2xJjacDuMq+6zBSa/R568nJCRvFt/5asHW9zyPuc8lrk7ImtCLOd53XeXb9Vv/j+mT6Dj0q7fynOtkwZtBottXW5fyxFFEujH47sfQNR/U/Vk0LiHDRd7tIVzCcJH9HJ/wPC7XrGhkPG77xIC7HKVtssfoNt917+j/epvuM0q8Uq+0PqKPd43bhNtv9xi4/Y33Y3dyF7u1HUyWaqilCXb2JnCotIdbtYm6a0EAtTTB1MQeammCyX0hdrdWwmSphslSDbu1+lutEr6UpI1wYghVE2ve/f9TIth+09uxe/J7gTub5yV9yCQBbrstTrDVFraiVSTlQzj+mjeiVALm/vrXt02+1WrAif/ujfiWv/NN9Wv4yg5evP5KfRy5V8PHf+oqfvvsb+KjP3Kpcczs8hwmb5/C1keewPU/+FJj+y/9jz+Hd52ex3f90+/G5CRw67mXcf9DX4fv+Xfvx94rt7C3U8PUsTsaeZQ824lFva1Wa7V4leP0c1H2yXeaNsfSUu+060L5L7/lOF2v9DpFMjbWeZL7Y2qqGVfRjItgexHA2SRJZtI0rZh9J+EXc3ORJMlDAB667777vep7PZy/gybb9M02MVGvDK4Ob6lUt/aR1w2AVmFI4tLpSEXTcVhccbjyaLfpY+152HSSpJ5va+0bI9i6LPg0eoYJaN6QSdLqt1LPNOmG2VVmtqxcZavDTE01B8mHD9c/Np+ueKWzZ/3Fuo6T/a709UDH+sixHcbS/sqXcAwuddj2uioVxS80hwYgoUGXfmjLtwiTNm5XGflEecF1j8aK+LZz6grrE2y1WKvrZ8jiUA+4QoMQX15CefaF0du16Gc7OZIn3wBUb4vdbn9LHvR2yZtenVW3W4J+sPvEDV3XXDP4vvarG2uarONdddoOWH0iuRXQfZaimrwD4djrGbrf9bnagZfuQLvaSduRlvD2vFzbXPVE1yudrssyTMdtf7vaZle9tmUkHcYswRZotZoGsjuTrvJzbXeFsxOq9t6X3xRsB4Md2AL+57UN4/sdeq7aMFn4+oU2TKivCBQ/6RRLlsWgPZdOydP3sL5b7TWTt7pkICuv1fqERJse0PqqpwsZGNvrK79lu2txNRte79N57Paah4SfrL5Hnjpujz9IDGqyzqbbaR5cE9q+PlMWrv6V7feP83PSXpOssrOTcb548qD7w9rIzfWMdI1lrJu5tnP4kWXs/o/L9XAiEO4ApSmgtgtAtYc10SGkb7hb/12b3P+twqOkwvmeA0q3qe0CcIxJJe/6vGx8Uh62bdbloOO1//Vn8vYp3DE11YjzO/7hg3jdN78el77/5+oHJMB7fnwRE7cdxrs+8C34g3//JI4cPYzym+7Gb/zDX8WT56/gE//yav3a1VK86TtPYPLwJKZum2w8Y7olNAkn9c/qHFljGrvP1ldX+9Tre3+UBNsyPH5q0zStJklyGsAagEXZniTJSQCVNE03ishAmqaPAXhsdnb+dCicr5Hyx9vemdL7fANxVyfMtc2FPFyAcAfbbtPpuzrhdvEePQsmafocT7saGknDNrY6bcF23Fw3cZZIE+r42e1WcOwHui4UmaZ3tjmRSuI/NtQRzhJydPoyY5WFtfi0QqNg74VeXyPX4EGLjrJP3w9ahJJycwn5+mEgVvv2Ya1nF/Vrhvp62EXp9IJrkoa+Z3V+BCuCuQbh+nUoe04+cUnHqctOFkrT9cMn2Np4pA2SspP081o7x9RL2xbkfQ4A/gFETJtuByYuwTbGSth2gmu1posAycfNm61vV7zySmu8cpy8fSBWppIH7T9d59U+D/QMu75XgNbX4lydTqAeXrvX0SvZ6nC6flkhJXSM7dzqMK6PvS6+a2HzNUx0a9E9jOfUC3xvyci3757Oqh++upR1vP49KHF03LH9Efn29VVc19E3Saex9ch3PV1vzWQd02u0RXZoIlvyTwaLy4I8VuwOja9ijvMJIlnjNvkvE5+2j+qKvwjy9PlCfbFQ+x7C3te2XxUa0+txtsRjx2RZfRzXOfiI7Y8CfiOIXrxdZvPoajd131fn3wqkesLLNS60ZafDaK3DbitCsNXX2ubNCtl2fZWZv/xWnP6Dv4s//oVPo/ymMg7dcRi7u8Adr70bc3/v2xtjyztefwx//J/+sH7dSkCtluCtJ9/RiE/SEmTs6Xo+hraXStkGK73A1g+g2V66xqTdMtSCbZIkZ1B3aTALYAbATJIkV1FfQOyCFmLTNN1IkqSaJMlZANfQ9F272BZxH3BdSFdjl9XY9FIQtDP+kl6vBlMx8bo6qrVa9mtrLouwXnf2Yl4TCm3LelDZ/brTX+Q1Kuqhl9UBCQ1AdLgsdGeil+Qtl5g6GpOmr86ImGoXFJPw1mrQJfxalwj6GH0fucLoOIR+Cbaujqb9uOIRwVa3C66OTtY5ZeVZwtiy18f6ztNH6Jz0ftfgxRd31v3lGnDYbbGDEv3qm67/RbXLsfeUtXrOG5erHej1QCEmX4Oi22eQHOcb4OV5lvoYpCAFFHvdXAORUB8iNMDWcbqeNSGLJV86rjbS1V7bwaTF1ql+9EmLJNQu+sQm1/NLnvF2IC992pAhgo3HdY1ter7fvvzZsC4Rz5Uf+wy25eJiFK47GV6s2OwSbF33a5qmeOGF5/Hcc8/hpZdewl6EvxGX5bjtN7l+jzq+voA+1yLRZRdKw2fZq9vUWGG9mzza7aG4XXXIFafuS/vOU8eRFSaULzm2rYwT4N6/ehRAikrlKXc53Q284W+8tiWel/BVfPazX3UEdo89ss7DbveNM/z3evu5JckEJidvx5133o1Dh+7CrVtJW/+mVGouWJamzbecJUwvGGrBNk3TcznDbwLY7FF2PGl21/DGdEb72WEtKi1Xp1Jb7llrRBGlZUZUWyTKSotWYNEDADlWwmh/gZKGvqEkzayZWlc4uz1LOLLx6pWH7T7B1VnX+1zhRRhzDYwmlWsD26g4XwvpgH6JGEBr3RFi/8fUgYkJ98rPvmNisINkK1BYyxyNFlR9E0Gxk0BA+wSHPbdhFWxdAqvPwlbv75dga2eiQwxCsM3ar8UC62pCtokrmFqt/bV88Z2ut+m2SbYVYWEbEvR9+3R+5L/LbYKr7dd5tW2s7/mg44jpzGW1YcOCq13Mc+y4i92+8okdJOp4+kUe67Beph+7fdiw1zzUPuvfrvbDHpO3DHRf2hoV2PU3XHkO5c93flnPJrtNBspZ5+XrM7nw9Yvsd1Y8Nv1RqH8kH772Lk1TfPWrX8GLL76I6elpvOY1r8HExASSjEqQV7AN0anY6ROtQiKWbNf13CWa+dLSk0iakDAaEiZ1mKw3B3TYrHxKOFe+XIKlLg8Zf9kwEocVPyXvtu3wCaPyrcswS2zW6emwki8dR8xz3dYF2eYTe/X56f+2Xdf/tf5jz9NVbjH1U+cn9r5ybWvGneLWrT28+OILuHHjGUxMvIzDh18FBBZu1/XEZ3BQBEMt2A4rIraJI+dSqSkQCi5rK6vQ+wQ512+XxZbLH6tO1xWfzZ9LoPER2/HUYqwd8OrBsr4h7XnqeGz8Orxu8HQnzHVDD0unqxd5sQJcW3kFfNjqhd3arnEOlwgidFqBTLD10h6fFbeOx3ecbihdVio2bGiBD19HJEYQE1zXWtdTK0LFCjsh+j0JpO89Dm4OLi5rrtDEgt3mOs4Vzvp39B3v+20FW408C11+Ga0IbQV6+3zXvtRJE1/bE2r3pD3OW5adHtOrNixvvKGyyvMc8v3WC8JIn8vXF7DY56qt/zYvts+ZRbfPwWHHJUTKb/3xDVLlePmIEaAd7Nr4dDr6lV2L3W+Ple15fdiKkCz5t+2kryz0vn4Ktr7zcR0bM1j3hXGddygfWft9cbmOO4jPKN+k2gsvPI+XXnoRX/u1b8KEcSbvEvh6VXbdxOtqKzoN5xPK7G9fXFnP4E72WaEzJCrac4hJI3SeNt5B4cqD3eY7j6x4Y47zpSXHuzSa2LIO1SW7P8/18N2/rXUjweTkJI4eLeOuu+7C5z73WezsPI+pqbu9Gov0m0IL0BcBBdsOqNXqptDyDbRajwLN/RJef/sEW5ewpH2V6PTl2/p+lXRDs+ZybJZg6+p02/PQN2epVM/PrVvu8w5VYtegWO/T5yekaevKuPpcdDg7WJD49c0nIq++cW3ZCnpxB/FTY6+/ENrmmlXTYVwinhznmxF0dcwBNFeiHPPOmu34O8ui5t5vy9U3KM4zUAbCs5tBkd1xD8tALOQSAWhdqMsXZ4x44BpU6jLTM6J54h0ErvvDdU56u++/L/5xw9WuuAQAHU6TVda+Z0PoOrkG+Fn3uCs/oWOz8qo/vuvuujdI51gri17R6WSWvk9CYQaFnkjX21g/e4evTtj20tUm6T6rrY+2jrqskXztlav91mnbfLiEVGucosPbNPUxkk+pd7Z/ovUxV99IfuswoW2h42InDg4Cw2TQkkXovtFhOj2f5557DtPT021ibZHECkv9xCdCuyxEfSJurwkLbb1LU/fjYsRBV3hfuDz/7XYrIJMmLgFf74sR9CcmJnDs2DSuX38OSXK3t76VSnWjTXmm9MJ/LUDBtu8ERTWPuBcSbH0DUD2QDsXbrWDrixeoD6xdM+6u43yCrTaj19tjBJQ85Gn4XZ3liYnWxY0soU5mVqfR1bG0jbSrUz+qZIkcvmsfGqi4jg/t1/WvW+w9GBKAfNh7J0ZIiklLf7secDGWurYeD2M97FfHbhjPvROkzsqMsV0o0k5m+WaWQ/XUDvp1p8lOVNpFCroVbKWu2meUtbDVb9G4LGxv3apvtwv1yX69ErFMIvoGmXKslH+SNPOh45YF4Gye9PE2fp8V5KgJFq72JkS/zm8U7vtQ+yT3Owd+xWEHiEWWrX2jSrbZCWcXVsTMGvC78u57VTYrz1rk8fV79FjAug61Ew7DINjGpO07zrVfPwNcuCZesvLlSs/3rBhmYtvZbvpiL730El7zmtd0drChEwvHItK0YqpLaO0Ge+/HjBNi4iySmDYtr3CeJZDa651V3lbUDd3TeSxUQ2Gy8mL/u/LvE4yLruP23FyGapLHUH4tEkaOCx1z55134itf+UpD4xF0Gy8GUtIuU7AdApIkeQjAQzMz9zdepZYLIxZv9lUkWdEd8A8yQ6KpdFp0RZFw1iWCHczEdKiyHuI2rO+/r3PqGlS68N00umPq63zJ8fY426kVYVXyEtOhcoXT1+nQofp1OHy4/tsSEqlDA09X/fDFrcN4O6sBlwiu8m3Em9Mlgu86hc5Vb7MLZcQep7FWqFp8FaFDx5H1kPQJob7JA98Eif1t4xLRS/KjJwBsnJIv3W4ATYFIjs8j2Nrz7bRzZ60yfedviRHdfOK0K07bobTn4qsHtj77jrFImzvq2DYXCA+C5ePqrGZNDuh653o++o61EzOd1FWX6OE6X3Hx4rr2vbreoQFnUWkWJVgQt4gS+8zPEm5cxApCMXG5LKhI90id0H1OIFs49P3P2mZFVHvNpX7qRTilj+Hrp+pwFt0/tvm2zwMhz4S6hJdzss+Kca6rWe3/OJ97CN+5x7Z1Mezt7fXUurbXhOrGuNWb2HbA9YZCDC5Bzyd+5/ntEheztBorSrrCayHSphMTvy9vo0hW/1lfW1+7UtcRJpCmezh0qOn6VJ57eo0WGYf0sl9NwTYHaZo+BuCx2dn50+79zQqQJSbE4qtIVkjSwo61IuoHesBtO1cxuM7Tikfa8kmLwLaTKuKXWChJ51HC+ayOLb5rp1dSlt87O+3WABKHzi/Qfg4+MVbyHCPYags0seZqEcv3JrBbKwE7TWFJ+iQi8jlF6dr+RmVh5yu7kP+W2Huhmxm60CxyJxYh/cTW/yIGJZ107F1Cm+ATUEMCbK8F29D1PMgDm26QtsEuTlOroWWislZrDvilLZG2RYsAst0lBvieUdKWaZ/mumMk+QFaF0azQnBo0TErRkhbq58zrsV57DN2aqq+2JoOJ/ulXdWLs01NtebHnrdG6q8tBykbnadQexGaeHBNBpGDg20nu+mvknZ8Qn7IGsrVX8p6ntm+YqhttfmxbSnQ3JYkbmMEK9jqYw8dal/kV5D2zw56bd50vlzC9Dg/263xjYaTbL0na4Gx7OObv7sRwIqq4yHLRLvNFd51fFYYK4yFwsbkOXRcVnwhcTMrXpt/fV5WILXn7DMacVnF2nbNZ4Rm8xVTvp2Wtz6XrGePzsugxtsxkxWuMvNNLtbPo36g6Eq67299vIsG1Ks+FAXbDqir7u0WtlY4lO+sB6zPykenp7dJQ6AryqFDrTP5R46E07UDV1fHyDeY9M3GA81y0INZ3UHzHacHyPocXfkA2jt9Oo92wC37tZBgB+0+fOHStGnBKL/zWrtkdax1nmPrkK13jf/KwtbGqcO2dQ5zWNjavMSea0y5xR6n7w1b5rqeA60ClMV1f+htLuFI8MVnf+u4gOYDRQ+EfIKMq1zsddQTFaHwmthr6YvP4qqXobRC2335Ct17FB+KwwoJdpJOcLVXvroWEhXsty+8fTZmYYUN29nOi2uCwwoueScv7P5Q3JIHex1ke97zGmchhJBhIGTRk0c86AedpOsyNMjqs+j/rnCu3z6s0Ug/27Qsg5CQUUPov92eZ+I75pkz7lbLJB7bn/MJWvLtCqP32zh9acXus30dnyDbTVtp47dCakjky9MX0303GbNl5UnHnxU+9r72iciucwkdY/Oo8xCqM7565EvH9dt1nVznYa+Ty1gKqLeVEk67NJPx+a1brbqbtK3azVqRULDtALl4tVrzIloxSPv4c6EvbpZoauPxWePp/TFipE5b/w+FDf238XlFwMCg27XPdja0WG2PCYlLRWLLWAvDmpBIHXvOvjAa8a+iTfO1kDU5sYfSJz4OvO87G8dMluqJ1PYmgFoJkxN7zW1pvYKVPvlx4F3vAiIESlufXeeYR7Dt1cDEWpH6Os+23snsmt1vHxJZnXFbjjFCjkuQcR1vP3bSwyUkudLT5yvXRz+ExIJdp+PKs+zTC/V1O2Cw125312/dri3P9fHShtg2G/AL5rLPh+TDNTGQh5j6qMPp69wrXEKCtIF509ZtZ9GCbew+7W6km+fDsFh6xQg9mqxnPic6CKnjera5JlDs79DzzDVhLr/1s0k/h6wLtKxJsFDbGiuGSthBCMWd4npO9auNHpbnQScMW971fRcjTod+h/pOvr52Vt7072EqtzzE3NOu8/OJs65tLmExNt3Qtiwx0idAighnxwQxx+cRnzsRS32CYygfobY5JMJai1Ob71BcIbHTpmWP0dvtNnvurrhd8dg49TEhg4zQ8zm0XyiVmjqLS0wvGgq2BaAFBMEKJ5bQQyQrnBYRRFiRiiWigxaXNNbKNCttFzGzx64HYtZxMfnQYlsofOz+EKFrF5NOKP2YtPOEsSJkWzn9wA/VhVkt+O2LsrU0afnofXjnu4Ef+EEgcK62PHS6WuzznZOdoNDnEwrjGpBY9w520CPiob52PsHCd5zNB9D6oHE11j7BVqedJRjGvtaSJYbFkNV51/tjBqUxg4HYMHmPCYnJVvQsouNt0+tHhz7UySsqfntPSXq+yQ+9zdXBt/VfY9sLe0/rb41rn+/eE2weROi352rP3zc5M2xYiwEh5nk8qgNRMhhsuzpsIlBeusn/qJ/7qKLfIOuFsUZW2vbNjVC4mAlI3/+scwuJ+THHD5JRum9GKa+x+EQx1/5u4/TF40rDJzL6jtdhfSK7/r21tYXt7W0AwIMPLrTEF3O+LgHR99+SJb66wveTmPPJOn8ZS/uOtWPKUJpZwm1Wfnx59wnL8ra41QbsYvMTE24XQkVAwbZD9MWyFp+yX4eLicse64rPt9/iEo7kRtGz90KRgq1OpwgLW42Yn1trAx2Pzp/L8tXecCFC4fRr8YOwsLXXz1pXtDRQy8vAjyybE9j/3gGwC2BKbZO4c3bqihqk2HhiLeu0RYgvXltfsiz0dAc8q97Y+LNwWcT42g79IHHVndB5+cKH7k0pQxvG5dfTh74/LJ0MGFyDMd+KnCFRznYaXMJybNsliJW7T1TudQfLCoiuiZVYywYrwrqEWJnE0Nt84Wx+supPrwVbicvVefQJtnJt7bM1a8JW/o+iJc6o5XeQuOqBxU5u+upwaDJA6qfv3tF13FfnYvKYhWsSTLcdkrY2EMjTBobuc5tur+qpfp5n9eEGIRCS4STPhLcmj1Vp7Pis38JOEeh+nsZ3f4X6wfq3r6/tSttFHsFxmPHVPdln21Qb3tXm6v/T08dQrVYxMzODmZkZlMtlAMDm5iaq1SpmZ2cxMzODarWK7e1tbG1tAQA+/OGz+LEfO+PNYx7rSV/erTAn/6vVKs6fX8OlSxcxMzOD3/3dq23HuSxgYwXt0HMqq76FtvusaH15dFkJZz1DXcJ5yMLWdUyM5WnIcrhTIdYXJq8Ardfu0LqT/Z6cpGA7VGjBQAuIrgFblo9MoBmXaxBrK4fdL7h86rrStMfnmXWNFV5lYNsLwTZGqLLfoYd81vkO88PYJWr6zjt0HbJEzrx5yroelphBTl7BNoYYKwy7v5/1wdV51/dwrdacMJJ9tVpzITx73EEbTGYNtrMmBDpNL2sgloVPxHEJsPY7JNhqAcWHFpetaCuCdKnUXC1VT5zJ804/z+wzzuYt1DZLfPr40KJjrjJxPZclPp+Iru8VOymny0bKx/pQdrW79rnoI9RG6/js77zkeebH1tuDTJGCYdFx9Ut0txYyrnurF/np5zmGCAn2ofbb99vXntuJoFA4X9queFz5yBuH6/ewXJ9+EjNxn9cCr5u8jCJ5xOus36G+00Gup72iWq3iox+9jIWFhZb7YHV1FT/xE+dw8eIlzMzMAKhf52q1ipWV07h27VqUGBcjmmq0sHj16hbm5mYbx8m+Y8fK+MhH1lAul/H445vOfITEX5tOJ0JijLAYG7cNFxKFs+Jz3RtZ8Vnx1dcnsKKsFnZjJkZ8orGdgMjKXxb6WRt6XuadmM4DBdscJEnyEICH7rvv/oYFjn2NWSjSh23o4vtuAF/nypW+3RfaFtou+yRP4qrBWka5ykT7xMzKt+vbho/dH0IPzO3xsk1ff9d5uc5ZH2P32eMEXz2ShkfqmtQjlwXO7q779didnaalnF3l0CWyyPlLPFa0cYkBcj+4JhJ04+nrPMWKPXt7zXMQwV0s4HVedKMdW0dsfXAdF3PvuSzyLTGdR50XK675zsH3wPGdS686sK5yiulU58lflmArYXyDq9jJJk2MKBcbV1aefOcWEvJiBFsRM60QqS2IXW86FCnYShjdXhQt2IaezT7BVp+rLy6fYHvQJkwOEq77ynf/ZnXmY+5RiSt2Yt5HnsmDbsPlyZcONwr3zbCIPb5J3lptcHnsd7quNyCG4dpk4SunrEk8H67nbRGEJp+LKuuDUE9HmZCIWK1WcfLkSSwuLnjDHj8+3bL92LEy1tfPY3n5dEt8LstOwG956UtP81M/tYa5ubUWsbY1b8eD6cWk4cKKijFitE9wtcdagdNVJr4J1FD6RRHbLrjableYmDRCx7ospbPSyCPYFtneaijY5iBN08cAPPbud8+fzhJHsi5eaNbPtc1nTu4zVffFZYWdLLFYEyO8ysI7uoGQcKGb1ieCDfIB6hN8tBuMWGsn14A+z4AkFEZbewH+uuUKp/fFUnSD7nq1IjQjl5U3W64St/zXA9489StLAIzNr9QdVx1yfQPt10yHkXRtXZR9vomQLHrVgS0qztj8ZQ0wgNZ7ppv89bPT7xObuxUHQ68uhdoQ3zPQRVZ9DE0shCYbBiFWuCzr8rap5GBQlJhBYWG4kHbYJ9Lb/65JHf3bN+kT2ib1Qk9Y23Rdzwzfb4kzDzZ+m0dXPzU0Dsr7/LDPJ9cxbJs7J2YyqZN+e2w6vn5NTH3OmuwehYmhfuKzUPSFE65f38bCwmKbpaM9xu4vl8u4774Zb7yhbTGWmEKlUgkH6BJrwenb7tNDXBai8j/r3Fxp+vbZ7a508qYXG9ZVRq7rGPv8CZVpp5NIIcE86zgKtkNEqVR3PiyvSCZJ0xmxDlOrNcNZXBY6IdE0tL9Wa1o/yc3mStNaB/ZCsNUPRbGQ0nnxPYhdccoN47K0zHpAxwipeYQN37lq6ytXmKyy8u3zlb0LK9a50tT581mmTU2Fr7GvY92tha0Oa9PNuics9r6y4WUwIfmU+8YXj60jrvvRnqsLn6gUK9ha9IDNd+2lrO0gTp+bvnYxadowWfdPnkmJUP1ylXVMnjsV/TtlEIJtL+IcpwGt7ZAWSdY18Fm+CzHCtQ03TtfmoOETzPKKBb0aEJDRxYrGLsE2b3ydCra+fb0mJBbbcJz0yI+uY1ljEjLadNoPFN+1naCtW3vB+vo6gFZL1FhBT4f1lYsV+FyWwLFphqxkQ799x+ZJx/725dd1rM9Awid+unSeUJ5d1yGrTLPSi0l7aqquFVidw2pWExNhnaMbKNh2gB6EuSy05H+osQt1LLJm6V379Y3qsrqy1GqtLgtcx3Ui2No0fD58fYTSJ25clp+6TrHz1MSW1Sh22qX9ib2udsbPtl0SJqssQhbcMcfEhi1yMBUbl21fO217QpZWoTRj93ci7uTB91wa5TbETlRmYcXVGGtii7VW6FSwdd2Xo9hmdYPLgjnmmINWTqNAHuuTPM+O0PGSbj/rg7WGirEklbIRd1ahSWMJ4wpnXW75JtL19ixLVslfTBn67lfX24CDukcp2BLiptu+Xrlc7liwXVhY6Og4lzCquXGjiosXL+KDH1zBgw8uRFme2n3ailO37yEBMRaX0Oo63icy6v5mVhoSLqv9C5WpTc8lGveSWPE4pv/sehb4ysf2/V3PtF6O0SjYdkDsLGPMbPOgBsKuGYZh7MC4Or7yPYz5HTZiy8gl6lnsAEisNvX+LAvbEEVZ2NrG1jVQGlUBqqh7dpjv/2HKy6hTRCeK1yM/dgI0ZPmmsfusT2TbLo47RbVvpJ2sV8ezyFsH7UA3Nv5O67ruB/SzPvgma0KCrS4b38SoFU+LxlUfsiz88wi5ll5PPoZg+0BIbxCxtpN2u1wuY35+DpVKBQsLC1hfP9+wit3cvIyPfewyqtUqTp1awvb2No4dm8bHPna5Ic7VFzS7gGq1io98ZK0hAJ8/v44nnngCMzMzuHr1Ch5+eKmR5qOPnsWJE26B+fz5etrVahVXrjyBRx89i5mZmTaB1SW4+ixf7XMJ8G9zHRv6rdO2cYSsfX156SUuwTlk9apxuSsIuVSIEXjtvpj+g2zvl55AwbZDrOWob3ETu3CLZpDCkWsQOGxkidrscGXjs7i2jXeeshz2co85n1HtsLuE1k7j6ceAyVf/QgxrezRq+DqPncTjcr/h+3bVK19d813r2HhDcdh087yGnsf9R+gNmW4F24N+L+j2zlfnSH4G8ezL+8wt4joP4jkvabra3FBfVtdzV1ult4krp1C4UFvi+u16ldX32qcv73kocsK5k7dRRrH/1w1ZbyqMk2EDEDdZ4rMEzzpv1/5OjgmFHUS75ctDTF6yLBmzSFPgvvtm8MQTV/He9y4CAC5cuIgf+7Ez2NzcxIc+tIpKpYKZmRlcuHAJy8un8fGPb7Xk88d+7AxmZ2cbxwtnzpwBAKyurmJrawsXLlxCqRS+Jj//8xs4deoUyuUy0rT+/5u+aQ7Xr9/wWr/GiKih8x+mNsknHGeFj/nvavtjx7Yh9wy+Y/IKtq7rq58lSdJ0jyCGZq6+ftFQsCVDi+sGtDdFN5ZGWa/n+R7m2h+ouJWI7QT5tnUSxhfe1ynTZvz63PN2ylzWYxqfYOEKm3Wc639IBAyVmx3QDNPDcVwZVWF8HLBln3fAELK4j3ETkGdw6NofckfgykMoX7HputLIOteQJWAnrxQT0mti2uXYQUevBiejLsy7BqDSBmf1dbIEW+vuwLpUcIXJcokQepvJ14ZqUc/XbsbG5Ys/RCfC2UGkKGF8VOh5nn/0R4FPPNmz6Pta5O96F/CTP+ncZV/194UJ7evkWszOzuLnf34Dq6uPAKi7Srh+/UZDPK1b4j6Aj398q5GO5OPBBxfatvny5ms/KpUKvvZrZ3D0aLkR7ju/cwHVahVXr27h3e+eDU7G+VwpuNLyhXPFr9vaUBx2bO/SMex1df3u5NpnTVKGztP3O0/6sXH5RHcf9vnlexvG9bwtCgq2HeIatIUGjq7GQV9Y1+vg+vjQfh2HdNZiyGpMOxls686jb7XaUJxZIpw+P5dgK9tsOBtfzIPEdmKl8RKRFvA3iK68h7aFwmQJyzq8Pn9rbRHKY4ywESvaxKbRL8sMLfCGrARd5LHq66SBjrFazDre/g4N8PJYGfrSirE6jN1Pho9uB2nasmVvr/7f1rVQew+0u1CR9kwfmyWQ6mMlLZ2uL23Jt0zEFSnY2nCx7brdFvMMyYovFAfFZUKKxWUtbn9LuDxxCS6XCvLt6k/GCLau8YRrTCJtpQ7vGu/ob/vbta1Wa38tNWTtK+FIKzGTtz5DiFEsT5+xT6iPrQ05QtZ9EqaxTdL05CVrf+iYQdNtP7Abtre3MTs72/hfLpfbxt2abuupFier1WpL2gBw7Fi5ka+88cbi6nf53CB0ihZKXXHGiM2u9G28obT1f5crA18aOkwoD/a369x8x+sy0d+u59etW814KNiOEa6KOWh6NXuq47SdOB9FC7Yhy1fdycyDLq+QlWeRFCGcCMMm2ErZ6UbUl0YsvvBSF/SkRkgYtRMhgr6H8+RNBBvb8NvBkYhbtm7pOhtK3yUk2eMJCeGa3JDtMcfaNnIULZ5Ckx6+sK5wo2olOKqWVYT0AtuX6lVfPva+0220q68g/QiNNjqw2/Xv2PYrq01zWRjbN7NcApprm/jy9pWPyyhjnAkZcWSdu/RDfc/l0ATkKD7Le4K2SO2lYtttG9NFPN0KhLHH+ARKvXCZDePqZ7riDeXBF2eSoOGn1rZfrrRdcdnzCYmwWbjy0A396JPrc/YJwnlFWhvWtmGxZem6Hq7/WWXkmoB1GacUCQXbHCRJ8hCAh2Zm7u/weH/HJ2tgGLPf1dkZBFKRJyc7t+LL2p9l+diPBsk366Lp1sK20+voEvUGLdj6XksIpVuUYCskSX1WDOhMsJU4XJMBoWul64sVbG05ygPFVS560GUFX2tdrcljee8j5jqHjokJq+uDtdaxD9UiBmW2jO01sladoWscqjM6jqyOZEiId7U5us3LekWo0w5fXiFB/3eVSWx5aj/xpVKrr3j51mFC+/JY2Ere9TkXJdiGztklsoTi6fT5kMdKnpCDTCdiQDdpudoA173uu//lOSBtn++55LKwlT67TgNwt7E+gwkd3tV3mpho3+dr30LP04NKEZaE3fQDCHHhEyU7jWd6erpn9U0LrTH9YtfEk+9/1vFZ2+3YXec11vAmJEja880SL2PyGntcSOiOEb9D+ch7DUNxuspIP0+B+n8t2MpbgaF1q7qFgm0O0jR9DMBjs7Pzp63I5RO8QoJFXpEsTxxFixkx2135GYRg6xIrh40sNwfdCJW6UY99aIqrB58Y5NpmRUA9ABBs2FKpmSeXGNaJUGbz4ELPnsY+oH0DpU4IWYboOp314ClqQiLGzYalE8E2j0iYNRveq5lhKQtteWLPr0iLqk4HTHktBopKV44NDbBj2uU8Vlq+ePNaevkmMYu4r2Mm7bLumRhrKA6SCRkcvRJne4XkN1bgDbWLoUltvS1rslCH63bM4wsbs13yMErX0+K7vpaiRAMbzzCPq8jg6LRvHvNKvktQ62YsoF9939jYwMmTJ6PbBJt2yGVBjJsAHyGB1BdXjDWrjStU/r78uI71vblh9Qj9PNXlEpNnIUt0DuXddXyR40qXMVVRULDtEJe1XF7Blq+X5Ed3VkKdyCRpukXIEgViyEovSwBwWQ7EdLzy3vSudOxvG1asHnQDFiPYCi5LDl/+ZWVF177Qcd02flYM1eXui1sa9SxLvDx5dFnYTuZohWPKzCVu2XPtpNPtqq8x5xwzuAjhs+7JkwcfPhHYlU7WwD3GwrZbK1dXfmLu0VHEJYba+0d/u7bp8EUO0vNMINi+gibL6nrUxCKSj04mzoC4SYJu8jSoOqcHw/3KR6fXQHC1Sa4woW2+Nixmuy/emMkiG8aGC7Wxdv8wun1zwTaVkOEhZO0Ystr07atWq8H0btzYbvn/9NOVjBz63Rr4RD/729dX9B0TShNwi8P2t+t/TBgbtxVZfcRY2I4Stnxdz9V+P+8o2HZIERepVxe62w6o0KmFbS8rcWxnaxQ6ZSHhGeifoC+CbZbwEyPYpmnzlTcdVixrXYJtPyxsXedB8tHpPVWkKFF02xJr0VxUWt3gK8dels+g6EX7nWVBkDcu32Sd/j0x0fRr5dqvt43CM4sUx7Be70HmS4t+/cjHsF6DUURP/PvearDfebf5KMIogxCSn06EPGtlqcO5+mcu4fLo0bIzvc3NTQBu4fb48eON7ZKOxOMSTF3/fWJsHgvbGCtSVx709iwBOHR8FiEhOSt+Xx6KHreF/uu0tZGWb3zUjRENBdshJ0mAQ4daL5T2rQc0f4tPKJ/wFGsxFrO/VGoVxAZFHuujXuYhy4JykBa2+hjXcZ2Wn6+eZNWp2DB6m698RaTQ+2KEC9++QdWjUR3MuSYCfNdq1AY0o3pNgPx5t9a0MfdBr8rH9yqr/t7ba/ef7LM6zpqIibEuC1l/+TpmMZMHWVZmPqu0Tt6iiXnLgownMX0UHzHHjWqd6uf9IGkN49tu+jnu6ifG9EnzhHeFCdWzUa1fZDRxPbtj3GeIIQnpP75yv359u00o1WGr1Sq2t7fb9mkh9NSpU/jgB1dQrVZRLpcbx12/vt1Iw6b//vefxIc+tNo4ZmtrC7Oz8y3hnnnmekv+bd/72WerbYKpDdMLC9tYkVZv67beZ8WTN20rcPu2xeTJZ93syocu/7zHZ1nYSth+tDEUbDtgmEUDsdTpVdyh/3qb3CAxs+NZcbrC2Ff4Y/LUSVo6bD8F27z4rFTtb92w9EqwdT2cXMKEriuyzwo5eRvCGAtbiVfqz7gNPFztk08Y6uTcsyYCso7Jm864XZ9OGOQzZxTfaBi2/PgYlXwSMq4M6/3XTb60uNVrlwhpWp+s07j657HuO/K+JZIl5PWKcXmbpROyJj7tvm7Lqtty5nN2MCQJsLW1hQ9/+FFUKhVsbW0BAObn5zA/P4/77pvBRz6y1ghfqVTwoQ+t4vHHN1GtVvHe9y5idnYWH/7w2ba4y+UyfvmXL+NDH1rF7OxcY/vy8jI++MEVfPCDKzh/fg1PPHG1sW9mZgYXLlzCww8vYXFxEUePlnH69DKAuti7snK6kfb73reI5eUVvP/9J/GP//E5XLp0AQDwyCOruHjxAn72Zy/1pMyEftfXGAtnO7bPa62q43Ftc20PxZVlvVukha1v7GzF4KI0HRdJyqmn3MzNzae/9VtXADQXU7IWtjs79e+pqXgLW6lMPksk32vqLgumIrAPXYk/ZB2l/cbKK/Ax+QrFqf382RvCl8dQnLGv2esOrC9Nff1Dedf7ZDXBfgu2In7GuB2I2abPPZSHrH1As7HO6wLBEiPY7u21PnSKSiu2nutBUKkU58PWVZ5yvE4/ZNEoryy64osh6xrG5DsPtn4VGXcWnZZPEW1xL88rhp2deh6kTXPlQz/fgGabZtvBbi1sdVsj94oVEVw+joVSqf0ZnXWNfIN/285JXPotGtshlOehzncn95w+n27qWaf3sMsiouj66epL2eem3jboiZxQ/yJk4a3LrtN7PdQ29qv96EU6ndTPPPEKRedZt0+x6fvOVS/mqrfr9ie0PoP0b1x9BV/bbNsywVXPXH1KyY8gK2jrba7717VN+irSHwy1c74J/X7dA/Yc8zxfOu07xTw7Y+LPwhdPjBFFqI9fJDHtRehZ4nrWPPXUU3jb297mTC9knRcSjUL7izqmF/F0c3ynx+rjXIY/Oozdnpe8r/vrffb8XAKiT9yMqUeuc3SVTUwceeqrDRMKX0Q9lT5RKM8x+fTts/tj49fhnnrqKbzlLW9rya99Juq2f39f4ZI7LWw7xA4afOq7fXD7HqJarc+yHHXF0QvBNpQHXz6AdvEtFt+sre0g+mb7XfFxVrWJrVsx1zO0Lavu593XL7LKoVM6iSfvfWvD+l61sdDCgORBBuF2UkCwA20RbPU2oHjBVh8r7XvW88AKrFnPJZ9ga79jBg3jcN/5rPV7gTzfQ9dx2Ms0y8KkqLxn9Zd6TS/SGeU+W8jqMOs65fktYkGe11RjCFmqZrWxUq/tK776f2xdzZP/rPtp0JM640ieNozlT7ppj0LbQsJur8nqE8Vaceax9rTxx1iyhsTJGKtUCZclcobE9RCdXLdYMVnCastaV/3JyquE8z0b5bfLGKtoKNh2QJI0LYvkolgLWyGPha2LrBnEoqy6QmkLMVYhrmNi8hXT6OoyiGHYB3YHjdBgXOh2EBhzfFEDzU7isY16bDyuh4XrQRJbvp3mXRjlgTUJI5Zbw3Z9fe1HJ4JtXnHF9Qzrp5A5SPp1XrFpDHs59yN/w3z+3TDs19ZHP/OtLWtDfWvXZLlvAl7y7jMwiZ3ML0I4kbIcxXpACBkPrFWmy0pTwmkrWxuHa6w0CJF51MgqH5/42g9choN6TN4rKNiSoSCmg5bHUrkoXJYMLoHAN/insFWHZVA8euAGtP/upXUDB1TjS5K0urIJTczZ14LyuEQItY1St+2bJ65JuyzRwp5H3rorccRMUJLO0ddYiBWPBkWWL8eY4ztpR11lZelXOQ3T9QhR1GvGLmx75Uu/KOvXPJPeIYv1YW2/fO678hw/iP5JPwbthIwCnd5/sS4RsixaO0nPtd21z2ex6nJJEGMx20lee/k8c6Vpf48C/X4G9HpcTME2B0mSPATgofvvvz8qvO5w5LHm8e3vd6erkzzHdio7zUfIuqqT+ELYTmMoP3mvY9HXLOaVOt+22FfVYl8V9h1Pxos8vsw6odu2sxs40dIZvplnV7is+qPjir0eLncn4kpHh4l96yM2LDl4FNE+cOKrPxQ1uO82/U4GvKwj+RlkmfF6EUK6xWfRO6x0OvHcq3iAOD/DsXHncQnaKyjY5iBN08cAPDY/P386ayDJB/boY189y/LnyoE9IeMBB135yVNmMWE7EeQl3lj/VDFxEeKC9aN7C+OsuIsq30FfK9dEku930a/LauvfLNcG3bpEsPtc5e6K05dOpxa2gyarrsXcN0UY+XRDEZPtvSbGSCTLTRIn50mvyVO/XJN7LpcLMbpTJ9pUJxbBIWvoEFo8tecdI8JmLTpmy6sbvS5WsO2lFkTBtgPStLlKdq1Wv9jWkkiv9NpLH7bdvGaVRbcWtr3IV5bVUzcLOGWFLUqwtccUeXNnvU4qjMKMHemMmNczhU7qXr+PyTp21AZz40pWu9ztdYoRHASXj7EYlzpZ8RJC6vRa5Bi0yDoopE8v599tGQyqDPv1yu6owfIoFhG/u3UvQ8gw4rK09YmVLpcMWWEsLuGVbflwQMG2Q4ZlMDfMN1AvHoR8uHZPbPll+U3r1CXCOC46FmtpZBcdi21H7GSNbyIn7zXI04510iEeVZcInTBOkyBZ9dl378f6T4whj5uXXh2bJ24XtN4h4wr7Yt3jWkhR2gw7YWl9gNttoX2h8L2ysB225/OwkPe+6dQ4pagxajfx9Hqc7Hqbxle2w+4PnXROEX3vLPdcVvT0iaOuuGLy5wvj2u4z1POlm8cPbVY5xNJt2CIWHXMJ3CER23cskD0eyrO2RqdQsO2AJAGmpuq/fWKJXCxZhKVXFrYxcXSKrwLGdBbtMUXAh2sx+Do1unxDr+WFBhL2f6eLohR9rXuV1rCJdEVZ5YTizkunr81mCbbDJoYNU166YVzOYxigqEUIcRF69ZRtxuhSlJuQUen3DBLeK2QYkHsyxsI1T5yuY2PE4E7CxOQndB6dukRwieGh4/O4RNC/raYR6zZNC72Dbmso2HZAmjZdHvgE2164RPBVmF7NZHdi2TbISp3HyjEW18yJ/r+317yhY4W/3d3ihb5eWpSF8C2sNywWtr3s0GX5E4oh76viMeJ4zDlnuRYpim788cVYQQxbh30crIpC/hbttqzJGx2+ny4RXPt65RKhlz6rCCHjic+/K9uS0aUffZFh6/McFPJYKZL+0e29ECOMZvmGdfmY7TZvRU7oFVFGnfq+zXtMnnRCYWPHnrHpTUy0xkkftiTIKDyoJY9FP9B8YqxskzRj0i1KsO22MR72a5nFKOS/14Jtt3H3QrCNoV/1r5t0+NoaySLruRD67aNIlwh54o09hoNFQggZPnrRr2L/Z3jot0ESn/WtZFlNFhW3a1+WSwTSSqyFrYR1uZboJXkNrqQdHuQ9ScG2A1yWab7/Isj4LNryWNhm0esHe9Y5a4pe5TYmTN6GM69Q5jp/eWBMTOQv/14IUv2yKHP9j3HfYcPl2RdDJy45BtkhHpRgS8ioc1A7ygf1vAkhhJBB4bOkJONJXqvqfrhECO3vxaJjo0pRPnSH6V6nYNsBWa+B+8y8h+nCjxIxZZdXrIq9mUVkt8Kabcg7sbQaxzrhWkTDMi6LjnWCXXQsNj/D4D+HkGEi73NhWFwiFLGIyzi43iCEDD9Zi8/qbfo75EpMx81+DSGt8J6o4xMedbvRS5cIrvT0Mb78+v7noRMXBDHpd+PaII/VbKdkpRHyYZvll1aO6bdLiaKgYNsBWRa22nSaPqmGjzw3XycNXp64e9UQxAinQuzgP6sDLq+JZAnYtVr2q8y9tLAdpGCur0meB9s4ivuEZOFqT/K2aaPsEuEgCxr2uh/ksiAHmzxtYJaLGL0tK87Y9lf3afL2r3lPE0KGDZ9Yq/fJ75CwbMPnSdd3rEusjE2/UwvbUWqnXa4yrFgbez7DdN4UbHtErGDW7f7YMJ3QyaJjecIUQaezJXmOiVnIKo8w32vfnINqYHzl4gqXJVYWVTZZCxINesDQiSsNQg4C/fZp1Q+6WUF8mDqOvYZvKRFSZ5B13ufKDfD3W2z4vAtUElI0vkmH0CSFL54i/aYSQkgsFGzJSMNBXDuxwqmlWx+23cQp9NPCdhgGDKy7hLix7ZidFMvbpg3aJUK3A72D1FbwuU5IndC9kLfvFdrmaps6EWwJGSb4HCGEjAMUbHOQJMlDAB46ceL+QWeFKEIzokWQ9fpZXospvtpJOENPyMGCIiQhZBjxtU1ss8ioEzJg8b0B6KrzRfpNJeNDaMGqUJhOjpFtWYuh2XA+S/IY8rp16CR8J5qI1n1c7hl9+Yq1kre+cnd2Wo+3axrZ+HoxoUnBNgdpmj4G4LH5+fnTg87LKNDN65/DRC8E26x480IReHSw/o8IIYQQcnBxuVHzDSpDbwm59vm21WrNNwRi+6OuvmaM31z2UQkh40wRPmyzhFsrOObxTxsTxrWolysfWfTKKCmUf1/efds6wTWh0y/3bRRsO0ALkaHFTYrwYTuMnZzQa1I6zLhZEWa9fjbIV8RoCTE66GvFa0YIIYSMNjEGCr79dsFWbQ3k6kf3QrDNO9aIWYjMjpWSpDUvWQvADuP4hxBChJABTrcLnIfC5VkQPY+RUL8NivKK2qHzzsp7nnPT+UoSYGoqHN4+T3sBBdshZxiFuJg8DWO+u6VowZY+wAghhBBCRpdu+7v6+ImJVpE2rx/+TgVbm49ukAVdY4026JKBkOFlEMZXWa4GilwALhRHzAJ0PovaPGJkzLEhC1JNbByd5iOEL3ylUkGlUkG1WsXCwgLK5XJchIH4Q3nV5ROyxg2lM2zPHgq2HeCyLtUrzsu+Wg2YnAwLc0UugNRrAZACIyGEEEIIIcXjWmzRR8gHZyeCbVGEhGQdZpgWgCWEdM+5c+dw8eIFbG1tAUCbOFetVgEAJ08uYXl5eQA5bKdIYe7Nbz6B97//JM6ePVtcpDk5d+4cNjcvY3NzEwBw5cpVzM7OZh5XrVYxM3NfQ1R997tn8eEP18+jW5cIly9v4vz5NWxtbeGJJ5r5kXBSbpJenvi7cSMRk0bs2zM6DH3YDgk+lwiCdofQrUuEGHrlJ3YYZxgIySJrEbpB+lUuKm3r5473KSGEENJfevns9Q0UY/oRMS4LetEf8cF+CiGjRSf36+rqGayunsHc3BwqlQouX77cFqZarWJpaQnnzp3F1atXWwTdGKvQvAvAbW1tRQmWefHl4dlnqx27Fohxq5D15oFcgzNnVnH+/DrW19ewtraWGe+lSxcxPz/fct2Ksq5eWVnGww+fwvT0MW/+q9VqR3WuG3cKRYTtFxRsO8BnYTtuyE01br5oyfjSL+ffwwRfGySEEEL6TyfP35jxQkzfe5TGHRxPEHJwmJ6ebljTWsrlMi5fvoxjx47hwQcfxNWrV3ual7W1dsGySHSb9qd/eq1tW542L8taNE98x48fx+nTyzh/fh0f+Ujr+YfiLZfLXbfTrmfisWPlxj67/9q1a1Hx5nWJkMcdhC+drDWbNL30YTtCj/vhQi7KuH8oBB0M9ArFo/wZlcGAPAB4n5JRRbcZo3LfEULIKFB0H2EYPuynEEKEU6dOYWtrq+E+oVdUKpWext8rXOJtXvH39OkVVKtVbGxsBOPY2trCwsJCYX15vZCm/oT2xXx0/Dat0D7ftph0YvSRfoyBSr1PgpDRp0hBc9jEDVpo9h+WORkFfO2e7cTEdmrGsf0khBBCCCHxnDhxAkC8oGpFP73N91lbW48KlyUw2nz0gyLGiDMzM5idncX6etjC+MqVK5iZmek+wR7jEn5j9sm2XtGPMT1dIhCSQdE34bCJdXnzUyqF/8fuy5NGp/Qib0VQRNoxjtBHGfq8Gyyhss/7mlCRDFv7SQghhBBC4pHX4HvhX7ZareLixYv4wAdWsLCwUHj8LiqVCqrVKra3t3uSZt5+r/SVl5dX8IEP1C1tfe4Opqeni8lkB1QqFTz7bFy5hXwDZ/kNzuP3uBOXCL0ej1OwJSSDGIFAXvkipB8cBMGKwtxgCZW/tHWxkzdFtI9sYwkhhJD+0KlRwChMtvvOLe9r56QzRFA9efJkm2XnxsYGbtzYboQDgDNnzjT2pynw9NMVbG5u4vjxutC4vb2N6elpPPHEEzh79izOn1/HE088gZmZGVy5cgWnTi01jj979mxbmufOnWssfnbt2jWcOHECy8vLjbROnVpCpVLBwsIC1tbO4/z5uuXu5uZlfOxj9QW6PvCBFWxubmJ2dhZXrrT75d3Y2MD2tv+8KpXWdNbXz2N9vT2dvDz88Cl84AMruHTpIk6fXm67Nzc3NxtCadZ96ysny+bmJi5fvtywogbqLjAsSQJ88IPNcnP5M5YyAIArV65idXUVJ07MNO7Tp5+uYGmpXm7z8/O4fPkyLl2ql/Wzz1YbdWIULIhDULDtEGnofQ8zNviEdEYRlqOh4wdpldpJ2i7hjGImIYQQQggpmm76l8PeP+02bx/90Y/iS09+qZjMDJjXvOs1eN9Pvq+vaVYqdYFtYWEBly5datm3srKCubk5rKwst4Sfm5vDpUuXMDMzg2q1ig99aBUXL15quZbr6+sN9woihK6urmJra6stHc3i4iJWV1dbrDtXVlawsrKCj3xkbV/0vYr3vncRAHDx4kX82I+dweOPb+JDH1pFpVLBzMwMPvaxy1hdXcXjj2+2pSHnpcXNusA4h4sX6+flSufMmTPY3GxNJy/lchknT57E2tqaU1x9+ukKFhdbLVtd94ivnD7wgZWWRd1WV1dRrVbbFnpbXV1txK0XCvvYxy7jQx9axeZme7mdO3euRdReWqpiZuY+XLp0Cd/5nfV8zMzM4OrVq1haWkK1WsX6+jqWlk6hXC4jSepC+dzcHG7cuJFRUsMN7VV6xLA/sAgZRnjftMLZfkLqjMvCiMPyYbtCCCHERbeL3g1zPz50bjIGcX1IPiqVClZXV1s+Kyt1ce/8+fNtIur6+jquXr3SJirOzMxgZWUFS0t1K9krV67g2LH2V/iXl5dzv9p/7tw5AGh7Ff/s2bNYX19vLIiWJMC73z2Lra0tPPDAfOOYGzdu4MSJmUb9OH78eCO8cP58/bxWVpZb6tOJE/Xz0ta/SVJ3ESHpJAmwuFhPR8TaUB219VW+H374YWxtbbX5C65Wq1FlFltOm5ubWF9fbxNrJQ8+pNw0lUoFa2trLXkul8s4fXq5If5q5ucfaPjiFStgyXO1Wu354na9hha2HRLzKug4+5ckpBcU3TEadR+2bEPIqOCyjBdxsBu0uBgrMuo0R+H1zEHAQSghhAwvnbxtxudd7+m3ReqoUi6Xcfbs2ejwq6ur+NCHHnHuO3XqFFZW6q/Oz8zM4NKli1haWmqzDBVRN0+arjyWy2WUy2VcuXKlxcfu9vY2ZmdnG31RLQyG0njkkezz0mKopKPz080k+8mTJ1Eul7G2ttZyvpubmzh58mTUOcSUk7XA1XRiHby9vd1mWXzixAn8/M9vOMNXq1UsLCy0lJVcI3FHMapQsCWEEEJIx/R6gNjpAmdyjBUnY+KKTW+QvnUHvagjIWR0KWrh0jxxUFCMo9My4kQcGUVkwS6fqCfC4OXLl/HhD5/F0tIpvPe9iyiXyzh16hQWFxdx8uTJXIt9ieXm9evXsbHRLgAuLCy0WZ/q/FkBVf+XtyPlvO67b8YpuB492jyvBx9caBw7M9MevhPBVh+ztHQK6+vr+PCHm8Lr9evbbfm2x0k5PfPMdVy65C6nY8emkabA1tYWTp162JlXHbfv3PT2++6bwfZ23Y3B1atb2NzcRLlcxtWrV73i66j7qQ1BwZYQQgghHZM1SCxq0bF+HEMIIePOoIQ9CopxsJzIQUJEwSyLVQm3traGlZUVXLx4ARsbG1hfX0e5XMbjjz/eYpkaE9fi4qJT6D158mSbsKgF3Jj7M+95SXoigLqIFW6tMLq8vILz59dx+XLdmrfuG3g+M76YctLhYqyOdR5DbGxs4EMfWsWZM6tYXl7G0aNlTE9v4NKli9FpjAsczhBCCCGEEELIAaBbH6Xj6t+UENJ/xDKyWq16w4gFrvginZ2dxdmzZ3Ht2jXcuHEDp06dwoMPPpiZlljTxqTpI8vPsfZTCwDPPlv1HiPnZX3PFv2Zm5vFzMwMzp9fQ5IAjz++ibm52UxfzbHl1El5hiamNjY2cOrUEi5evITl5eXGImIxx44jFGxzkCTJQ0mSrD/77LODzgoZIrgYDj+xHy70QwghhBBCCCFNsc8uiiXI9gceeACVSgWbm5st+8U/6/T0dFsc9vV52S+LU12+fNmbL19+Yok9r2/6pgecC4aFxODYRcf0Z2VlBRsbG9GCs4jO5XIZm5uXvcc9/XQFSVI/30rlWnSedHp234c//CgWFhbaROUbN1qvp8udxThCwTYHaZo+lqbp8tGjRwcu/FBkGg4O2gwP6Y5O6stBnRBgu0MIIYQQQsh4s7a2hvX1Nee+jY0NzM7ONl6/94WbnZ1tcVtw/PjxNotP/cr+2bNncfGi+/X6ra2trgVboH5ea2tx51Uk169fb9sm6aysrOTy9xtbTmtra95wV65ciU4PQNtiY8LVq1dbrumoLyYWCwVbkglFST+DfK2Mn9H85LmXDvK9N6rn3q3ATqGaEEIIIYSMItvb27ldDSwvL2N2dharq6st2yuVCi5cuIBLly41tm1ubjZcIwiSnhZkT5482Vj4C6iLi/Pz8y1pLiwsYHFxsS2uzc3NFlGzWq1GiYP2vPOcV550svj5n2+3PJ2ZmcHs7CyuXLnStoBamjbFT/kvn9Onm+Wkt9+4UcXly5t48MEFpCnw4IMLWFo6heXllbZwFy/Wz1MWOrOLnVWr1ZZjFhYWsLm52bLt6tUtLCzUr9WNG1Vcu9b0w+sSqDWduL4YJpKUo8PczM/PpzJTUKvVt5VKrWFk8C0ijQ/f8XkoIg7SOcNc/kXmzcYViluEp0EJbpK2L2/AcF4vMtq4Vj/thEGK1TH3x+5u/XsyY9lSeQ52cz6hezmULuB+Lru25wkj++V31jO+F3TavnZSlv0ittyHMe/9JuvZ69tHBksR7U9smJjwRdUV3SYWkS9Cekno+flHf/QU3va2twWPH0VDgn5x7tw5XL58ueGyYHZ2FvPz814LU0uaAuvr66hUruH48eMA6kLcI4880hBiL1/exPT0NLa3t/H0000L2Gq1ijNnzrTFubGxgbW1NSwuLqJcLmN5ebktzPr6Oq5evYoTJ05gZmYG29vbWF5eRprWhdUPfWgVm5ubqFarWFhYwLvfPYtz5862pH369OmWMB/+8FnMzs426sv6+jquXfOfV6VSwepqazrip1fKBsiuf+fOncPa2hoqlUrjfCUOKQ85P+Hs2XPY3Gxet4WFBSwsLLaVp6+cXGX+xBNP4MSJE41tCwsLuP/+E43fH/vYZVSrVSwvu8sNAFZXV/H005WGSDszM4OFhQWsrq5ia2sLi4uLWF5ebotjeXkFJ0+exE/8xDlcuHABW1tbDbHaCuQudFk/9VR2mwC0Pc8KbyUo2HYABVuiGebyH5RgW5Rw1Q0+kWiYrxchgyZGDMwj2BYxcZNX8O2XYJumwMRE/9uSbtrXYbVcp2AbDwXb0YSCbW/SJyQPoecnBdvBEtuvGYRBUKxgOix0kt9RKtPQsd1eq2EUbDOGW4QQkp9hFQUIIWFi71tx/RBC9nfbFuQVKH35ysqvpBWb30G1c2xfCSGEkPyEnp98thIfrBdkkFCw7RAZ+IUGhkUPDgnphBhhJQYbRxFxDgLec4T4iRmwTEzU76NYy6hBWVD50s3KT55BG9sSQkgsWf2xmH5V3r5XNxNYeeKn2EUI6YaY9mPQb2+OM4Mq207SPWj1gIJtB+gOl6/DE1uR2MEhvYR1qx3ec4R0h9xD4yrYEkJI0Yx7v4N9K0JIP0iS/hvfZL1mb/cX7UJh1FwyxNDrcxonUZeCbQe4Bqo+P57DusAHORj0ogMdU/cJIYQQQkidPP2xmH5V3r5Xryew2BckhPSaQYi1km6e/UXnb5yE2lFB3LENwxvzFGw7JEa0GtVXxgkhhBBCCCGEEEKGhUGIl7SwLZ5xOxcKtoQQQgghhBBCCCGEkCDDLIoWIUL3+vyG5U15CraEkGj0qwFcvIsQQgghhBBCyEFH+00t0odq3rhkjD4Kflw7XXTsIGkQFGwJIVG4/PMcpMaSEEIIIYQQQggJMcgx8riPz8f9/CwUbAkhUVCgJYQQQgaPbyGMg2Z1QgghhAwaPndJL6FgSwghhBBCyAgQGhhyYpW4cAn8RS2MzEkCQgghpHdQsO0Q6eiEOjzsxBBCCCGEkKKgKEvy0I9FWVgfCSGkd4xjG1vEomMHBQq2PYSdGEIIIYQQQsggyBqLDMMK2IQQQghxQ8G2Q2wHhx0eQgghhBBCCCGEEEJIt1CwJYQQQkhP8C2O1EtqNXe6RbgpoqsjQgghhBBCSD+gYEsIIYSQwhmUsOlLtwg3RRKH+N4ihBBCCCGEkF5AwZYQQgghhTPOftwp2BJCCCGEEEJ6CT2vEkIIIYQQQgghhBBCyJBAwTYHSZI8lCTJ+rPPPjvorBBCCCGEEEIIIYQQQsYQCrY5SNP0sTRNl48ePTrorBBCCCGEEEIIIYQMlHPnzmFxcRFJkiBJEmxtbUUdV61WcezYMSRJgsXFRayurkYdNzc3h2q1GpWvubm5Rr4WFxextLTU+CwuLmJxcRHr6+tR6RLSb5KUjthyMz8/n165cgVAcxXq0gCl72HIw0GG5U8IOUiwzWMZFE1WebK8yUEgpp4XdS8M+p4adPqEWJ566im87W1vG3Q2Rp7V1VWsr6/j1KlTWFtbywy/vr6OS5cuoVKp4Nq1a1FpbG1tYW5uDmtra1heXo46Zm5uDpVKBTdu3GjbV61WsbS0hEqlgqtXr6JcLrfsF7lsXNdlGASjUKYdtgmFnxEfk4QQQgghhBAyYNK0LmaGPnt7wO5ud5+9vex0evmhvRAh48nx48exvLyMixcv5jrOiqQhKpUKTp48GSUIC9PT05ienvamffnyZWxvb+PBBx+MjpOQfkDBlhBCCCGEEEIGSJJkWxvFhCkqrV4y6PQJIb1jZWUF1WoVGxsbwXBbW1tYWFjIHX+5XMbKygq2trZQqVQ6zWYbp06dwtbWVrQ7B0L6AQVbQgghhBBCCBkgSVJ3ERD6TEwAk5PFfCYmstPr5YeCLSHjyczMDGZnZzMtYK9ctti1+wABAABJREFUuYKZmZlccW9ubmJhYQELCwsol8u5rGyzOHHiBAAUKgIT0i0UbAkhhBBCCCGEEEJI16ysrGBzczO4MJjPRUEIHd+pU6cyrXjzID50Z2dnC4uTkG6hYEsIIYQQQgghhBBCuubUqVMA4PVlK5ayeahWqy2+bldWVlCpVApxYVCtVnHx4kWcPHkyt9UvIb2Egi0hhBBCCCGEEEII6ZpyuRxcGKxSqeRaaAxoF3lnZ2cLcYtQqVTw4IMPYmFhAZcuXeoqLkKKZnLQGSCEEEIIIYQQQggZVn70oz+KJ7/05KCzUQjves278JPv+8mepvHwww9jaWkJlUqlxWq1Wq125A5he3u7bdvy8jLOnTsXJdpWKhWsrq62bBOr3fPnz9MVAhlKKNh2SK1W/05TOs0nhBBCCCGEEEIIAYCTJ082LGDPnj3b2L65uYmTJ0/miqtSqWB+fr5t+8rKCs6dO4eNjY3MOMvlcks+CBkFKNh2SZJQsCWEEEIIIYQQQsaVXlukjiOnTp3C+vp6i1DqspTNYmNjA0888USbZe729nZDFM4rAhMyClCw7ZASvf8SQgghhBBCCCGEtLGysoL19fWG/1mfpWwW5XLZ61/23LlzWF1dbVuUjJBxgLIjIYQQQnKRpnXXQAf1k6aDvgKEEEIIIcPN7OwsZmZmGj5mNzc3c/uK3draCoq8Yll78eLFzjNKyJBCwZYQQggh0dAVEMuAEEIIISSGlZUVbGxsdHx8lsg7MzPTIgoTMk5QsCWEEEJINElSdwt00D8UbAkhhBBCmly/fr1tm1jArqysYGFhoSfprqysYGtrC5VKpSfxEzIoKNgSQgghhBBCCCGEkI5xWdLOzMxgdnYWV65cwczMTNv+0CJkq6urUemKEOyzst3e3ka1Wo2Ki5BhgoItIYQQQgghhBBCCMnNuXPncOLECVQqFRw7dqxNaH3kkUewsrLSdszi4iK2trawtbWFxcVFnDt3DkDdDcLc3FxjQTHZ7mJ9fR2nT59uiXN9fb0tDQCYm5trywchw0yScuWM3MzPz6dXrlwZdDYa1Gr17xLl94HA8ieEEEI6J+s5yucsIYSQXvLUU0/hbW9726CzQYYQkcvoCqs4RqFMO2wTCj8jdn0JIYQQQgghhBBCCCFkSKBgSwghhBBCCCGEEEIIIUMCBVtCCCGEEEIIIYQQQggZEijYEkIIIYQQQgghhBBCyJBAwZYQQgghhBBCCCGEEEKGBAq2hBBCCCGEEEIIIYQQMiRQsCWEEEIIIYQQQgghhJAhYXLQGSCEEEIIIYQQQgghZBhJ00HngBxEDqRgmyTJ8v7PEwDKAFbTNK0OLEOEEEIIIYQQQgghhBCCAyjYJklyJk3Tc/o/gPMAlgaXK0IIIYQQQgghhBAyLCTJoHNADjIH0YftI0mSLKj/WwAWfIEJIYQQQgghhBAyvqR8550QguFqCw6chS2AuTRNK+r/LIArg8oMIYQQQgghhBBCBsPExAT29vYwOXkQ5RFCiGZvbw8TExODzgaAERJskySZBfBwmqargTALABYBXEPdNy20+4P9/xUVvgzgYYyBO4Q0BWq1QefiYJKmfFWCEEIIIYQQQkaR22+/HS+88ALK5fKgs0IIGTAvvPACbr/99kFnA8CICLZJkpxE3c/sxYwwD6dpuqS2LSRJcjlN00UTtoy6G4SHAZw2FrcjB8XCwZIkvAaEEEIIIYQQMorcfffdeOaZZ3DXXXcNjWUdIaT/7O3tYXt7G/fcc8+gswJgyAXbJEnOApgBcAFAlqh6HsB9ekOapptJkqwmSbKcpum62l4FsAFgI0mStSRJrur9owYFQ0IIIYQQQgghJD933XUXXn75ZXz2s5/F9PQ07rzzTkxMTCDhIJuQsSdNU+zt7eGFF17A9vY27rjjDtx1112DzhaAIRdstfuDJEke8YVLkmQZwPa+EGu5DGAFgE+QXQVwI0mSzVG3tCWEEEIIIYQQQkg8SZLgVa96FZ5//nk899xz+MpXvoK9vb1BZ4sQ0icmJiZw++2345577sFdd901NJM1Qy3Y5mAJfgvcCoDZfTcI8wDW0jQ9ITvTNK3uX4zZQByEEEIIIYQQQggZQ5Ikwd13342777570FkhhBAAQGnQGSiIeYQFWwkD1F0hhMIRQgghhBBCCCGEEELIQBgXwbYMoJoVJk3TTQDX9cZ9dwpbaZpu9SZrhBBCCCGEEEIIIYQQEse4uEQIUd3/nt7/Xk+S5IzafwLAg33NESGEEEIIaZCmQK3m3zckrsQIIYQQQgjpCwdBsG1hf2Gyc3mP27fEXQaAN77xjQXnihBCCCHkYJIlxiYJBVtCCCGEEHKwGBeXCD0nTdP1NE3n0zSdv/feewedHUIIIYSQsSBJgFIp/KFgSwghhBBCDhLjJNiWM7Zv9ycbhBBCCCGEEEIIIYQQ0hnjIthW0PRRa5lWYQghhBBCCCGEEEIIIWRoGRfBdgsZFrZpmm71KzOEEEIIIYQQQgghhBDSCeMi2F4GMOPZ9wDqgi4hhBBCCCGEEEIIIYQMNeMi2F4EMJ0kiUu0PQng0SISSZLkoSRJ1p999tkioiOEEEIIIYQQQgghhJAWkjRNB52HKJIkuQZgK03TJc/+kwBW0jRdDG0rKC/PA/h0kXESMkDuAfDMoDNBSIGwTpNxg3WajBOsz2TcYJ0m4wTrMxk3+lWnn0nT9H1FRjjUgm2SJGdQd2kwi6bLgy3UFxC7kKbphgm/AGARwDU0fdee60G+rqRpOl90vIQMAtZnMm6wTpNxg3WajBOsz2TcYJ0m4wTrMxk3RrlOTw46AyHyiq1pmm4C2OxRdgghhBBCCCGEEEIIIaSnjIsPW0IIIYQQQgghhBBCCBl5KNh2xvqgM0BIgbA+k3GDdZqMG6zTZJxgfSbjBus0GSdYn8m4MbJ1eqh92BJCCCGEEEIIIYQQQshBgha2hBBCCCGEEEIIIYQQMiRQsCWEEEIIIYQQQgghhJAhYXLQGRgVkiRZALAI4BqAMgCkaXpukHkipBuSJJkF8HCapquDzgsh3ZAkyTKAEwBm9j+brNdk1EmS5CTq/Y4q6v2OaQCraZpWBpgtQgphv92upGm6Oei8EJKHJEnOoN4ub6ZpWkmSpAxgHsAKgEfTNN0aYPYI6Yr98eEjALbV5tU0TauDyREh8aj6u4Z6Ha6itS4DAEapPlOwjWB/0PRwmqZLattCkiSX0zRdHGDWCOmI/Tp9HsDFQeeFkG5IkuQsgLU0Tdf3/5cBXEqS5AaA+0bpgUyIsF+vL6dpuqK2LQO4liTJHAUBMsrst9NrAJYyghIyjDwA4CQAJEki26oAltg2k1Fmv5+xAuBB6T/vt9dn97cTMuzMoN4+nwwFSpLk2KiMESnYxnEewH16Q5qmm0mSrCZJsixCASHDzr4IMAPgAgBaaZGRZn/i4YK2ONx/+C7uC7aXULdQJGRk2LcOuGYtD9M0XU+SZA31gRPrNRlllgedAUK6oIJ6Gzwr/9M03Rhgfgjpmv23iVfTND1hdp0HsAAKtmQ0eADAKpo6R9XsnwVoYTtW7M80bXsu6mXUGy8KtmQk0K+JJ0nyyCDzQkgBLGoLRMNFAMtJkpRH6aFMCOoDo0eSJLnisNaqoD7pRshIsj8hQTcIZKTZn1BjPSbjxCXUhS7LZdDIh4wQIbelSZIsjprbPC46ls0S/I1UBcDs/qsChBBC+supJEkue/Zd3f+e71dmCCmILTT9bllm9vcTMqos8LVxQggZHvbfWCu73hpO03R91AQucqB5wrdj3//4Wh/zUggUbLOZR1iwlTCEEEL6yxXUF2JyUd7/bnM0T8gwk6bpZpqmJ+ziYvtv/ABuCxhChp79Osy30gghZLh4GLSiJWOAzz3N/ts91VFcuJcuEbIpw23lYsMQQgjpIxmLPj6wH4aWXGTkSZJkBnWhdnEUO5uE7L+N5nMxRshIsd8mn0RzjHgCwKOs32REmcW+YKsmhwHWazI+rATc6A01FGy7o7r/7bPwIoQQMhhOgpZcZITZF7iWUZ98mAHFWjLaLIf8yhEyQsyg7tqjUZ/3rbeuJkkyR3GLjCAzALaSJDlj6vUMWK/JiLM/CTFyrhAEukQghBAyViRJsoa6pQBfHScjS5qm1TRNz6VpupSm6RyAs0mSnB10vgjJy/7q41ygiYwLp62vz/23eSoA2EaTUWUWQMvr5PuTxJsAzg8kR4QUw9Iov3FJwZYQQsjYsC8MnELdGrE64OwQUhhpmi4BWN6fkCBklJgd5cESIZpA3+Iy6m9FEDKSeN7iuQzgJBdZJ6PIvnXtSPc/KNjGUc7YzkVtCCFkwOx3JtcAPMhXx8mYso66aDs76IwQEgMXGiMHiCrQcI9AyKjh6zdX97+5yDoZRVZQn3QYWSjYZlOB30fttApDCCFksFxC3an8SM+kEhLg2v43B05k6OFCY2TcSJJkLeCaRsaDM/3KDyEFEaNlsF6TkWLfB3NjQb1RhYuOZbOFDAtbigOEEDJY9l8TP5umKf0kkpFlX+B6GsCVNE0XA0HLfckQId1xCsBikiS2LovBwyP7+6ppmtLnOBkFTsHvj7m8/81xIRk1tpAtyF7pR0YIKZAFwOvqY2SgYJvNZfgXrnkAfCgTQshASZLkDIDLVqzdn1mdoYhLRowymq8gWk7sf7PvQYae/YWZ2twh7E9MnATwaJqmG3Y/IUPMemByYREYfXGAHEguoP6WmgsRclmvyagxN+gMFAFdImRzEcD0/sDfchLAo33ODyGEkH2SJDkJoOIZ9I/8azDkYLH/6vj6/gJjLqS+cxKCEEL6zxMBH7WnUPeXSMhIsd+Hru73qS1LqPdLqv3NFSFdMxZuPGhhm0GaptUkSU6jvpBN45WuDJGAkFGgDL9/ZkKGnv1B0wqAS/sL2wjl/e+H0zQdi9lVcqBY3XfxsaoHSPuW5NMAHhxUxggh5CCTpunGvh/bNe0SL0mSSwA2963KCRlFlgCsJUmyKX2P/b71zP4+QkaNafjfWBsZkjRNB52HkSBJkgXUBdtraPquPTfIPBGSl/0B/wOoWx7KrNMW6laIFzgBQUaJJEluIOzLs5Km6YnAfkKGFrWwTRn1Tuc2jIhLyCixP8n2CJp9kCrqfhHX2P8go8R+f/o4mu3zZYq1ZNTZ1ztWUO9vTKPej6Z/cTKS7E+klTPWhBh6KNgSQgghhBBCCCGEEELIkEAftoQQQgghhBBCCCGEEDIkULAlhBBCCCGEEEIIIYSQIYGCLSGEEEIIIYQQQgghhAwJFGwJIYQQQgghhBBCCCFkSKBgSwghhBBCCCGEEEIIIUMCBVtCCCGEEEIIIYQQQghxkCTJWr/TpGBLCCGEEEIIIYQQQgghhiRJTgJY6He6FGwJIYQQQgghhBBCCCFEkSRJeVBpU7AlhBBCCCGEEEIIIYSQVhYAbA4i4clBJEoIIYQQQgghhBBCCCFFkSTJLICH0zRdDYRZALAI4BqAMgCkaXrOE9dAxFqAgi0hhBBCCCGEEEIIIWSE2fc1ex7AxYwwD6dpuqS2LSRJcjlN00UTfDpN061BuUWgSwRCCCGEEEIIIYQQQsjIkSTJ2SRJLu3/rWQEPw/gtN6QpunmfjzLKs6Tsn1QULAlhBBCCCGEEEIIIYSMHGmarqZpupSm6UYo3L4gu52madWx+zKAlf1wMwC2Cs9oTugSgRBCCCGEEEIIIYQQMs4swW+BWwEwu+/+YAFAOUkS2XccwHSSJGcAbPXL8paCLSGEEEIIIYQQQgghpG/sL+p1HsCDHqtXHfYMgOOhxcQimIffv60IufNpmq6btGcAnHQtTNZL6BKBEEIIIYQQQgghhBDSN9I03QKwCeDx0MJeSZKcBfAwgEe7TLIMoBoRZiigYEsIIYQQQgghhBBCCOkr+xazXtF2X6xdQIQVbpdI3NMm/ZMA1gDM7C9uNtvDPLRAlwiEEEIIIYQQQgghhJC+k6bp6r4w+3iSJA1hto9ibShvGwCCi5n1ClrYEkIIIYQQQgghhBBCBoK1tB0GsXbQULAlhBBCCCGEEEIIIYQMDCXaPo3eibXljO3bBafXMRRsCSGEEEIIIYQQQggh40wFxketYlqFGQoo2BJCCCGEEEIIIYQQQgaGcoNwHwILkXXBFjIsbNM03Sowva6gYEsIIYQQQgghhBBCCBkIItamaTqXpmnV+rQtKJnLAGY8+x5AXdAdGijYEkIIIYQQQgghhBBC+o4Wa/X2Hoi2FwFMJ0niEm1PAni0gDQKg4ItIYQQQgghhBBCCCGkr/jEWqED0bYMj5/a/QXMTgNYM3k4CaCSpulGdMb7QJKm6aDzQAghhBBCCCGEEEIIOSAkSTIL4GyaposRYc8CDQHX7juDukuDWTRdHmyhvoDYBSvEJkmyAGARwDU0fdee6/hEegQFW0IIIYQQQgghhBBCCBkS6BKBEEIIIYQQQgghhBBChgQKtoQQQgghhBBCCCGEEDIkULAlhBBCCCGEEEIIIYSQIYGCLSGEEEIIIYQQQgghhAwJFGwJIYQQQgghhBBCCCFkSKBgSwghhBBCCCGEEEIIIUMCBVtCCCGEEEIIIYQQQggZEijYEkIIIYQQQgghhBBCyJBAwZYQQgghhBBCCCGEEEKGBAq2hBBCCCGEEEIIIYQQMiRQsCWEEEIIIYQQQgghhJAhgYItIYQQQgghhBBCCCGEDAmTg87AKPK+970v/ehHPzrobBBCCCGEEEIIIYQQQgZLUnSEtLDtgGeeeWbQWSCEEEIIIYQQQgghhIwhtLAlZAzY2trC9vY2AGBhYWHAuSGEEEIIIYQQQgghnUIL2z5x7tw5zM3NIUkSJEmCxcVFLC0ttXz0/mPHjg06ywPjxIkTWF1dHXQ2ojh37hwWFxcb121ubg4rKyu5w3RzztVqFWtra1haWhqZciOEEEIIIYQQQgghbpI0TQedh5Fjfn4+vXLlSkfHzs3NoVKp4MaNG94w586dw+rqKg7qtTlx4gQWFhawtrY26KxEE3NdFxcXsbm56byuRZzz6uoqNjc3cfXq1Y7jIIQQQgghhBBCCCG5KNyHLV0i9Jnp6WlUKpVgmDNnzuDChQuoVqsol8v9ydgQce3atUFnITcx1xWA93oWcc7Hjx/vOg5CCCGEEEIIIYQQMljoEmFIWVlZiRIACSGEEEIIIYQQQggh4wMF2yFlfn6+sYgUIYQQQgghhBBCCCHkYEDBdkjY2trC1tZW4//s7OwAczM4KpUKtra2sLm5Oeis9I2DeM6EEEIIIYQQQgghxA192A4JlUoFMzMzLdsWFhYA1N0jbG5uNlwkXLp0CSdPngQAVKtV3HfffQ1/t2fPnsXCwgKWlpZQqVQwPz+PS5cuYX19HQBw/fp1VKtVrK6utqUnSFgAuHr1alvYSqXSEv/ly5exsbGB7e1tVKtVPPHEEzh79mxb/JVKBZubm5iengYAbG9vY3p6uhFen+vs7Kxz8SxJR84dqPv87TZvgyTrnFdXV3HixAkAdV+3Kysr2NjYQLlcxqVLl3D58uW2Y+QaFn3OlUoFZ8+eRblcbtRZuXaEEEIIIYQQQgghpHso2A4Ja2trXuFrbW0NALC0tITNzc2GWAvUF7Gan5/H0tISlpeXG9uvXr2KxcVFbG9v4+LFiy2i5tbWFubm5nD+/PmWuADg3LlzLWFFEL506VJDQJ6ZmcHVq1extLSEarWK9fV1nDp1qrGg1sbGBubm5nDjxo2WeFZXV3Hp0qWW9NbX11t89V6+fBmrq6tOa9OVlRXMzc21nGelUsHc3BwuXbqEmZmZjvI2aELnPDc3h5WVlcY5x+R/Y2OjJ+e8vr6OtbU1PP744424FxcXsbq6StGWEEIIIYQQQgghpCDoEmEAVKtVrKysYGVlBYuLizh27FjU6/CXLl3C9PQ0VlZWGtu2trbaxFphdnYWlUqlbd/s7CweeeQRnD59umGlCtTFz7W1tRYBtVwuY3l5Gaurq23xP/DAA7hy5QpmZmYaAh5QtwyuVqstLh6uXLnSsKzVLC8vt20/fvx4W7j19XVcuXKl7VxmZmawsrKCpaWljvNWFPq6uj5XrlzxHus6542NDWxtbbWc88mTJxtCNIC28hCr16LPeXNzE6urqy1iLVAXbM+dO9dxvIQQQgghhBBCCCGkFVrYDoByudywmhUWFxejjr18+TJOnDiBxcVFLCws4MKFC0HrRt9r8GfOnMHq6irW19dbLGq3t7fb3DOcOHECGxsbzniq1WrD8lYQQU8vmjYzM4OLFy9iaWmpLbwVW12srq7ikUcece47depUw62Ajjs2b0Xhuq6aSqUSFG0tTzzxRIs4KogVsYtqtdrm/7iIc5ZJAVd+ALdLD0IIIYQQQgghhBCSHwq2Q4LLgtXFzMwM1tbWsLS0hDNnznT1KvrMzAyeeOKJlv/y2rwsglUul3H16lWv2Bcr0s3MzODUqVNYXFxEuVxu/D558mSbqGqpVCqoVqvetMrlMsrlMi5fvtwS1zgIiNoCOoZenPP6+nrDetii6w8hhBBCCCGEEEII6R66RBgS7GvsALyvmi8vL2N2djbKjUIIWThKs7GxgRMnTjTcDywvL0db/2axtraGq1evYnl5GZubm1haWsKxY8cyX9WXPPqsO224ceHhhx8G0C7aysJq/WJtbQ2zs7NOMViu3TiI44QQQgghhBBCCCHDwIETbJMkmUmSJGzSOQBkwSzN9evXnWG3trawsrLSWMirU+xr7BsbG1haWsKlS5eCr793ggh7s7OzOHv2LK5du4YbN27g1KlTePDBB4PHSh5D1qYhC9xRZXZ2FgsLCy3X+Ny5c1heXs60Si6Sra0tZ3qVSgWVSqVt4TpCCCGEEEIIIYQQ0jkHTrAFMAvgUpIkaZIkN5IkuZQkyVAqfS6BslqtYnNzE8vLy7h06RLOnTvXkaVttVpFtVrFAw880Nj26KOPYmFhoc0HqnWH4PNnG6JSqbTlU3y+Tk9PB61jRYj1hZHt+lzGhaWlJSwuLmJ9fR3r6+sNlxj9Qq6Zy8pa6kE3bjkIIYQQQgghhBBCSCsH0odtmqbHkiQpp2laHXRefGxsbDgtXB999NGGQDY7O9vwZ/v00087w/tEzvX1dZTL5ZYFxyqVCubn59vCXr16tUU87nTxqrW1Nael5uzsLKanpzOPPXv2bEt+hY2NDczOzo6dpadYJQ/yvC5dugSg3eVBtVpt1MVxs2wmhBBCCCGEEEIIGSQH0cIWADAosTZG7Nzc3MTp06dx4sSJlu1LS0ttVqTLy8uYmZnxuhWYnp5u84W7tbWFRx99FI8//njL9oWFhTYr2K2trYZ1ZbVabRF1fS4bBGshvLm52eavVsJYsdkeK357rQuISqWCCxcuNIRFIW/egHr52jKPJVbEznLroBFr2q2trYZFdIhOzjmLzc1Np1Xv0tISHnnkEaeATgghhBBCCCGEEEI650Ba2A6Cc+fO4cKFCw3BcnFxsU2kFJ+gIqyJ5eLS0hI2Nzcb27XF5dbWVuOYEydOYHZ2tkW8LJfLWF5exvr6OoC6aHft2jWnRe6lS5ewurraeA1f8nDy5EmcOXOmsX15ebklT4uLi1hZWcHJkycb5wkAq6urDTG1XC7j8ccfx/b2diMvkh/Jb7VaxenTp1viPXv2bMNFw6VLl7C+vo7V1VUcP34cQF2kfPzxxxvn4oojK2+CWPlubm5G+4g9d+4cLl++3Liuc3NzmJ+fbxE4JYyI4TpM6JzL5TIefvhhzM3NtaW7sLDQOK9uzjmECPRnzpzB4uIizp07h+vXr6NSqWB1dbWvfnQJIYQQQgghhBBCDgpJmqaDzkMUSZLMAng4TVPvKlv7i4ktArgGoAwAaZqeM2FOAqiqTbM2TBbz8/PplStX8hwyEFZXV7G5uYmrV68OOisjg/gIHgb3Cqurqzhx4gROnTrVIq6LP+DV1VWcPXsWy8vLPUlfFqG7evVqm19jQgghhBBCCCGEEAIASIqOcCRcIuyLrI9jX4QNhFlJ03Q1TdP1fRF2K0mSyyboFoAraZpupmm6CaCSJAlXTSIA6mLoMPhk3djYQKVSwfLycpsl9MzMTGPRuV4uQHb5cv3WoVhLCCGEEEIIIYQQ0j+GWrBNkuRskiTy/rZ79awm5wGc1hv2BVkkSbKstlW0/9o0TTcA0BEnAQBcuXJlaATKrIXYpqenM8N0Qx7XEIQQQgghhBBCCCGkGIZasN23ll3aF1W97Auy256FxC4DWMlIqrrvcmGs6GSRqYPOsJTZyZMnUalUsLHhrvriR/bs2d4Yh4v/WvFlTAghhBBCCCGEEEL6w7gsOrYEvwVuBcBskiRlADMAHk/T9JgjXLU3Wes/IubpRai4SFQ2GxsbOHNmeIytL1++jI2NjcYia3phNQCNxdx6QaVSQblcHgpfvoQQQgghhBBCCCEHiVFadOwq6r5n26xlkyS5AeCiZ98sgKuoL0ZWQX2RsQ21vwzgaY+I62RUFh0jhBBCCCGEEEIIIYT0lIO56FgEZWRbyJbTNK0AsE4/HwGw2oM8EUIIIYQQQgghhBBCSC7GxSVCiOr+9zQApGm6niTJmf3tJwBcS9N0fTBZI4QQQgghhBBCCCGEkCYHQbBtI03Tc3mP2V/YbBkA3vjGNxaeJ0IIIYQQQgghhBBCCBkXlwg9J03T9TRN59M0nb/33nsHnR1CCCGEEEIIIYQQQsgYMk6CbTlj+3Z/skEIIYQQQgghhBBCCCGdMS6CrWsxMWFahSGEEEIIIYQQQgghhJChZVwE2y1kWNimabrVr8wQQgghhBBCCCGEEEJIJ4zLomOXAax69j2AuqBLCCGEEEIOCuvrwM/8TPv2H/ohYHm5//khhBBCCCEkknGxsL0IYDpJkhnHvpMAHi0ikSRJHkqSZP3ZZ58tIjpCCCGEENIrfuZngCefbN325JNuEZcQQgghhJAhYpQE2zI8fmrTNK0COA1gTW9PkuQkgEqaphtFZCBN08fSNF0+evRoEdERQgghhJBe8q53Ab/6q83Pu9410OwQQgghhBASw1C7REiS5AzqLg1mAcwAmEmS5CrqC4hd0EJsmqYbSZJUkyQ5C+Aamr5rF/uecUIIIYQQQgghhBBCCOmAoRZs0zQ9lzP8JoDNHmWHEEIIIYQQQgghAyJN659hIUnqH0IIKZpRcolACCGEEEIIIYSQA8owCbbDlBdCyPgx1Ba2hBBCCCGEEEIIIUKSAKUhMD2r1QadA0LIODMEzdzokCTJQ0mSrD/77LODzgohhBBCCCGEEEIIIWQMoWCbgzRNH0vTdPno0aODzgohhBBCCCGEEEIIIWQMoWBLCCGEEEIIIYQQQgghQwIFW0IIIYQQQgghhBBCCBkSKNgSQgghhBBCCCGEEELIkEDBlhBCCCGEEEIIIYQQQoYECraEEEIIIYQQQgghhBAyJFCwJYQQQgghhBBCCCGEkCGBgm0OkiR5KEmS9WeffXbQWSGEEEIIIYQQQgghhIwhFGxzkKbpY2maLh89enTQWSGEEEIIIYSQIGkK1Gr9+aTpoM+WEEIIGR8mB50BQgghhBBCCCHFk6b1T5L0Ph2g9+kQN3Kde0WS8NoSQki/oWBLCCGEEEIIIV3Sa9EsC5+oliRAqcfvVdZqvY3fMuiy7oReip69FOYpxhNCyGCgYEsIIYQQQgghXdIva1Zf2sDBEdUGWdad0I/r0ythvt9iPCGEkDoUbAkhhBBCCCGkAPphzeriIIpqgyrrTjiI14cQQkh3ULAlhBBCCCGEkCEmywWATxDsl1AYmw59oRJCCCFxULAlhBBCCCFjT13w2leKeiRiUYwivWLUXAC46NQtgEusHhWLVbYJhBBCOoWCbQ6SJHkIwEP333//oLNCCCGEEEJykKZAigQJerNS0UHzIUr6T4wLAN/+frkOCKXTqcg6qmI12wRCCCHdQME2B2maPgbgsfn5+dODzgshhBBCCMlHghSlJAW4MA8hI4VPrB5mH7ZsEwghhHQDBVtCCCGEEHKgyPIHKvB1ZkIIIYQQMggo2BJCCCGEkANFzCvWfJ2ZHBRiJzBC+KxJOelBCCGEdAYFW0IIIYQQMpakKZDuC0m1GoD9RcdEXMoSbEXUpeBEhhEttPoE0xghtVc+Ykd50qNoEbsb9whsg9pJ087KdBzKsoi62QvGoWwJGTYo2BJCCCGEkLEkRdKVEDWqix2RbKzoUZRA16v6IuKU9tmq03Pt9x0nx8g2+7+b/IXS9uUxNm577npb0W5OiriW+nhdPnmErV6L3jHlNmy+eGu1+ievQFhEPRcGKU4O43NplCdnCBlmKNgSQkiB2I4vZ5sJIWSwtAzQk+aiYzHiTh4rrryiBp8Pg8WKHkWJIP0WLqwA5ROjXGKnjmPU62IeNyf2t4sYK/xO8pO3fsQK0Z26pBhG8S+WvOJrUcLzMIiTRQnPRTFsoj4h4wIFW0IIKRDd8R2GDh0hhBA3g2yj+XwYDkTM0tfDWqJ2YnXbSzHFFW9ewdZuK1KwzcqfL0zeuF3XJqvcRVSKFSm7uY5ioWvp54KHse1M7HkOk0AI1PPTSZ66PQ+Kk4SQfkHBlhBCCkY6vuzQEULIcBMjVJRK7aJeSACJEQP4fBgeREBzCWl5X4uXV7V7QcjlgG8/ML6L63XrwiLr3i/q9XmfqBgSn4u6Jv1666uIa+HKly/eTu8zcaNACCGjAgVbQgghhBCSm35aig0aLRD4RJw8AkIo7DiU1ygREmyBfKJdEQsBhUSq0DbXfqlL+qMZ9cll17XJI7DGWOP2A597jjz5yKofLgG6qHamG7cKIXHaFa+4qenk+uztdda+sk0mhAwKCraEEEIIISQ3eXxGjvpgt2i/k1r8tWJEnnRI9+hr5RNnS6W4CYoiFi7rhS9dsRS2i3/Z392QJRh2k1YobvudN56ssN3kObacO/WX6xPhLS5hvojJBZuXTqyRs8rXxitWsmK53EsftiIOu/LQaZwABWBCSDwUbHOQJMlDAB66//77B50VQgghhJCBE+szchzQ5xo6Zy2OZInZISGA9A69mFxsmef1e1rEq/Qayaervug6Z0VZLdja4+zvbgiJqoMSqKyAPuyCreu/fY1fW4Pr9iNvWeeZXMgqgxjRtcjrL/Hlvc9i2m9NL9pjTsoRQvJAwTYHaZo+BuCx+fn504POCyGEEEIIiaMh0KX1UXLMK7U6TF7rvVjBtmgrNxJHXitWLfCKP2O5dvr37q5bWJXjYtLz1bVOxc9OLXY7FdnsebsmJopYdMwnvsl/uWbdvKqvr3sW3YqSPvcOPmHWRVHW2UXiux/s/th93fiJzivCd1N/fPWBk3KEkDxQsCVtxAwg+CoHIYQQQkaFhpAx6IwoRkGwHUQei0gzq5+aV4jx+RjV4m0/XIN0I766rBF9Imo3C275LIP7jcsK1RI6PynjmDIIpRO76JhPsA35Jrbx5BGXfeJwp/deyLf3sLdzRUMrWkJIUVCwHRM6fcC6OrRZnUE+hAghhBAyaiQJUEpSlJIUUNZ5WYJMjFVfVngXnQhZnfT3uplkH4TFXrdpdtJP9S3y5Fq0SfBZjdZqwORk6/FFvH4uloUuX7TWDYe1DK3VWut6yJWC3R9C1y15dX9ioj3PknZsvBbXcbu74TA6bRsmT5oxuK5vXpcI4rrChrUuEbolVA87vfdiDH1C1zxPmxayeu61QZGN39fW04qWEFIUFGzHhE4esKEObejByocQIYQQQkj/6eRVfqD4V7X7Qadp5hEFXf4/Y6wuNVbstR+flWRW/l3bs3yduvLkijNLSIzJr7UK3dtrF7TyiJYhQnmU7729djHbJ1QLoWstgnBMPfKJ3i6x2rXQ4N5eaxidTylXEcLz1A9XWxGaPIhx5SJYsb4bdDvlmzwR9vaaZWLjiPWp7suvXYBQi8M6/pj7h4ZNhJAioGBbAP14XSxmxjBvh5rCKyGEEELIaBHT39MLE2kBgiJCU4TR4k2sUOXq74fGAaVS3dpWC3qu8CLahVw15BFs+4E9j7299jD9tLC9daseTgubOm0pY00oHzs7rWkDYb+k9rq5zl0E5YmJVhF5d7dZV+z5Sj7kfH2is6Q3OdmMR/aHJg1ihFfX9lKp+IXEfAs2+t5y8FmN+8h6Q8J3rfPW14PmAoIQ0jso2BZAr18XowsCP1liOQcnhBBCuoXPGjJq2DrLvmSTbg0trJAjYo4W27RIawXbGHHPZYUpZPmideU3JG516hLBF0aLhUUJttZ6VspDLyx261Zrubqse12WmVnn57Kw1OhrJb+1+KjPXdK319BeH7s9SdrFXB1GtovwOzHRLKMsty+u+hby+dsvQyWfuwGfYOsKa4lxaRM6LvY3jaIIIUVBwbYgevm6GBt9PyGxnIMTQgghRcBnTStSHln9k3Esk5jXie1vX1grCBVdXpxI8KNFNU0nPo2tgOQKk/VbC5mTjtGZiH0iWoaEV41ut3ot2IoFaC8E293d+rlo61kRD7U4mSTA1JQ/bfkvuPIh97icx6FDre2dPkaLuPLbWqzq9HUZ6WshYVwWthKvPi+NjkdcJ0xMtMYRI2IKWYu0iUDeb/RzR6zRbZ3Oau90m+vzO+w6RpdHkjQtta0wLsh1lrJkO0wI6RQKtiOCvMbjekCKjx39/yA9GEKrkhJCCCFF0MmzZlwtc2MsrMb1ldBeWZeNa3kNI64FuXxie4wIb10r6E9W/K48aItO7cuzE8FWb8sj2ObxB2oFW9d5FSHYAq1CqHX1IW4GtOjZiWArcUs8Isq5xHgtkuYZd+g66Lr2Oi4RB7NcIuzt1cPI4mU2XEz+XH6ItSsJW46hay/1V/Ik5PFzbH9rwdY+O115t9gyd1m6+46xaYXQcWv3F7748tJJHN30N+xzb1T7LoSMIhRsRwDbOfG9IqX/sxElhBBCBss4W+b6/Pu5fKd2Gu8w0kvBNiberIG6tkLrpCyHvfyLwHdfat+2Lityl9hYKrWKVbu7btEtxqJVXmfX2ySfsl8sSjuxsNWEBGQ59yxR1ScIxorheXAJmj6RMySUi2WmEJqEc52PpdO2oBftv5yfiMfdCLa2HmqBVOKO8fdchGsW63NasK4lOqlbcrzPIEruPZ/bhZD4H1NG/aLb+qbbzFHvuxAyalCwHQFCfoVoRUoIIYQMLwftLZBuBM1eDQRbxLe0HrlLALDoMGLdGHodOEuUs3nqxYDeiiR5hZG8x4wqLj+icj2yrl8elwi+uhKy8rV1Tls1us7D18bYV7Wz/H1q4WsULb6tsKd/S5321XFrzez6dqEtLX3WmS6XCNr/aqwAqnFNmOm64KujLuzr/r76pPMrwrB132HdYUicsi/rvvLVR5dPW/3R4V0TiBprpavFSMmftjDX1zXvhJbretjz64bYOIrob7jKgxDSeyjYEkIIIYSQQuhWsC1UKEoT1NIEtT0Vdw7Bdm+v/hErSp0/8aWpibEk1MJRkedrhQSX9bPrv+YgD8RFxHGJVxafGOazpNcioRWhrEGGz22B/RarwFD9saKwJlRXY+4N33GuuF1p9cKSOySO29e5bZkOuu7naQtCojPQuWCrBcssQbXf5RW6V0KCrRWNRXB0tZdZBlF5J7R69TYGIeRgQcE2B0mSPATgofvvv3/QWSGEEEIIGTpCbiAGRTcDZ5+FlG9hKCDbL6iELUr0OEiWsUVghcy9PeDWrabVoM+KzHVNk6R+rGy/davV0rNWq9cVLab5FkwSlwjawla/lu2y/BT/oC4fqnKMy8I2VFf1cdpS2N5DctzERD0PIR+2erEwa/krhO5TiVtby1ufrjs79TglLZlw0Wnpa2zPWeKXMs3yGSv50ve06/wlTz4BXaw9tRsKXbYuy2udD/ne2anXP+sSQVvGuiiV6ufgatP6hfXpK/hcO/jCutpAl0AvdVZv02Vk7w9fmx76Lfe5b2KjG/LGMUzuGQgh+aBgm4M0TR8D8Nj8/PzpQeeFEEIIIWQYcb1Sm+f1z5BIlJVuy6A0qR9cS1S+khQJsiPVwrPLmrYTwdYl/GRZS9rtNg79Sq/e73t9nrj9aupXoH111bfwjn6NXOqKvP6tBVtraeuzhLSCsM/CVv/Wr5sLRQq2IrTaBZqsT105dx1Gvz7viluH1WXtwnXtfC4MRLC1a3+4hFPt8kT7gbX50mh/niE6mTCy5xVz79qJglihUK6jTtO2W7YNcpV5N+2L6360afny44pj0AybL/BhKhtCSD4o2B5AfJ0VIWvWbtgsZwiJxTfYIoQQMnzksdbNsjJtiGT7Iq5PNBO0xV03g12XmCq/tdghgpHNv1hpWSs+EXnta8IuCzHJR5bA5BJdBvGqeJ40XdfHWitadnaa5S+WlNo61GeNKGFEgJU6FFNHXf0Nn4Aqgqe9hiHBtpNJDpdfUF/+XGGs+OqyXrRWnqG4dRm56rZNXxZ4s9aSR4607rfl7Dpn7fJEBFt7vaVO6esvYaam4qyyXddNh5maauZH8iGis50ksnGKID452e4vNmRhK9bKPstVseh1TVwJRQiCIf/RrjcVbL3LfE6srwP//ufqbnFKtYZ7HJnYQ5I2t+l9adK6z/5unECqfiYo1Ur7ea81njs67pZtedFx/NAPAcvLweCDaMcJIcVAwfYAUoR/OYpcZBTR9ZevkBJCyPDjWwDHkndA6lugRxMSOWLJ02/y+dbUlpsuy0idX4sVBLPyOkiyDApcuCw/RbB1xQ003R/Iq+B7e/vC2/o6ar/wn4GJPdTS9gt2qzZRt85W+0tJit1aCaUkbfwGgFqpVvefnCaolVpPSB8rok0tTRrxSHgdrpYm2EtL9fT3BSB9DEq1+jkiaRwn6UsaOj2JK93Pp+y3x+ltOowr3G6thBQJUNpznhdUmei4gXq+07Q1/pa09ss1RVpPA8BurYTa970f+NvLjftBXBoA+QVbQQRKW6+0K4fYOmoX8fIJ7a7/QF141QuVZX2HLLdD2DBaBE/XzyP9uQsoTexf130xspSkKO3X1WRvv4GaUKuwyT1UKzX3uYTONKmH2a8jqJWQoC50Ik3q6dm6UCvVw5ZqzbhCeUhS4Nd+DUAJ+Lb3hAtjlHjyyfp3hmBLCBldKNh2iLWSiGVYLPpcq4tafBYng+7QE9INXOWUEJKX0ESntCXD8nzvBVmv5Qvjev7dkrXqukuosd/iA1Mf64pP6PQ1bCuYdvqsdC3qk1U/fNaIMbjCymvt+pysCwMRbQEgfew/o/TJj6M09462uBplkybYTUpBwVbC6U/LeToE271aglu1CZSSFJMewbaWJkiQYrdUahFsE6SYKKVt8csxk/sC70RSA0qoC7VK3BVhMkHaatW6f0ySNONMlGCqw8mnFlnn6um3WtS6RHJ7Tvu5RIIUtY9/ArVaCbUP1MUq7QrB+v2VNESob+TdIdhaX7zaXYJY2Uq8Wky194q2yrXpWAtb8V+sw4kFuM/lQ9HPHGsx3rBcvfBzSJ/8BOC4L4oiTYEaWu+X0P3j2qePs9sAAN/+HtSWfhC1v7WMmnYhUmp+t1kYy7aSY5s+1vyu1YCa+ECebN+XJAACFsuZSPrf+Z4uIiGEjAIUbPsILfoIIYSQ0UMG3i4RTE9kaqukcSLGSpSTub0lrwBbtGCbJz4r+Nj/PjoRh0OvoYu1pQh1Ip7t7LQvMLa7C9T2JjHxjnngFx5r8espcd68uR/noVZrSy226df0pSzlVXa9gJgcqwW6xoJRDpcIWnzUQp+Iky43BLK/dqh5jIRriJsTzeujy0NEJdcibBLeukSQ1/h3lU9bLUZqH7ZyLbTluM/6VcpHUyoBu9/13ajtJajt1PPz8svNMi+VWi2pdXnpV/u1lbVOS7sfkLeyJF65xjpfeptgy0eHn5hoLVtZME32iyuU3d36Pl0eUqf1xEaSAC+9VA+bJMChQ631xU742HzeutVabyT+JAFu7U2g9o454Jd/ub0c98tpV/I41V7PG8KldhthBMy9/XyXDrUKnY16r8Pv7n8mW8XQ2k4zHR23Tq+227zWrgkil0sZuYautxt89VWuHeB2c9Ot2N44r4YVc1z4TifgXPc/IaQ/ULDtkCzLBhe06COEEEJGEz3Acvn5HBaXQVnCWqcDxZDgNgxvLTjPW6ywaq3bAL81nKD9OrrC+95Ckn2u8CKCabFLREXfa892u7UQ9eVJv1Kt8xZaCV7yYxeNEmLrty4HbZkYe1weXP5q7evtWjwSfPdJgrTNjYScswh9hw41w1sraRH/dLlbn7cuwVZ+i/9Rnb5PsNWLak0YkVS+XeKj/i1ipBbqdVrWolSft7VgtfH70AK6FplD198pzJv7W8pCzkXKR6fZsG5UebH1w+ZF12O737XNF48Or+N0xafPwZeW7BPxV0T/W7daz0nKxHdttPAv/6UuJwmaVuOqnO19Za+BS/z0XWNxSSLCsg3vK1e7T7enrvKWtOzEgAufK4vY3/LfNVk16GeloNvA2H7BsPRzCDlIULDtEPuAiIENHCHF0onFEe9BQoaXbnysuyjilVGXT00t3OZ5bbuXaNHF19ZZq7ZhJ0990H5Ls667tbgUccEKSEULtlbM0JZWsYKtFeVsGtbyT8pDW4r6yOrPxtYdVzl0YmEbe2+lqT9f+vqKICqWjHpxpt1dYO/QDiZKKY7c3iqoizAlwqsVbLWFrVxnCSPHWaHOumQQ0SpGsNV1Rs5Li786z1aw1cJVkjTzZgVlKw6HBFs5B211bC1sJyaaVp8yQSHXQ8JJXFoU0nG2Xdd9X8KTU/Vwhw/X0zhypH6sLAR26FBreVmLZ13WgLvMJN+lUusCY6FFx/Q52ftZ6qGEk/+y6Fit1rS4lrptF1PTx0p+S6V6OJ0fmweL5FNfC6m/uk101QUrbHbyvO3kua/vH0lbrIh9RlX6+WCtrOVb7gX7bOjEwla+bdm7ROBOafj2zYjLlaa9jnnaW0JI/6Bg2yc4I0VI8eS9r8bZxyTJT9HioK6P/ahn41ifi3xWFuWGyJenYRu0WGsZ1+DLtRjTMJP3Hm2zPpXFlrQVY5Kitu+DUw/6BZeVohbcBJelakiwdVl5inDgEtR81rOuuEP4ys/n3kN/69952jaX1VuWgO6aGInJt+u1Y1f+XdaJOszuLrBbm0ANKSZuNS3xarWmcCiuFHZ3W0UsEfKSpO42QcfvEmwlv/qjxdWQYKuvgX693t7zWmTUSJhbt5rW1DpusXDMK9ja/OptIjyKiCiCrYi4QKtIJnVGl5XkV/5PTNQtP/dqdZcItVqz7PV10f9vqetqLR912brKzF7TGOtR3zb9HYqv4WJCibxA63nZe0GL4VpUtiKlzdPOTjO8vjcAYHev7rO5pNw2SN5kskTS8ImWvvKQ7Z0ItrZN8b15ALTWK18+dB610KoF25DwPYqMWx+SkHGEgm2H+B4GPjp5GBFCshkmCzcyWhQ9kaZ93PW6E1yUGDmMFHVP5xG1srDCXl7RrF/oQWzIAnRYcLkhsPt1fYgRcFvCeFwiyEJL1kILiLeECtVR3z4rKFhLS1eaVowL1T29L6t9y9v+5RFVax9ZBy5cANRiWUhStKwMr8On9YWk2q6tI7yETVDfV9tfgb5WamZMtkl4yQeSFLVSDbXdSezuTmAvqR8ni3ftbv0+Jme/ERPGn6e+ntbi075e77Ly1sdrFwS27luh0CXYWjG0pbiMRarEqcVIK9hKPPrZFRIa7Ta9XQt4Ooy2ZteCLdC0inS1A1bU1ufZmHz5xCeQ/NXvRikFSruTSEo1YGKvXndqJSBNGv/TvQmkaQko7SFN92uQLPqW1hdvKyUp0loCTGjzwxRIEyRpgiSp1fc1fIfKjbrX3CakSf2j676EL9Wa29Kk7kw4SYGHvw9YXo6aHMkzoZX1XHXVq0b7pCa+bJsp6du2Oqsdtb/l43t7xfW7qIldl3hut7km3AgZJULtxTAbgNh8D3NeewUF2w7I8o/jwtXRsmRVQHlgEDJqFG3JqOPlPUG6oReCfz8sMPTAoVf3VycMoiPlOv9e5UGn5bLis4QGeEUP/qz13SgQEg1d+/KIjPWwfsHWZf2lsZaYug/me+02ZGELtK5Qb4Usl+sDcd0QO1lgrepc2PPtSX25cAHpx59E7d3vcq7y3panjP2WhrDWRbuXaivr/fhK734nSt/7UIuI7rIgPXSo3cJaREoRgA4dah5/6FCrSOuqw5KOy8JWXCbYcYTLolCLpi7R356LWL1KPXdZdmdNWMhvn39Q16SE/oSMWlwTBXJf3Pru78WtW4cwuVffubsvhpaS+vXcS0vNNluEwP1r3cj7/u/afgZS1AvVFUbOpWc8+WRd+N0XbH2TOD6L5lKpabFv3wqQuuVCrr+9Pq52xl5LuTbaite6mYixsNXtrfVnawV8F7qO+J7NUs9sWOsawzURAbRaEWc9h3Q8w9I/IwebrLfFhrXvqPM97HntFRRsh4SYCsgGn4wqRVsy9ipO0n86feWZNBmWe2FQHSl7/r18Vg6TOG4ZtY6sS4Sx19EnqkYLtuisMKxgJ/H5rCZ7OSnpEzhCx7S5hlD4/hed//Rd7wY2N4EUSPeAWgJApRWyrPblVYeVayMLLOkRze5uqzDT4ttyEth9pf4plYD0iBy0/5kMiz8uQUefS0NMvNXMiwg9Ol57bnt79dfStYsMl/WqXFeXmC/p1WrNOBrlg9awsl27KUjTpp9eKwZa0cxa/YorAVlwTdKXspiYaL52LwtjTU420xdhS1vnaoFxZ6e1vEol4OYPLGP35HJDEH/55WacOn9TU3XR/Nat5n97Hawhzs7hdmtlqUvii1cfl+XDVq6Zz4ftzg6QfP/34dAre0C19Zyl/sixco1FbJQyf/HFulsICavzqN1PWNK0ntbkZPNYfc1rtbpLBCk/qS/6HKW+S/3QgnGWkZMslqb/63qnRVUt4tp707XAoP4t96J9zmiR2Vc+On4RcGP8eQ9zn4EcPFx9glGwHNfPnIMIBdsOkAeRUISFbWwchIwqRVsyctZ6PMhrMQd0L0jlebU3b7yDYhhcgwzyGaXPv9f5CJV1jDVann15GLU+grWa6IXFZ4K0zVIt9HqvpK9FKVn0JyTY2j5cVv3wWRq64vDt98Uv55C3PvRi4kfKy/pOzpOWb5JOW49a60Fdp/b2msKKXE9rjajR1ok+C1stSOrj7LfkwWXZ6msnfIKtraP6FXTXAFzHoeuzWAdqi16djl70SgQyPVAW8VG7TpBtYmGry0fEODkvEScnJ+sCohZsRViU66XL2Ja3zrvEoeOUPGuxUoTWGMHWhtF1Ke+iYyIIaqHTCrYTE0AyeQuTpRrSw615E3FdLzqmfSlPTdXjEx/L1sJWREmXha2e1BCr8FLJLFq2v7ibthq310FETBGFfX6/XfVf8mDvPe1fWcK4+lm6PbHWv67rYScFdfviE4PlnhPRXX5bS3N7b+iFJgXf2w+Cq83rh7FCSFz2TVAR4qObyYphMc7p5Bx6MRajYEsIIaSFfloE5LaYKyBf0unXAnARHYNh6FwQkpfQfdXpvREzISL3oY4/9Oq0JiSKt+zzLDpm4w51sLVFo5STPb8si1c5zmWtqX8X1YaEyl+nabf7Xpf0WZz60t6rlerWzfthRbTQFmkxk0w+K2Egu47ovOqwPjE+Szy31953LUVIy7Las+cpAtXhw62iqU7DikTaElEQMUkLZ/bcRDTVwpz4tJW05ZrJ8dp9hz1vK5DZMhQh1Qp2WkTV2634LXHbtkKOk3hFrNWCreRFC9hZi8BJOVjBVsrbJfjqbfqekfSs+G8F21IJKE3uYrJUw97+NZA6JJavt9/evMYihIuQOznZFAKPHGnP48REvW5Z5LykzohAbwXbvVrSch6CXEfZJvXHVcauctPXVwRbl8jpane0iKvFXNuu2skOfR/EoAVhXUdc4SSNTnHF0a+3Z2Im0vSzqpeimu2X9EvAG1S640ink8C9qu+djCFjDCr7AQVbQgghLfTC0mrY0J3uIq1TR83KkRDf/d5Np7mTY+3kjRXBQq+TA+0+YOuRlNr2lfZf7xXxRba77l0RMvRv+a9fL7bH6vh0WYQEWxEpXNZelph2Jq9g6xvI5B3AymC+hFqbGGotR63VqY9OBVvZr8U9OSd9ftqqzlrYWSFWrpMcKxZ3Eu7mzbqQJnmSV71FrLbnLnnRvjtdb4FoS0OJSyw+tTgs+Qu9SeKaLJBzsBansk3qv6RlLWzlGJverVutZSZpiTsHiUdcQuh7R8el3UoIN2+2inTabYIVWWs14JXnb2HnxVstAuPkVAlTdx8J+oq2cel9uo3Q+bairY5Dl6suk9LeRL1tutm8llL24qpA0hS3ErJftstH6pF+hd9VF6TeSVxSn1uvQ6nuH/hW0yWBpCnX1dX+6nvH3oMae9/pNsOirW6l/ujnl7QzenJD+3C2Qqhun10TgzoN+0aIFa4lrKtt0nFrId5VFr5y7AdZ/WFdt3s5TrDlLXnrNYNKd1zpZHzVq/reSZ0teozYKRRsCSGEtNHvB1SetIrMl0u0CM3AcrZ9ePAJEkV39lyDTBm0jEtdcN3v3ZajjTMkqAkuIU3/D92b1rqtvrF7wVbORYsJLvHVlR9thaQtu1wDelddCgluWWSVnUsYcC0apV/fDQkpOl6fsOETi/PUtU4tdux5ubACn1iWilgmVqguQc4KoFa8A9rFHMmbrfcyQaG3v/Dnz+NT/+YJfOFXr2H35R3svbKLV82/AcfuP45Dtx/C3s26ueX93/9OHH3jUaeopM/T5te6rXBh67AVbCU+u3CarTfaytQVzmVh6xL35RhtlZmmKap/eh2f2/xjfOqnr2DvVg0JgImpCTz79LbzvCbvmMLkbYeQlBLzKdW/JxIk+zfx7a++E9/+4b+CNAXu/tpppEmpcc3knrfX03d/Z5W1HG+fdXK95JpZwVbqqaR982Z7Wyz/RfgVq3CJxyXYlvba76HQPW4nSGIFW33+IWx9tfejiOlyXbRVsi6vWq058aGPl3LSvoStVb4Wc2Ou8zgYRPSrHyztTT8F60GmS3pP3rHtsNQBCrY5SJLkIQAP3X///YPOCiGEkB4Q6kxztr0/+EQqwfWKer8Zh0HXMGJfV9UDQ/07ZHGp8VUPLbDIsSHBVn7r8FnXv4j2QuJwiV0uXAK5iAsugdb+d+VVl/ugBy957zt93tpSxmX55io7XQ/FUg9ovuIPNIUd7bMVQIu/z8nJdhcJvomKyUnguc9s48U/fw7Pfa6Kz/7KNTz90U9j96XmqkwnHnobrj32FJ7/fLXtnH/v0f+KqbsP455veA32dvZw/9K7cP/3fAOOHG2+Dy+ClC1HfR46P1pc7sVrqq7rEtu26+fA7/2DX8Qf/8yVlv3lt9yLe77hNXj5qy/gtlfdiVd/85tw56vvbBzz0peexyvPvoLaXj2itFb/JGna2AakSPdSfO5X/gTVP/kqfu7b/r+N+O983VGkaYrv+Im/iq/5thlMHmn6/dBioZ60AdonPkoloJSkKCVp8HVzbSkqdVLiEj+1UtdcZWjbARG9RYjU8TTE11L9h/YvrMtd+8fV31q8TZJWlyguAdnek1bI9Qm7ekJNi236/G0ds/6RdVnqMrHto952+HCryBuakHNNOIw6rrcALDRyIKR7KNjmIE3TxwA8Nj8/f3rQeemGWCsVDRtcQshBwTcDO04dbY3rmTDINj8kdNl9WSJeaHse7ODaNxgmTbKEd2tt5bLQsq+sZqXXZqGblpAgbc1HmmAvLbX5/wxZslqRQATf0LHyGrIWauwr1fq/XYhGttmVz0OWPz7LWHsuMeerLfx61RbEtjNWXNLHW0FEY0X/kEWzxCVirL6+WswRIce6d7BClRZsp6ba2wxrlfrK9RfxiZ/6PXzqX/4ebj77Skve7njtXXjz93w9XjX3Otz33rfg2JvuRq2W4tZOitrOHr589fM4dNskXnrmJXz8X/wunvvMDbzwhSqe+9yz+PKVL+C3Vn8B3/7j78O7P/jNbYKUXvSrVKqLUGItKOej66yUlRWq9LnEWtiGLBL1ZIUtL1uGpVKKK+f+Kz7zi3+AY2+5B2//wXfi+NvuxRu+fQY4dKhxXeV+mppqvRb2PPb26tdPLxC2twe89OwtfOFX/wSltIY//73PY+eFHXzlyT/D9T/8Cv7Lf/8zAIC73nAUr/+2+/CZzT9BUkrwtv9hFu/4mw/g9uO3YWJKKZYBXBa1ki/tQkLXUSue6roq5zY11e66wL4FEBoj6jxpi+xWa9zWMtX5lrw7J9c6nIB1vclhFzzTdU/KzLWgnS4DcVlgz023RdLGu6zZfQKzyxpZk3tbKrNp7WFc4bME1pjjXYK5Kz4pxzz+vAkh7VCwPYB0YqEAsLElhJBxxD4ThqHN71Y0L9L6NvQaZ1a+sgTLIomJL8+gLRQmRtzU19Bn6eVKQyxftS9GnyAncadp8zVg2VarAdgrYbJUaxNsa2nSZtnnwmcNF0Onkx667mpRQIuO3Qi2gl1ESl4ZtnnXriO0sOU7v7qQNFG3FtyphxffpDov2oItq+5qn606fe3qQMch11bO0bpn0OWqxS+9z/r9dAkvvu1W3Jdv3c4+/8Xn8MT/+zext7OHpFTC7/+bKw2T8Ld839fjvu96C+74mrtw1+uOojwz3VL29fNPgKkEpSMlzDw40yiDE3/l6xqC1Fefega/9v/cxNO/9Gn8+v/9o/i9n/g1nHrsr+Oeb3wNJiYSpzVgzGSUSyST76Im/2IEW6k/u8+9jCv/22/gyPTtmPu734p3/o13tU2KaIFOT/jZSR75lvKWbXt7QOnwIXztX347JieB+x76BpRKwN5eimf+4Ev44q9X8OlLn8SLX3oelY9+GqiluPnsK7j6T34dV//JrwMA7vmGV+N13z6Db/ib34TpmXLb+SSoW9i6hG2d75Zjktb6betbXux9AgC1/TbTVf9jXRfIJJduczS+52w3OCfxau3naO8tcaWgJ9qA9rZQnjnawteez7hP7Lr6anaCbZBvI4XuAxqjkVGBgu0Bxb6W42IcX98okkG+jtsv+DAjZLzRFjNasO2kbSviWZE1aIsVGmWgUET71ctBV5YVaizD1k67RP8YUdQe44rXXgs9ALfhEqBNAJHXjl2vq1o6taR2TYJYMcWKH1pYdIleWX02u89VrmI1pvMpLhP0udpXl2289vVu3VdIU6CWOMrdxNPJ5ItLfAlZq2lLRRFgRcjT1nIuASd03eXcs+rGi196Hp/62U/ihc9dBwBMHJ7EF37jM0hrKW788TNt4d+48BYs/vPvxR333Ba0PJU8ymJU+jVw7X/0rvvuwXv/1Q/ghc/fwK+f+QV8/lcr+Lffto67v/YYXv8dJ3DX64/igb/7F5BMTuC5L7+Mz29+GocmakiTBK9/z5tx+6vuQK2WNEQrKWNdhrocRejW7kZk4kWQPGqBTNCCmF6oTPbJ8cLeHvDyMy/iiR/fBAB8y//8Xrz14Xe2iedynWxe5BpK/ddCrv6W3yIQ63slSRLc+47X4tXvfC2+8YPf2ohnYgKo/ukz+PIn/hzVP30GX9n6Ij77+DU88wdfxif++X/DW5fegdJEgmSiBCTAmxbfihMdNORt957jntD1RBbBk3bglVeaZSLlIOEbfoH3JrBbK6G204xTFimzLlds2ett+re+7rbe6ON823U8+jrq/dYvs4TJEmx9+Xc9e8RiV9czuR/1vWnb0KxJwJBFecu2RGY2/HHpY2MmHmPyFZrM7KSd7xU+wXgYDBMIiYWCLSEdMuhZw17Dh9n4YAUACvFEGPZ2zNZdn2Dr6owXdV6uAb1v8OMbhLm2FeVWQVsChfLm25fVPrhEQF+8gh2k+Sym9bG+lbP14FZbZtq07IRDrQagVMNkqdbo7dbjqR9Qm2y+uu2z8pT0JJx9DTjW6lYLBfq/3a8H+C4fi5KubxBsRRBrzWbjlbhtfK5rANTD2YWgbP1L9sXayVINJbOiu35NvlZrXejHh37t2ArFOh++a6Hrgw3jE25EiBHLOZ1nVziXmPTKszfx07P/O/Zu1k/gtnvvwMtffREAUL7/OO7/nrfj2FvuwTf89VncfO4V3H3fPUgmJzA1VS8n2z5YkUp/2/vfWs6W7zuG79n4H1D5xafw2//wcey8sIM//Om6r9ff/UeP4zXzr8eXrnyhrezufP1R/KV/uIiveeB1eOrSH+Crv/9lHLrjEF499zpM7F/7u792Gq9+99fg8N2HG/nQLiMEuYd02el6LWGknoi7BrnXXUYkSQJc+/U/xVM/+yTufmMZr37Xa733tG4zJidb47R1WBaX0ve6FfXkt74mVgx+9dffg3vfdk/jmFsv3cKv/c+P4+lf/hN8+eoXkO7V/eU+9/ln8Yf//km8/q6vw91HbqL2f/lPeMN3zODeuTfg0B2HMXXsjpb8ym97P9iylzI+dKjVjYVuZ+VbW7wnSdNHc5IA2G8zpWzFWlb7zNUTIq682m9X2bs+kt/QM1cL7LbuS74lLteCdlIv5fy0Kwz93NHHS/ulBWO5HvpDBo/rmTFoIZmQPFCwJQOjCAvVLIsKwD9QzvMg9YUPDUJHHT7MxgctBlCIJxbfa+Gdtm1FtIl6sAa011crOFrBCHBbcIXwPZNkcGrjirX27TX2mRfCWnSmafP1T21paYUI+zy1aekBqxWv9Cu7PgFKziOmXfI9d23eSiUAahGfTvsb+v7Q9TFLJJRwvrqrLfZEBLHbhE4EW3tdZX9I2Pdt84n2vry4Xu228dj71oV93duVB1ceXdtdYpC1gNMfLUCFBCfJpxaCblzbxn975DHs3dzDN37gL+Cb//634c57b0dtZxd7t2o4dMdUSz1I06ON+0EEW8Bv2efKjxbe9f9mO5jgbd//dnz9ybejVgOev76DT/2bJ/Cpf7vVEGvvfN3d+MHNH8Hnfv0z+M1/sIkXvvAsfulHNtrK9Q///cfbtr3+296Er/mWN+Ked70er9x4GdjdRe3WHnZ3ajj6llfhdd/8Btx296EWC9ud6ktIkOK2e+qCpFjY6j6LXIedV2p46SsvIEXdcv73/9UTqPzyn+C5z2wDAE79ygrSw0ews9MsA0lLrou1QBVs+6Z9wxbJodsP4T2Pvg/vefR9LX5m/+S//Amu/LPfwQu/8yk8v3MYz174JP7owicbx82vfife9sPfhDvuONwyMbW312o1fOtW/beUgZyrWMPKNr1wmBbQtXV2yySTcYkgccpkhTxHdBlK/HL/alFVL16mrVT1falxTZYKWvjtBN+kjY3PZb2s65H1LwzUr4N1TaPbMmsBLPHa85TnqCvcoH3YOvOE1rB5OcjjkyK0ER9F9lM5IdFfKNiSnhDT4MgDsZsbPmQR40s/ZpAQE77XA3E2hqRIrAhDyKjgs6gTtPVLN/iscse1LdbPyW7bh5BFsxVsi7R6BtoHoqGJ3Dzx2jj14DN0DlpIAVrLVYsBLvFa1zUrIGjyiPP23nCVlxVdNNZvo0ZbwOW9TyRfoesi4o7Op6Srt1mB24dY0GkrzEOH3AuKaWFLX0PX5I3OU6kEfOl3P4Mv/tZn8Ppv+1q8c+VbcPvx2+vpH5lEaSp/OWT1aV11JUtYOXTHFGb/zrfim/7et2Ln5T08+2cv4rbjt+Pu6Um8/QfeiTd//zfi2c/cwJd/77N1ISpN8Ib3nABQF+QnJoFnP/csrv3ip/GF3/gMvvCbn8UXfvOz3nMoTZbw8K8sI00SHHlNGZXH/hC//n/9PwAAx7/+1Xj13OswVb4D93/fO/DZX3oKz3/xWRx/6z342gfvBwB87G//J3z1E3/eFu+rH3gjTvzVr8Ohu47glVf8oprrfvAZeEid6tbCVscl/22YWg14w3e+GV/zHW9G6bv/MiZLNXz1J/8Dvrz1RXz1j57Bk//0N3Hl7K9g4rZD+It/71sagqa27tR1L6ttcln22zDWrYVLsLX3gy1n7T9axEyJU0+giVAs7czubl0MlvPQrjj0t3arIXnW16FWawrX2lL2lVdaJ2W08CyfnZ3W67az09o+uiaRsu5hKVsdzr51oc9Roxdt0+nJtalvCKc9KoKtvBUyjn2uGIrsJ/UKGv70Hwq2pCfENjhFWaiG4vAJrXoWP4QvTC+Fr7yi8rgKCsNG7ESE63cR8DoT4qaoTq5td12vawJuS0T5H7L+7Ae+vPn2SZlZCz3fb8A/WIuxRAwJXVkWkTbPPtcNzYCtlp71gXs98y6XCHYiWc5TXvvV+33XWgQJV74ln67Bfa+samLo5r7Rlnh54+mlNVEndNMnlH21GrDzQl0p+u5/ewqlO25rEXd8906ozli0ew4tKnZalpOHJ3DX6+5uSXtiMsHxN0/jNW+fbhHBRCycnATKb7gbr/+WN9T339zFlz7+JXz109s4+rXHcO+bj2JyagI3nq7i8b//S/jSlS/iZ7/9I870X7n+Iv7w324BAJ78p7/Rsu+3/sHHGr8Pl4/gPf9oAQCQJCW86X1fh6mjt2FqqlkGU1P1j8vCFmgKg9Kf8k0EuNrDLMFWXzctJLosRN1tY92Fy6u//h686u334OZNYPYD34x/9fX/BLeqL7dY2ovIKOcLAIcP1/N9++2t5yHHyXXU7ikknMSVJPUwt92mxOVDt7BbK2Hy9uZxuq5qNwL6WuiykbKOnXjQ10aO0wsBivWqpKMXZ/QJtmkK3LxZ/z815Z/gcInSOn8Sl76XRbi2oqr96AXN7Pn7Jou7GUvYSYnQGGUYxhhyrcVF0kGk12/v+uKOTbOX+gdxQ8H2gOCyRvHhmiHTv+VBmkVsg9NvwVZvl3OLOZ9uG7g85GkMOdPVPwY58zls1zl2oD0MHUByMPCJgXnbaB1+kB3T2HssJASFwrqslnyDuVC/QPKqLa1clmb2vx78Aq2WnPJftmmLKLHAkbgkL65FiVAroZSkrYvq7E3g1tVP4uaD343JUg21iT38m9d/Hhde++W28tLtrqyULkyWGiZOqL+k3X5sktStEVO13/6XbRK3HNOw4kqTxra2NPaPdtGIT6XXiBdAur+/lKRNK6/9VHSM+plnn38Sd5qisfhNigTpW19A6a47gH/znnpeaq1WuNa6u6UsMiwEfUKHy+2FtWDTluRST8RlhIgaEsaXlmzXriZ02Gc/W8XzX6gCPwz88uVfAZC0TDC4zlsfr5+Z1hpSl5FtH6wVu7YC1HHqyQjX9dDlATTvNVu2Pqv52gSAzwOlL6o8/K0UN0++XN9/aw97t2ooTZZw6PZDOFI+Uo9/L8VL2y+jXoMSHLpjCrdeuqkKADh89Ah+4dAvNa/F5fZz0mKsLR99Hrb8bRjXtbfnbgldDxvGTgwCAB74/fod+HPvabl2X/qRz+FfV/81Jn50Arffewcmpiaxu7OHI8fvxKE7DjUswaV91H5pbZ1z1Q8Jq691ywTA/O/Xj/vZ97RNZtmydtV1W0autkBPBtixmes+Cz3vrKCq67++71vKXoVzCfjfe+KH8INvWW45D9f42LdNPiK0uwTJUJ3UtKQdsLB1tRMhhqG/Lvm1/YQYhiH/hPQCCrYdkteKLqvByTvQynOchJMHXazgqtEzizJbrB34jzLdCsuDmAXTcKarv3RSXzqtI3aw6et0DaKTEiNex4TJU39jwg5rh61oS7KY58CwlgVpxVc37KBxmCmqfltLIFu3Qz7/9Lev7tdqAN5/Cnu7k9jbK6GU1oXSC6/9Mn7/rufxDc/dBUAJBUrolO+6nNTMRLIfUoe3JGa/S0RNTNjGsY5BfWMw30jZnY7d3sB7repn1xJeZcAnHFuRJrnrTuDee1oEIhvOHuuzMGvkzBFPm4CcuOOJrZtWnLbxugRUve25LzyLl778PCamJnH3G4+hVEqcopE9N9f/GHzxWYE29NuXD5dI5hLE7Xa7LU3rkR6Zvt0p1jf6CaVmGDnuyJHJlnBAa5tgxR1pP0LWxllCa54wVpQMlY8WKNvuF/lWEyr6+tw9cw9e/uoLuFl9Cc//2XON+Gu7NRydOT7Q/p+93r7JBt+1D9FWPqq++iZVZJ8+XkT8rPStkCzb/uCZJwEAf/3tyy1vZNg3Qg4dqn9s///w4fpHjtFWzjbf9pnnerNHP+Nkogymn2DLS751mq60ssh6i0a25ekP2OsamxdNSOA+6OhJEd9+lttwQ8G2A2ylH5WKLkJTo5HPaBTtA09wDZgIIcUTK4oCg2mDrHjtEm2yhJwiBVspK9umDYNwGXMti04PGPx59xMr9oklS0zH3zd4dL0eqfe5fvvChPItebDbYyeINKFne8y+2N8u9Gu28j/Wwtb2TXR4PShMU7dvUUEmlUslAPuvGNeUxRlWTmPyb51GbUe9Pv2z78E3psBHf+BXW/IovgsPH677PtR+E+++u/38dT3Z2XG/eqwXg5K0Jifr8esyk9eMdTxAq2WnfutJl12a1l/9lXh0WmKpLAsRTU01XyeWeK2ls31VXF8b8fcor6Hb/7VaPS9p2rrt1q36NrvAlq++7e62Xts0bbVWO3SoNQ65p3d2mj455VXoV15p+rK8/fb6cTs79W1TU8CRI81Xp0XwEctxKYMjR4Bbr+zh+qefwTOf+jKee/o6rv7vv4mpu4/g6/7Wt2L+h/8ipqbqx4iII9fCPgv0fSDXSM7P1iupI3JOetutW/WPXu3+lVdaX4mXPEj9kHK7ebOeJymPmzfr34cO1bffutVeZ/XCdpJHHY+IU/Y1fIlHi19APQ1ZkEq7EtBW0bqs5LV4eQ1frp/UM6nrcu11fZaPvRd1PXe18VZA076qXf5p9/aaLiTk/gDqbYq2Zt7bAybO/xVMlmrY+wcfbdTdUgl46aX9+2f3JXxy/XdQmkjwqf/wJPZu7uFtP/xN+Pb/x7cDAJ5/vh6PtE1yHhKPFQtrtXqZSR6k3Opief1aAgB+6i/XXSL8L7/YOO7ll5vXJsslglwzuYd0eybl/9JLTXcOUkbabYF8pqaaz3pf+3HkSDOPe3vNhfx2d4EXX6yHu/32+vH6zQwJJ76Qjxypx/c+ZfHsMp7a26uXlfgV1nVG8pmFbtfsMS5DKwnvEmxDYnjoGV6kYCt5ts9vi+3nxPZRLDRe8hMah/V7bDIuhMq0F0YWFGwLIEYMiGm0gLh93Qw+OxEusqwCxoGsxmwcz5mMBlbAsPf/MHVS7IM/T3uT5wHnC+sqi2ESLjsR37Lw1Y1hqhf9ImThE3Oc3aYHaHrgpQUcPcAH2p/xsc8PV5hRnxgNWXQA7SKUr6ysEK8tFmWb/taLz2iXCCKKSP/o1q3WvABoWWFe/st1t4LtlFk8yuZPC61ybrY+JUm7aGXP1dY/X3pa6IuxXNN9UjnGdy/YshVEAHJdI32MiLNaJJNt+lx02dvfWqDUYph86zzoZ8/Nm62r2WsRUX6LkKS36boi+dvbA57/s+dx9dGP4Yu/+qe4+ewrLeUxeWQS3/yP/hru/ba3NsR+vXiTFjZ1Hl2CrRYnbb2XMrVt0M5Oc7uck9Rz3TZJWBG25XokSbM8WiY+Atgw8qq3rl++8Y++3631o4R1TQznISS0yX/fNpdgq/MaI9hKXZJrJddD7n3dHu3tTdRdr+yHkfoo98od5dvxwOp31svj8GH83v96GR//J/8Vv/8vfhNIU9z5xmm89W98M2b/T7MtedYitXYPI0Kjy0p2YqLZHmJvAnu1BFDHahHRV74uodHie876LMDz4GrTdL1y9a+tIO+qs6571bU/Nu/WGtk+4/LU+WHqN+gyztNvJ8XjsmIG4icUSCv9Frop2BZEzOxFiJiHWif58XWGeoUe5A6DQBKL78bjzFPxuOrhMFhAkmLoVJQsQrB17Wdn8GDhGkxlrR5v64gegPnEBt8Eqg6nrRU7uSe6eV77xCuLCAr6P9BeBi4LNBuPHrCL6FOrtbtP0nFYwUmXlQhocg4TE60rhtu8yLO65RljVjcXazcJn6eMtQVUnvD2lVRBCxPab2NIsHVZXsk2se7SYp1vQkHKwsZhr6stT72wj2DFUpdgK+Kfr4w0LvFPtlvLap3OoUPuvoX0R2u1ehhttSfCu867XsRJ2g690NLTTzyNyv/xByifmMbMX34L7n3na3H87a/Bq77hXhyZvgPPP18Xum67rWnVJ5aUVoiVc9XlI9vFJ7S1phVrYgkvcWvLbG1RODnZDC/7dX0Qa0RJ98476//FUvZI3cVsQ4B2WVVqy1kR+cQ6MWRha9sCsUS1eRSLW6nXWgjSFrZAu4WtTl/Ebt2m24kAoH6e2mJb8mjDSJsk232CrZSXiLRy3bRgvreH+gKJSQqxlpQ8uoxw3rHyF3H0XffhT376t3H4tgncemkHX/ytz2Drw5fx/Kf/HH/pw9/tFZ71WE3KVcpT6qJYhwNAWqsLtokRe+310+UEuBfi0rieTbq90RNJWvjT7ZVPKHa1l5Jmp2SN9V1tn9Q/PbFlw+m860lBayzl7G8YC9u8fd7Y56CvfbdhOJYjB4VeGOH4oGDbAXkvUMzsRSczxj7rFT0r2W/hImSlMey4rutBmnmy1801cCviQWxF8EFYQGZZfvkI3W+E9Bs7YNH46re971zHd/qsKOIZ4xpc2v2ugZoWHOxAOW++rcVMaIASotvJy9BzXmMFS/mtCQm2WjT15SOrjvjExW46s5KutrYKCRAiDrS4bTKCratctCCiLaN8YWPrgeTZWqiK6Ct1VNIRoUsEE5dLBFumtqy1UC4WlC6XCFog02KCnmSQbxHIgObr9nq/vDov/7WVshyvr42kLWKQiLIShy43fe1dEyZAeziNiH32/EOW3D5Bpf5JcfPGSwCAH/zY38Ttr7qzsU/KWQua1o2FS7D1WflJunKMtVYT8dpVV13nZtt8nwAjv0XElOukhUkdzsYh95+2VraTQlb8lG3aOtheMx2vCLt5CQmEVhzLaret5WBoUk+3y/q8dBtfq6GlvQLCIlmtBpTf9lp86//2ftx9d/3/J//D7+O//f3/iD/86St4+hefwgP/0yLu/2tvQzo51XKcFkTlvy3Tlnq4vxShbgPltz1Ofsv5ucpJT2LZe1KXkW7PdLuZJXr6nkeu8Pb5odOVuib50hMr+h4WS3Y9aQbU20JtyZ6m9XB2gUxd/7RgK8ft7DRdhejzK5WAUk0y3V4Oum672gj9XMzSNiRMqD+k3ZgclLEzIf2Agm2HZA1C8oqWMQMz++B2peFrdPvZcFLAKo5Y6+xO0dcqZE1ctKiq62g3+e+UoiynByE295pYMdsVJs+1ZDvRPZ1M9Onfo1j+o5bnfk1g+to030ScTxQRbB/CJZq50INyV7yuuLVIqn0AivijxQEbrw6rLcYaZWEEWztgFwsoKSdtvafjyhIIBFf8On92wK8t+3TadmDsGySHxDe7zZfPJGkV1Cw6z1rUEGz99j0HYsQyKzBoMUHKT8pLzkGun6tulkp1gURcW8i2mzebPifFZYWEkzByjOTtha+8hF/7+7+Az/zSU0ACTNw21SIoybnrV+B1X12LM7ZcXIKt6x7S+0QY0yJ7yJoxC9c95vt25VHH4woX0xb4xHkr0IuVsRwjFra1WruFrS4vuc9svK78iUWsYEVmCeM7Fy3cAe0TE2IFLXEnCZBM7NV9bk81z1Umb2q1dl/E0l5K2jPf8w7cO/dGfOLR/4LPfuyP8et/7z/j1//ef8bd903jcPk2fN0Pvhv3fc87UDoy1VZXpP3V59bIX6mGFEnjftF+eScn6/54Jaz2YWvLVwuRIkDWas2Jo1Kp3Vpa2kkpO1+91OUu4m4svvG0Foo1eqJP3zf63PR1k8XItFGTdpcj7ZeuD7r8upn01edg+/f2OZBVPln50OXkmzwmo0eWQZcPHW6QY74sjW0UxqMUbHtEUYJQCFcFc1XGXgwYfRXfNXPpoyihcZzpZT1yiY2uAbntdI4LdnCSh0GKzb2mH23XOArdg0K3hVlCin0WuMpftwGd3BvdHGfjCAmIQLsgpQdMenDdjUsEwQpCWYNFX9y9QsQsKQdruSMDNvGfqAVOK0i68l5Um6DT1PnVA1kpPxG+AL+IpfMkx4vIWiohSrDVFrmSH20BFnNO1nrR/m6zpFPp2zRcAoBPHNO4hAr7TNciiZyr6/7QaVnRSVvYisgj5S1l5+pzuoQ4132my8da3Vk3DiKQyjYXLtFbrrs+D1d5JwlQu7WH3/7xX8HH/9lvN+J87/klHLpjKur+1uKOttaT/9oCWMpFt2OuVentQnYSzlr3yvnJNZY0rVsACaMtubU7CF2+Og+CdnVgXTToMFkuESSMdlNh23Rbpr2w6NPWo3qCRedZzknI6jvb8tCCbSPvSrDV7YKUhxaiRQiURfJqtfokw9TMUXzvhR/EM5/6Mv70F/4IL3yhii9t/Rm++vEv4qsf/yKe+PDj+O5/fRIzCzMNAVuu26FDzTra4ipkYq9xDrouSd67LXtraWvbS+1PWk+EhMiTL19Y3ySlFSOtCC1CuojbUqflWJlk0PdDSLDV7k5kfzPM/kUy96kNJ2Wm66y9F33PFh1PlrBr/2e1kXa/Sz+IaWdD7X8n2zk+aeIaF/qurW9iVvYNglBbMOi8xULBtkNiG6CiK0CMhQvQ3tkuuiMTO4jphWCrB6Ah0RgY/hswhrzXPJZxFBtJMeQRs11hso5j3esPeTsiB8kSwopsersVLuV1Ry0gyXF28kbfNyImaVEozzMpZuJT9lvxz/UctNaLejGkLMHWN6jKe05S5rYDrQU5iVsv/OSyOBVEcNUDisZzc98nZCiPWvCxApJ8kkQWBWouADQ11Soi6OMk/9rXqGzTgrQW0HWZ6jDa+tVlzarzqMvWNUjJsua0Fo6ufpYVnkSgE6FCLMmsYOhaGV4LjTZPuq9ncfUBXcKzy2pUC336dW4tGJZKwM0bL+OTH/lNfPKfN4Xat/z3c/iGD/wlHJ856hSCQx99baSeawtfK4b44tD7bDh9f9l2QdcP/Qq3XmQMaFoWuxbg02XoanP0uWmXCNbVgU+wvXkTbVbLUq8kf9ovql50TqepP/oekv/6PCQ93Q5Ie2P9tOo8y7aQD1spD73NupbQcSFNUPv4J1Bb/K66b9K9ffV0ZwppWkLt8CtAkgJJitruJPZuHkFtYhe47WUgTYCbh+vfh2/iHgDTaYLJUg07d0zglXdP4rE/fiu+sg38/Pf8O7zp6A3ceOU23Nor4a7DO3j7PV/B2+59BrW0fkF3p3awuzuJBCnSJz+B2jvmnO0i4PYt7iprKS89cSFx6TcMxF+yLmNtoSx1zba9uixjxr76uaOt4uXNC+vzXJ+7HCPth7iL0RNYYrWv3RloNwk6Pl0+0p7q54AuTz3hVGrUEXc5AK0LX9rJDWslHEK3nbZNlbiKJkb0BZrX29dXcd5vnu06nrznNK4GZfZZrNtMIfTMHjQ+45ZRGY9SsO2AvDNGcvN3ewMPy2A6tmF33cwueiU0Dkt5EULIoAh1nqxwc5DwWZK7nht60G0FBsH1XLLinbawiyGvYKutHDV6m36FtsV1ANr7NjGCrcQba+0kA1OgfeCnt+WZNNLim7ZCmpwEUKphslTDrlqsSu/Xg2IrArqEPjl3K0i6BNskaRcjG/naxwpMoXJ0CbFWlLNlYo91iWa6/mhxXM5bBGqgKbzpgbvst4KKb6Gx0LnZbb5+pB18+azjfOKCtoZrE3OR4pd++BIqv/hUI66/8D/9d/jGv/1t2K2VGufvus9sGvq+0/XL3k9FDnJteUl6Og9y/trqtZNxik3LVdZiQRwqMznWvuKvBQBp3+S+k7B7e80Fwmq1sEsE18SATkfKS59bKM++NsKGixm3JAmAk+8HSjXATrQgRWI37ue7Jm8RmA/Q3JemwJHJXSy9/VP4/S+/Cp++fi9u7k7ijkM7eD49jOsv3Y4n/uz1uOeOl3DsyCuNY/fSUj3dd74btb/yUJtYqcvMJ5zqvIoQ2jhfuNsfLXoCrQvt6TcE9PNEl7u9/3zbpH2RbXI/yESGbVf0PSPYReQa7UjibrtiyDou1npYl6nEayduO73vXfXefguxYrDrWz8DutEdYvrBOh4gv44wKtaaReEScUlvoGDbAXk6VrojaR8WNpz+9qXrw840anwDS9+NFbrhfA9lV9y2U+/Lf6ed1CyxgQ0HIWRY6Oa1wXGdsR80vme5y+LCNdhzhXUN2qUfIKKWTj90XWP6BS5LmTxoAcclcNn8uM43q25rQThPnqzgaK2bbF/EWiGVSgBqJZSStGEBpi0QxcpJ/ss2fb2twOkS20LYstHHu6whXVZici5WhNNhRFw4dKjdYtKWl82XTtvWIS3Yijir8yPlrV9Z3tlxL64m10jS1Ivr6HPS56j7z1ZUdNUJfW6SPxGXJE961fZSqWk5urMDVD//PK7+v/4LPvfLf4Tpr38N3vCdb8ZbH34X7n3rNHZ2mlbWYt3pEsFdH1dZy3nJ+YvYLfnXVot2ISJdXrrvr61F9bXX97YW1fVHro0IuPaauXy/6noo56gXbLICta1rGt0Wuc5R0raTD9q/qbaS1PVIb7MTCb57TIuF+h4OCbbWelHy7hIWLaUSgJXTwAdOAzUAJTSsJpOX6jpu6W5VRq8ApSpQmgJK0wBqQOk5IN0DcNf+cSlQOgRMKMv+d+wCc/uv4+/sAC+8APzej2/i9//Fb+HnP/0O/PCnfgxHjt2GyTuBiZdU/naaQrl9JrrGY3q7TBboSUXXcSKI2kkGoHUxM1tunfatfPevFt5cExL6eanP1wq6seKx3S5paWxaUiYhlwj6WNt+yvUIPc9i+xQ+a+eY56Wr3bffMaKyq/3Q8bj6db7tUr99YWLPhZCioGDbB/JY5GaJpfLta+CGkYM240QIiSePkFnEmwqDolPBlu1nf7HPaz246UawtR3/mFfHYgRbLbKJBZM9B50HbdFpBTMJ4xLQQn0OSc++wmrP2Se0alFHD7hu3ap/dN3Xgoy1Bo0RbPWAXF4Jl8WLfNjXZrWA5RKufMKQLQOJT+LSZaZFNS0qSH60QKrzaM/RtV377JVjBVsnrYAgooQVKXRYybu8xlyrtVrmSjnohcB0Ger6qf9r38RSZ/Sry7p8tMB382ZzZXYp4xdfBF5+udVP542nq/j4T/4aPv/Lf4RjX/9avPt//X5Mv+UelCbqotatW824dnZaBQ+xuK7VgJdeqqejrVetVaEW0/V56vIQoXxysikUy7lrH7YSj7gNqNVaF9h65ZX6f7FQtNvl+FdeabVgtC4R5F60gqptb1yCrb1XdF2wgrOdLNFivS47PVkg8ep7VNcjXf6+foRPeHSJsC50O+za5xPufPieN/ZjBUUpC22hbl2x6N97e8A3/t3vwKE7prD1j/8rfvX/9hj+4v/yXbj9rUfb6ph1HeBq91zla8/fJU5aC1WgXejVZaHLST8PYkVSfb+5hEk9ceiacBH3OIIsYqifJ1L3fO6HQuWokbZPP3sa7WVNLmYzDn2cbo/lvISsNzps+FDYTkXzIhh0+oT0Ggq2HSAWBBrb2OuOp50Zdz2gQyv02jC2Uwc0G2VX3PYBEHqo9gLdkI6bpViMGA+M33kTUhR5Xu0aZcEWyPd2hjDMk3HjiB2kZLXdLotEn+Al/4Fir6t95TEkImcNZiWOWPT9G3Mv+waBrmeptaxxvYZp+0MiIDYG+Ps+bHWZiMCoX63WVly6v6ZFDy0waeHQh41bp+8SSX3lroV4fXxMv8Il2ALNc5Lz0CK4xdYv7Y9RxIAkaX2dWM7HVzd1PfDVV3uttWhn8xayCtfXT16XF0vkw4frCzb9+e98Fr/747+CLz/xOUyVb8Nf/Y9/E7s41Fjd/fDhujhz6ND+wk5TwG23NcUYsZ6v1ephJC2pT1NT7Va/Isa6BCSNXuQpS7CV62H9B2v3D3q7fMQX5+RkcwEr4ciRZnhd1nbBJJ0XOWc5J5tvvU3XS8m3+EHW4WS/Hu/I+OrQoaagLeVu2zrtEsIKz0BT0NZiv/7WdUr/1uKibses4KsXj5Pw3Qq21q3F1FR9m9Q37WNVp9V23e86hDe//x34zC9+Ck//4lN4w3tm8DVvm287Vyv2yT2p32DQ+bM+fWUSTovqci+88kozjzKZo63NpSzlGCvo67qihVJrUa7FT+sn3Z6bFaL1RIC22hdRXCaGBNk2Odkqtkq6vnZN0O1bJ31gfV6+iQQfrrcw9G/dRrisjTVZz0p9TCdxhMrwoBDqf/n6m8M4nvL1BV2/YwkdkxWfrve+4/qh8VCw7RDdaIQsZUKDIld8WQ9vX5i8FXgQ4sc4WorFnFO35+1qvIpuHHQaFJc7w74SBITvS5Zzkxghkx2yYrCdOp9FRyeE4okV5iU/Igi54uzm3sm6T63lF9C+orzebi3AdF22Vmb2PAG3oCfYxWlc560HoXl8hvrIW7Z2YGvvY5/Fpi4TK6ZqMUILUS6xJyTYTkwAqUOwzRKmtSWplK0II3qBs9AAUsJoYVULXVpAmpioC4K1WtPq167GLlZbcl76PLRQ4hPJkqQpzuj9VkR1XS9r5SbiX0hksP5hxfJMVkrXlpGyTdcHX99Z6oP2Yyli0e23t+dFzl9EkqmpugAp1/S224A77wR+5u/8Rzz/hefwxoW34Lv+5RJuv3sSr7zSFHinppqLBd26Vb9ed97ZFJ8kX1JGe3vAXXe1CmkuQw65Nlo4F7SLAjlGzt0l2Np45b/UGS1i6nAiPEs98wm2VnzrVrCVe0KLaPre18KpHf/YdlaXveujJxmynlNWmLK/NVlCloimOl09WWKvoX4+acHTWi3LPt0e2T5S1kSQ5E/CHn3TMTx8+W/hX7z+x/F7H/6v+IOf+l2kNeDQHVP4K//uB3Bo+i7vsa7ys+cMtL5VINdLzk1c1JRKTbcqEr8W6fVCeS5BUf7r57bsl7ISwVi7RrHXUH+0cKzbIjuWthMBvvK3E52uZ6erfG38ExPARMAlgm1T5bf+LqL/x/HM4Mmr6wzreGrUjHP6pW1RsO0Q2zkZtGDra4h9M1RFDdDzYB9Q8jAODVhdZAli/b7Rs8SmbsvaNga9aBzstem3kN/Jg2PYBLw85zGOkxdkNBhUZyhPuqF7qYgJsJj71IbTAyUtNuj9neYltkxC6XTajlp8z7M8ccsAVA+WAfegWv/WgqEMdEX8Cwm/vm0TE0BaSjFZqrUIRXqRGDnOnruIjdaCDQBuvXATX77yOdx63W143Te9HgBQ/dxzuPrPfhtpDbjrTdN47nNVHH3Lq3H/X3s7Dt1+qBG/td7T6ehFdSRNbRkq5eQacOuwts8p4qYVme11dj1TtWi0t1d3IyDxyPWSV/elfMVtgBY75K00Kfvd3fZX7q24YF0i6FXb9fXU4qNFxB9t0Sa/d3eB57/6CjYWfhrPf+E5vOP0N+Mdf/+7sIsEL79ct/jTos3/n70vj5Osqu7/vlfVy8z0zPTsw870DLsIzIAIKiAM7kRFwCUmGiMgxmwmAuaXVWMENbuJAWJiNInKokmIGzPgkkiUZQCRHYadgRmY6dl6eql67/dH9ak679Q5995XS3f1TJ3Pp7uq7rv33HP3c7733PsIsOVAKr9qg5eNykfjgPd9CZgCNVCV4hBIRfVCQLEsO287zpf4yesviKS3LuVnjX3L60kDMmW49p3rm5y/jMcBMs6f6pEf0ed9ioPEEtwjEJuDf8SPnst6le3HSXpUyjYkMJx48es0OC9ZDxQXqPUlCWrS77Gx2jUXBGDzPKnvcHkJgCT54hjo6e/B6o+ehuFHX0KxCLz4wBZsvvs5fOnYv8Bpf/FWHPXu4zN16QOFZd/R5ngfSQ9TyTsP0fwK1AP6tCl435duxzM/fRYHnnUEjjr3qMymCo0/4kFtyAFbigNkvdj59SPa1R9yHPHySeCbr6/R5AvmIOJY3611N08dautMl6afQpxfgKnBgbQ1I4S0TQYiqe81Si4czQqf7j7eBWxzUBRF5wA4Z2hoVWaB5sAjERl0fCfQBdjmvRJBTrCuQaEpdjxsOnbGmgUIpXKnkbY4yd++ycSVhy//kDxC6156E7SDpgs8bBRoaBVA0Uri7elaWKZjw6RLXSKSCjeQT4HxUcjGo0bSOLHiaEaMBRpIfr6xR3XDgTVtbuTePnztpzSUl9wk5cAbfy558zyld55VToorve+4DFIPoTB5NJueEZFRr3mpcZ2C5018uaFqeXFyAJMDtGT85vGw5YBsGiVOwJaMcAmgcHA1q2uluPtv/wf3fuHHAIClxy3HrMVz8OTNj0Gj//nof+CNX343+hbNxvBDm/HQdfciilIsO/Eg7HfywVh43EHom9cLIK7mxcsWui67dAnJUysjYIMh1G50nJn3FQ4sWulbqWNy3Y//+XQBma48XsZD/7oBt//xtwEAC49cgiPeswZJGmVAVis/ur+SA9Ok93PPPSALkAFZEJETAWwcBJN1mEdntOJrm1FWXA6WtZLkHEBlp74l5xGKK8OpPLJ/a/2dzzEcsJX8+Kcst+ZBKtchakMeRrx4X22XHqhtBPL6pr5F9SwBzJMvey2Aigf57t0pfv7Pd+Ann7oZP/rof+LR6+/GG//xHZi9bG7mqg3NI5rPXxowaq1B/Foa2sSSfGne5+ODe/XzzRPKT77MjDzAgcn4aYr7/vl2/OgP1qG0p4TtG1/Cce86Cr29tfrq769dO0Fy8ZMQro1eCXDKetL0Mh7f6otJA4AtdwDKs2lMdW6BcRqwbPXzrlfu3k2NOod0om3fCdQFbHNQmqY3ArhxzZoTL6x/lp2U+J04IcpkXpK8ed5c8bImfvpuxaPnGrmAZx8PuZA1QnkWFiAcsJ0O0LpV+Tayk2UpndbzdtZP6K4gp3aMqy51qUvTR9OtqMmNRO27Fb+VMgDtmW99YIMkGTfvHG15zWl8tE1Y7v0l43BDl7+4K44rXmbk1ZlO9CJJI4yO1NITuLBzZ60NyRNxZPKt6BwMKpeBZLyE/zr3S9j28BaUdo8j7i1g8cuWI44jjG0fw7ITD8TiY5bigFcPYc/WPVhy3P7Y8Lc/xhPfuh/f+eWv1pX3uVufxF3s9+HnHQsUC1j5juNx4KmHVMs5Pg6MjyXYdNszKI+WkCLC0uP2w0v3PY/eub1Yetz+SJLsC75C1kYLiKO1mINYVF/k3cp1R95+GvirAQ28LQG3flGt/0Q/vsxf/EOevpziuOadOjEBTOwex3g0gVt+51t48jsPAABO/N3Tsfo3X4NSWsDu3dnyWIAtB3W1epXEAVgClziwBGTvZ+WetzIO3ZGrjU8KJzCKAGSf3m7NZVw3I5CKexFqY5rCXFciUJ3wNLzP0LUM0sNWpqc+Qd7OcVx/h630ZpZAMAGWtJlGedG9uFw++cc36zh/DZTj7Sg3yThpdUploDrl7Ux/sj543XP5KH/LU5L/LhQiHPfBkzCw31x894PX47lbn8SXVv8NfuWe30Q8MFCtP152ypv3HQnQamUnWfmmJl0FI8cMrwN5x3MUZeuD8qe+w19ax/vAlnufxy2/+x1gcvyObh3BtkdexKy5xQw4K1+OJm1qolD9wNpQ423lvPIjooFj58HbiIPmvN6t+YG3m1wfGqV26jld6gxyAbYusL5r2+vUBWwbJLnw8U8gu0jwhd0HjroMIqn4ciODBgVXJOTuqrY4N0ohu2vS+JKLWaOkDfRG6lQurFNNrsXcApW130D7F73u5NmlLnUeuTZqrE2YkLBGycUnJI92KGoaSKnlC9TAH14nBHgQOCPXDVf9aYAo/9TunaXnhUL2DdQayMHz4Ee+ZTk5cEFHYzmQYb38xvLO0Z5Zf0ANSKPjweQ1JTe5JTjDvRQ5EMkNTErLgSl+RD9KoqrXJJc7TbO8OY3tGMW2B1/ASz9/HmPbRyv1u2ccW+56FstPORSLjj8I+796CEe+4dA6GTjAeMbfnYcdH9mE0e2jSCYqjd2/3yCWHbsUL92/GVvufR6bbnsaz3z/ETx365MY2bILm+96DivPObpavnIZeHL9o9hy1zP1DQRgcOUi9C2YhagQY/6KhXj93/8CgMjrvSQ97uhTGu1c1x3bMYqRx7fj0VsewjM/egxRHOFVn3wD5h62DGkaZY7+TkxkjXsCHYi3dCzg+i2Ppxn2Evijccm9JXlcSrv1vk246fxrkJYrTBefcCBe8Qevx4rXVK61SMfrAWkVIBEgHG0a8LuJaSzy/C2dnMvK5ZegMb/TU8alOpYn+iTIrY0t+k5zH/EeG6v3FOX9wgJs6Vg+B9VIBguwJVuGjvhTnnkAWw7eyzrQ5mJ6Ll8izX/LNNLrOZQ0JxKtrSmctydg32FL42x0tHYlAo9Dtif1Hc6L5kB+NQnPk65cAICDzj4S77ztd3D/P96Kez7/v/jHI/4ch7/3RKz+rdMxb/+BqmyybXkfIt4cmCd56JPmPG3jhdvQli2rbbLwOuXrLg8bfmIb7vjLyqmJd3/vffjZv92L+/5lA7504t8BAF78yCbMW7Eol36ibfaEyKLpE7zP5QVsCQ/gc2+j5Fo3ZBgnua60SudsljQd2qW3+UjqiPsyuRwdgObqyWX77K2e213AtgHiO1OAbUgBNeWC78Q2Cthm3nws0vEjfRagl9cz1UrfyGCQCzQna1cvD2npfce4NKDbmrg7dfDLhbgR8i2srdhN3ZfJ6led2qe6NDMoZB52eVS6whqlVgC2mmFj8fHF42EceLBk4y8pcXkG+EgajVJWisPjclm44a6VRTPuyViWL7iRYLDlRdfq+Yj0JHlclnQhucaQfsQ9r+Rds/w6Bmkk8j+uk6VxuXolAs8PmHwT/UQJz938CLY+sBnl8TL++XevwPjOMbNcJ152Jha+/KDMS5y0slfaJcJ+J+5fladYrAAgPT3AkmOXY9Exy3HY+ccjiiovzPrer/0XHvz3u3DnQ5vreRYivPlr78XI5t3Ys2kYxVk92PitB/HsrU9W4zz/06fw0NfvRu9AH6I4QlSoNGw8+Tnv4AVY89HTcPCZq6r1Se2y9ZGX8PjNj2HPCzvRN6cHy046qBpn+MntuPcfb8OWn22qk+u6s65Cob+IE377DKz5jVdVw2X/ly8h4wAu9wakuBIY0IBS3g/iuP5lWZQWAHY8sx2P/vttSMspXnn56SgOzsHik1dh4coFmXwkqOoCayWwbMXjuiiPH+p9l8drT5OZv6iM91cOsBPoTEfF+dpBV7LwP01PlN+tMaqlseamPDQVhjoH2nl+vP2B+vp39WdAn68lP8sb3uWdLp18JHAs1xbX+lucOwvHfuR0zFk6B7f+4ffw8L/egYf/9Q7sf9pKvO7q81CY01/XN7R7zK065f2U5JVOT7L+eN3k6T98nIxs2o7b/uz7eOQ/7sO8Qwax6IgleOXlr8XyV65AASX88PLvYnzXGEZe2GGOcZIjtP/xTRht84QTB7r5Zmf1z3Elgk8Xcel/vn7h0qVcupnGuxEezY73dswVXeemLPk2JRslC/S1vHqbsU2sucuVrllMS6MuYNsApWltVxPQAVt5CT3gnhxCFjNrR17K5pJb23nUlEHN+5QDtqEgq1RGppJCFnBffRIfFyiaty5Cw315dIHUzieXIt2lLjVD2pzEf0vDT5LLeHaFhZArXShPn3yuMnEDCsgCKxqgI8PoSGYUVQwkWi/5/bA8D+1lR3xzleehxeWkASLyDlsCN7jhRuH8uDRPk9fQJH3Dmqs00Fj+afwoLX9beBxnvYzyglSWfKUSkKRF9CRJ5sVZRKWJBBu/vgF3fvI72PP+ERR6Cjjo9CHMX7EAC1YtwrIT9seio5eiVAK2PbQFpSTGnEMXV+vfMjqpHGSM87biepj0oHz1Z87BKz91Tp2n6sQE0NcPxHFU7YcAsPrDr8Tu53dixzM70DNvNh786gakpRKSUoqkXPlDmiJCioe/eR+ev/1pfOvd/4YVbzwChf4eLFi5EMMbt6J3oAcPXf9zlEaYS7dCy048EPu9ZiUOOvVgLDpyCbbc8xwe/PrPsOn2p3HP3/4IezYN46w/fxOAbGdy6Uia52G1fZSXjskrEXhYqQTc88U7sPXBCuC96OhlePmvrMFPrvgB7vzzHwIAeub24diLT0W50Is9e7LXbsi+K/uzBphRGUKIz9mSH9fN+biSczoBgPKeaj5nENDF85KAOZA93g1U5g4OmNFYkYAtAUeWhy2lzXMlAp8j47iWp5yrZHpqAwL26Ds/Nk91wF8eRem5DDSu+G/ZN+XaQu3C53s5f2vzLdWFXJf43M3T0JzZ15fNv7+/0hb9/Vkv3P7+Gl+62kHWMX8xlgyLokr55QvYirOLOOnXX4mjzn8Z7v33n+HOz9yC5370GP7lmM/g/B9+BAMHL4QkOcZpbqa+SqcT6GTExETtJWv8j8tL45b6Il8TaZyUSsDoSII9W3ahrxfY9NMnUBorV/OZPdiLFDG+96vXAikw79AFeN+dv1GZd3uBQ978MsyZAxz73uPxjx/7ItJyWr16hsoi5wta13ybKo2AhcSfX33jAmwt8GqmEu9H0i4PBZ4ludrCpx/nzUsjTbdp1K4PASX3Ju9TzQZqRFecKdQFbBukvJOgy30bcAO2eXbt8pLWuSUgO5NBwRDvU9+kPJPL36XpJWtx7PapLrWbtKNrnKQxuLeTdYoCqIXxY/k83cRE/fF8Mgh96wsBkK0ma7NRa9cQwFYCEPJUjUyjbfhKOSRvqgv6zY1rK0yCNcRH8uX59fSwto5L6C+WgP4aUEAG971/fhMe/OefIi7G2G/NASjO6sHb3nlBRn6gkma/45dhfDx75Jy/EIcTgQf8igoJtvH6IoCtpyeqeibTXwqgrABARHP3n4s5y+eiVAJO/YOzMiAL1XdPD/DaP38znrrlMfzo/30Pw4++iG2PvFQn9wkfORUn/uap2PXkVpTGKw1Mx6lnLZ6NuSuWYHy8AgbFMbDwkCNw+DlH4IEb7seP/3gd7vvSHTjinMNQGJiNOUPL0N/fU41Lcsu7LqldCXDj/UMDbMlZgoA77jna15viBx/7Fop9FcalsRK2P/QCfvbluzBwwDysOv8EnPRbr8Lgkh6MjtbkmTWrls/4ePZlRLRJw+8OJUCRA5lUDuoXPC0vI68LAl844Me/yzHJQVdrTqe6laRtMFAYB/r4fMWPymsbMTyMyzMxkb3vmHhzPlxeauskqV3Zol0BwPOl9LShQcQ3ZCgdAWgkp+Z52qynnpzHXHOsNrdxmaX8QK0uyfuZh/M5RX7yPhYK2FqANpd5YPkA1nzkVLzsvSfgZ/94G+747A9w7av/Fsd9+FS84mOno3deBf2mOVJ7yRiXRzoTyT/+YkMOjJZGS3jq/zZifPcEhje+hD2bd2H20gEsWjmIchn4v0+sx8gLO71teMBpQzjz796R8XSt5lECojjC+K4x3P+1e3D0u47LgMZUBhov4+O1NUYDb+X6xk+XaBu6vK3Uddy4EsEFYnYSSWc0bZ2TtlQrymV5aU4lTSWo3gnlbTeFAtKu9dMKz4MltYO6gG0DRIqTZajw73xR0jxktfhEje4UaMaVzIsfT9Q8CjhpCppFmmeC5BHCJ5QaAcFleXxxmy1DI7t+mozA3j3RdqlLeyNpxxA5dcKO976gyIWsp1YczePTtTZw4gDCVNYvlcUF1lqALScLPOVAJCcOJJCuxMOA7EtlOBhHIB4P46ALByE0wFoawBXANqleiUCGPrXnyKYdmL18Lt54zblYt/nm3EdqXe1JcriUeAJ1NbCCv0htfLzWlpreQekpPyojB9XL5QgHnL4Kv/STVUgS4Lnbn8GWu57F4mOXY/vGl5BMJBh667HoX9CHucvmVPMnYALIer3xuhp6y9EozurBf7/73/GNd1ResDZ72QDe+KV3Yui0A519jsolX6oj65LATCJ5JUJaTvDzL98FpMDpf3ImyqUyfvD/bsaGq27HvIPm47WfexP2P+Nw9PdXAGd+DLuvr1YuDqzy3xxo5vfTShmpLFw2rfzyeLf2Xc5HVAcu3Z4o1GiV11RoMmikndbjzxqlRtZDqhPq87wc8nQitSuXUcszj63Gn2l12aoNUeqvxJ/KagG2VAY+VkIAW2pT1xxL6XqXzsIrLz0N85bPwi2/8x3c8/e3YsejW3DeN99TTcPXAQJCOZhP/Gi88fWBAOotD2zB1vufx6KjlmHnk9swvnscSQLc96934bn/fdxZb3P2m4tXXHo6isUIB7xmBcbHI0yMlrHljieQlIHFaw7B4iMWIS5EdeO9CpTP78fuTTvw49/5Dzx3y8NY+3dvq+3MCOInKKi8ISdV2kGuKxE6YaM+FLD0jUcZFhK3U8DsPGULIStdp5S3S41RF7BtkORxQEkacCkVzpA8XOCiljctDPzNpRwsBqYHINDK4ps8OgHI6CTqhMW1S3sH0XjsjrF6cinQjWzQcE8m+dwCSrX1RVPCZF6WQsoNIu7FRgaT5sXEiRvEIeRSNEOVUA0Q8fGxQEWfPLJt+NFY6RHIj4xSetc1B9yrK+TEhyyLlN/3nbcrkQYIkmwW6ELP5XetH0vQkTyTCITjBqI1FjQ5+G/+gjbrRW3qZ1p76ZjUxcqjE5i9dC4OfPWhwDdqMrr6OT/C6yIJrFnH6WVc6k8EGpLRL0FEKRMvlwW00HcA2P+kA3HQKw+sxD39kAwwrB3V52Xg6wbFP+i1K/GOG98HTEzge7/xLex6Zju+9d6v4gP3/Cb65/VibE8ZOx/fisH9Z2Fg+QB+8P/W4YGv/QzzhxbhTV88F4MHz8uAbUD2Ogk+VwG1tty5aRd+csUPcP+X76zKPOeQhUgmKkJHcYRzvvaLGBhagpGR2ro3NlYpLx/f4+MVb02SgR/NJnnoRUwcQKc+QfITHzqqzYFuPhdzwI3q01pj8qzV1gYTJz6e+NiQ/bIR0pxG5G8KI/k4ucBga47g86yMw4/1U5vxvkbPSQ56URbf9JBrKS8HfyZf+iavfiF5NLBSk497bfJP3s8oX/mngdNEIW0kTwNwMJPLG8cRTvrwK3DoGSuw7re+jcdvegT/fNLf41dv/xB+8LHv4L5/uxuHvHYIF3zz3VVe5BnM5xae/0v3P4/Hv/MwFh2xCOM7RrH+N/+7vhCM3vO/l6DQV8Tg0ALseHIb+ntTlMuVtpx78CBmzSlU5R4bq7TJAS9fVB3jReYJzO91Ji/5wRULMWvhHCw4cike/9b92H35aVhw5LLM+k9e99z7nnuba3XJAX1tjMhw9c/x0jHZtvRd6iNW3hYPF2/+KcugUSttW22us+ZUHt61hbrU6dQFbBsgC0jliq68w5Yvbpp3rsuA8cXhxJVGrjDwidlawJsha7KTRr7LyObUiHFrhfl4uEABLp/Fx/XMJ2OIfKFxutSlEOKGNv/dpQq1w+NBO+4FZOd4aWC345hUI3x5mnb0FQlOa4AiJ77e8hds8XWPQD0O7ljEwU068i7biL8tm0Aj/sKmEMVfgpUWyfJr9WABFvxKBzLauQcdHR/mYEAIYEv8eF1xkIMAW/KC5W9ul0dh6Vg7/eagCYGRFDYykn1zOJdFA7lCAdskAV6461nsemYYfYOzM2XXvDy5UU1GuNYO8jsf27z9+XjSDGZ5BD9Ns4CtvGuT2p7yCiUJvGrpOZhAAAvVPQe0CsUYB592KIpF4L23/Tp+/Kffx71//2P8/YGfxms+eTZ+/q93Y9tDWwAAh65died++gzGd45hZPMufPGYv8SZf/4mrHrrMZi9aBZQjKp58/nh/678ETb/7HksXX0AXrznOWy++znseHK4KusrPnYaXn7hyZi1qNKmH3joUvT0xohn91XHNvU/GtPUB2mcU7+lvsrv/tQAa15nvN1le4e2gy9OyNrE+xUBY0B2fqQ+w/u67JP8qLacJ3h/5MAjkeyzlL92h63kocWjZzJck0emcQFOWrxWrnPa2i/tIlc6CwijZ/KaDMlb02ca1XGsjT9ad+avWoLXfOr1uPWTN+OJdY/ih3/yAzxy44Mo7Slh4/cewVfO/GccfMYQjnnfieibU8R9X9mA8lgZCYD9TjwQD3zjATz6zXsRF2KMbNldl3/cEyOZSBAVIrzzpg+gOKcf5QSYt98c9M6bVa23wRULMXv25B22o3rdUr3RGNDaQ47L3nl9OOnys3DT+7+K8nipLp4EUulZJ5JrU4RIrml5+ozm2Qu0HxhttF8DndtWU03a/ODbONPiWf0rVAf26bx5yIo/k9q8C9g2Qg8/DJx1Vu335IXfKYAUESKkQEKragKUC5U4cYI0AtIoQRTJ0cDiE9skQpLGQJQCUYpkMk7C4lAY/52kEZJCuZquPBmHduHKaVwZkHGCJI0q4ZM8k0njJo7Sany60DyO0urzQpQAcTpZ7kqZ6Tnnk8RJhQ9dik7lrlRELSyqvBijqvjK+Ba54pXp1dLlbHgaZb9z+eKkPm4y2QbaM0ov83/Pe4CLLnLL3qWOJUuhdS08eRYQbfPFFc8VNyRfLY6rjCE82wEodgr5NotavUFDBoNsD2mASpLtJONoaeWGHj3XNp64QS7zcil1Lln5Mw72ETAljXfNuJdl0eSjzUuZRpaBp+XeSZzky44I9NTKKuvRAhMtahawtUAQKm+rNyOmytjRvDp9crkA22/94lexZ8tuHPqWl1X7YJrW2pbzp+cE9tE9qtrLZSlvwO7zluyWJ7sF3lj1Q3E4mEXEwTceTuAcf5kU8aGXU5E3HweMOa++PnrBUQEnfPhUxOUy7rnqJ/ifP1hXjb/k5cux+4VdmHvQfLzsV16BXS/sxJ2f+yFu+Z1v45bf+TaWvnw53vbV85GUEuzeMoJFRyzB1odfRP/8Pvz0yh8gLafY+N8PAAAWHbkER77zOCw+bj8MvelILDtsfmbM9CybVb0PlcK49xvVh3y5FB3Dpg0IufGg1ZP0ECRAiNerfPkhjU/r3kpJeUETQAdveR/j5Zfy8DrKC9jydYbKowGmRPxUYCsAW9lelsw8DpWb7l31vXRMbsLxtiXevM40YFxb5/h3fo+z/NQAWp93Na0T1F/5ekcy0UYG36ik+Y7mQeID1NadNAUWHbMcJ3/sNDz1/Y34yWf+BwAw9MbDMbJlN5758VN45sdP4dZP/QAhdOgbjsD8g+cjKkQ46XdPx8DiWUhKCQrFCCmiqhz0UjWt/BZZAKsPcC30VTpqMl6u1q9LF9aAUddvFxBm/omXjrVzs7+Z+FOpK1h6dpf81C6HkU6jVuvC7aYuYNtiipGgENd6QXESFE3SCMVJwI+DodV0k795eBJFiAAUonqeLqK8ZD7V7wmQIMrkqckjwyKkk/8rfxWIenJwowbU0if98XAuI4VFSJFGEctjhtPdd1c+u4DtjKVOWLAsT35JjQK2Ln4ugFcqxI2A1lqaPECWRe1WVBupaxdgx8tEcs8UJakVY4TXrQY4WcY9DyMvGQ0g4B5iGiVJPVAuASkOXvCXCPF86EUtlnemrxySQj3ytHyso5dUBiD7UiUC27Q64oY9LysnCS74PGzL5drVf7zNNA9bIOvZS28+p+fUTnSKiJ/MqfHO3mFLeYzvGMVh71qNU//0TZmXhxGgxT14JcgWRRVwkuQhOYFaP+Dl4OAOtYmsPwLTyPtLA/+kPJJkf5CAbcj8qYEGrg2NJKkBOQQeTUwA8cBsnPxHr8eJHzkZ5ZExjI4CAwctwPwllUbjHq5HX3Astt63Cet+40Zs/tnzuPqYvzVlPOSsVZiz3wAWHbEEqz9yaqZNOLlAb+2P6owDYNSn5KYIAae8nqht5TrJPWOtuT90nXcBO9Y6IwFDzUtSA5A0HjPNwG2UQkG/RjfAtOsIiORvyoO/DIvi8dObFm9to0d7HuLxywF/Xm56BlTkOfhVB+GjL/0e0iRFqQT0zi5W0pTL+P7v34LNP3uh4gl76Hyc+dk34N5/uRtP/uBxLDnhAKz5yCnonxVhdHcZcW8BfX1RlW9lHourcxtfMySwrd3py9cACuNrAo9Hz2gep/rp7a+9TUzeo+0DgF31L8M5ueatOEbmSgR+IkJrc+0ZtaGLGunrfBxpa5Z16kjOP1IP4c/k2kztIfPRymfNtfvKPOeiUNBb668y3NJ/fXqMb3608g4hrh/NFOoCto3Q4Ycj/v7Ntd9MeUOESq2SQlsEMF6JU63tePKP06TCm/C7Z0tAUgbSHoUnSwcwA65UySvmb7SVO7SlikNosac2uXGFXhq+mU5drvzFMRCTHHziTFhYUonDw6uDK6nVG+JJZ1UAERklxMc3GF3xJneGIY4PIhHfudxyRCSo1HFsPKP0PP8zzvAI3aWZQC4vS5+SbYXJZ644ZIRqwEyITKFxXPykgsQBkVaTTyH0AbYcMJPpNF7Wc6ncTQV4z5XsvMoNpxAFiOcTYijw777+I5VoTtozrlxLxZvWJU0xl/lb9afJGCK/5pEoDTkuNzf8tDbM246ul5RIo6SdxoWsV0sJ1+JoabT5I8SY9fVfPlfKI8iFuIxinGSOhUdRivJYGXOWDaB3VqF6XyFQu7tQekPSM3lfIS8HxaX+wvsDzZ+cR5rqL2fTyt/s/MPbwAL8QsBAKx2QvY6D+vC8gwdRKAC7d9eDgvQ3b8UiLD5iEQ567So8euMDeOqWx5AmKeLeQsWjrqeA0ugECr1FnPixM7Bw1cJMncpyaZT3KK7LA69YrHnMUlxex9SmPT16m8pNBQ3At9YxPhfJduB1os05zfYj7uHeDuLgjdbXeDj/TUfy+Z2oPjDb95zmKg7Iy7nF0i2s8UGkbTDydufx5WaxJjcBujTu5DgL0V9C+wV5ntNpA8qzejqyuj4VgBhI4srGTKWsBZz6R2dnNvOSBHjZB07Cyz94EkZGgHIKTJSAtFBEqVTPl9cRAbb0nZ7RJ905zesrSbJh4+OVO225F36xWLlKQZu/00JlsP73r9yAs//hXCx75VA1P173/G8qAUBtDFnf5RiTfUD2NQ6wWnOtq59KOa05W/LQ9CFrXtDyJ5J8LF2S6z28bkLGiCt/V3xfWCO82n39RJemlrqAbQMkDQ7aPW9mUs57nIJIKnc8ruRJMvIXk/kUGZlfaBnlRKzJI+XSJkkfueK58uxSl2YCyWNzQNbwblYR9IHSFvjlA51CAV3OK9TD1Mq/VYqxdqRwKgBbS5HMqzB2aeaTBAekRzsd/+TxNSNM6g55xweXwwXYanw1Y4zfsSs9mzUjkMfnRrl8SZ72Eh+SoZzGKCVx9eUvu18axfc/cgMAIOrtqQId0pONg14kE3mFUn7c8JcvcJJyugxnet5O4z6Oa/cuk5yaV7X2UiEpowQY6Tnf1JBXCRAgLZ0DiF+xCMxZ1I/j3n8CTvjACdU4fCNOvtBJHrF1rVfkea550ElPOy6jjE9//B5fDbilPC2Px0Y2mST4qz2ncWUBttamAJffRTSuJTjF85PtRGNXAyfpN792REvH+fP0/OVpQBaU4fMDrwttveW/iQcHbKl+5LjgxPso9zjlHoJRlL2P2wfYyrqVRO3NAVt5lznlS23F65RvrlAdUBm4Nz3FpXHMrxzi8WTbyrUqFCwEbPDRxUc+d+lu3Pb0xSNaePRyHHfJK3HPF36CzXc9VwVsLX28FXr6VJHLqzLPHBGal3Wiyvp0bWzJuUhb21x9jXhpa/BU2ACtJrk2zgTi85PWvvSbt3Ooram1X16cyYWNSQqVKw91AdsGiCv1nFwKubagSJ6tkIvy4ff5SMCV7+5KZYAro7JcWtnkcxoUcpGyyscXiNDBE0ozZZHsUpcaoWYVwU4cHyHeu3k8QbTjVkTSoLXy7QSFm8vg8hCQZBkxvrCQ56FhvvgueaznGh++rrnklukk0BByhy3/LvPjQA2XlwMSPpnki8/kG901g0IzYPkfX/st/UT2dXq5Fi8zN9IlURjJqwEnHCwguQkAkOOVv2HdpXvwOuYKf5IAUVJAKSlXw156YDOevuVRLF19AJa/elVd2TW9RtaX1G14vVk6n6UfSk8jaieqN6vNOFm/5Wc7jIhQItDIBdhaRjg5GEiQUxsLRNzbmhv8/A5X17iRMlpx+LxMoBz9udYqX1+T5JLBlc5HJAfvx1r/SZLspmqIx6YFEBNp/ZHmA98dtmRrUL+QoLoFANF3vhlFPOiZfNmaRj5gS15jwmWSwD49pzCZJweg+JU8SVLx4iZvfz7P8qtoJHgl+yYHb119jOYlcvaRY0CjkKtIZH1pbcfl5u1F84eMz+uDvN15e1IYyU8nKyge1QWdoqD66plVxGs++Trc84WfIBkv1YGZjWyCNErV/NiVCESuvq/VrYxjhfvGlYu39t3Kw/Vp8ZW8NN29kZOTjc6tFmnzZ2jZQkibQ2YChejsjRLV+XTbcs1QF7BtkFyDK8/k5uJrLW7axCc/rUVCHunR5JHePZac1uTGQWJ58b9vUgpR6Cx5JM2knaUudakR8t0RJYnHmYkLeh4vUwtobQS8CL2WQqahuVQaRxZZ8x83jFq50695QUqynoeG+eJrYFMecIrCuJcV0Jg3KXkmSTBSO+qoySz7Fgc/NEBSIw6O8PJYVwnI3xIU4OULAaR4/7JARv5JefH6dnnl8j9eFy6dJc+Yr0s/eet+mqaYGJnA6NYRAMCrPvkGzD58eRhjQXFcA/6sNrcANepjFEbHfuO4ApBz4I+88QiAoTQcdJBef0ANFJdzBX8u+yEdcab86DkHR+gItLzDll7CRsTjkSw0PrmXNOVDGwM+wJZeCEd1L8shPXOobng+VCejo5U//iIq7SVL3MOQ85J9mMrHr7bodOJjy7IN6FOuZbI/8jmA0sl7l0P0+5Cxrs2L1lwjy6GBMBzc18qvUQjopPF1zeEyHQ+zAFvuAc7LZQG2fI7nV7MUi7WXCgLZF+4BNZCWy8Ll6+mpzX08b3ohmfUny+0j2Wdd8Vy2Nj2XbcSJr9d8MyNNIxT6CijtKVXrk+JMFXWCI0GnUyd6xs5Ez9epJL6uyvcf0HNtUy6UXPafD5fz5dXudb8L2DZI0qDjSrNlEGkTh8uYtxY3TeGxFBMXsGopEc0COZZhKD9dhnioDCEAQUg+rrghzzIk3thpyRgKbuQFQUJJ5pGnnprNS3uWl7cFnuRJ63pOlAcw6FKNXAplM2M9T1togLY2N2leRdzg4McJQ+SkPDXAtlnK4yEgw8nwJmq10u8yfkJkbFYWylsqxT55JLjOwYdG60iC4XnnKR+AEALYWt5KlnEs43Pjn9JpxjrF1QATGUZH0znYpSnhVllc8st6A1D1Plp/yTfw6Dd/Xg3vndunM/CQrCPtNJGrv0gjUgIQPqCB86E0Mk/XWs7TajypDYgkOObTYa0wzl/KwIFQQJ+rkyR7VJ0/53xkWfncLfVxV1tRX7X0by2MAFsC2q2xzzeHZDtLwFmWVf5xnnnJNT/IT9f8JedMPo/mlScvaEektZPP1uHPZDz5TJJl8Pvycs3hnC/Vp6//+f588zz1c3rxIqUplyvepXwNoOe9vfXXIPT11fokB1r4iQpeVulVz8FheSUJ/058XPoYzRWWLS7D1I0+T1/smd2LDX/7Y4zumsDpV7xRzcMar3nksChjZzObU+NrfdfmEdd3ORcT8ba1Th9r44yeyXLLeVObR7U1TuOl6aOh+rNvrLp4WHGbsdm7tG9TF7BtgKSXDCmQromR7zLKdJYy5JrseRwrDf/dBZ261ElkHbvLQ5qyQdSq/t7dDW2cOnF3WyNfX8nbl6TRGgK8cO8NF5BFJAE1GU4kARB+xFyCIhZZzzUQgh8r1crpq8dWAchyjeYgkQSKJEDJ24OMZgn0TAXJOZK+W23IvRlJHwkBDjk1O2+SHPQpjRfy4ORvGrfANxkmPXi5nBo4XjPaY0wkBbx0/2YsPGopht72csxaNAvzVy3Gzp22wWrVHeXLvbF5Ofgdlhpfahfp2Uh/lsEpxz/xk2CZJM2rm883XD4aD3KjS+q7fHODQHwJLvn6EQeHpFeqNocQEMrHrMvAlserCcCRd+uS/FR+6bGYB7DldWTp7ESuFwsSD6qnEPL1g3aSts7JsFAg1gVM8nBOjYAg2vrcSYAt0FxbSr2CKAS4m8mem9oGh7Y5RHUvrzsikoAvT58kwGv/8hzc+smb8cR3H8SyEw/EqrcdmzlVIO8B5gC3vBqI7hEGKsC5BD35/KX+TTFgq/UrmcaFU8h6lpvlzdBMwjp8dZiXQrChkPghMoXYBZaNbpWP6zRdqqcuYNsARZF++TWRtmjzOC6Qlp5LJd5SWCwFQyrOLm8dS4nwKSu+3SiNl6XkWHxDdrR8fH08fPn56qPumXKfkEuOPLt2VlhoPYXwdimVzeTD0/NNhEZ5W/2Xb4SE8Gi2TPsyuTy7pmPxdXmnuYwx/l2CnPK3/C4pr7Ll8/RqJbnGW8ic7qpXH0CY13sqdC3g65yPQjYRuBIt4/mMYGmsWGEukqAx1SkBVdy443UvjUDuwUf6Bj/ODdT4yBfDUBvIF87wNpBv5U7T2vF+q7wc5JQeZBwwjOP6exIloCABW43SFCgnMb509wnYPrYZR7z7eLz8kldljmpb6ThgpulzEkB26WA+/YqHaeColI3XRaPrl9aHQ+YgKVOzBnLoWHfVIcnA7zfl3rEkN09Hnt69vRXvQH5Xcm9v1ttPe+kY9xL3eQpymTmoSvd2Wu+MyLsmaACABRxr7d3KtVp6U/N5M0RGDWxrJeXpt9b6bAEWFjjmS2fx4t/pyo44zl7hQXP0+Hh2fZDgHwcsgex8PDFR6Yv8+h7S1TudrA3jdsm+6pyjsPneF3Dnn/8Q3//IN3DIG45GkhSQJNlrZSYmau1EbUXtBNTqmzb+6P5cWYaxsdr6yD348wC2rXKg0DzzXfo1lZNvAnKS9qDFy7cucPlmAs0Up5Y8JHXWRk9+dKmeuoDtFJPPMG+HR58GqjRqYFrPpaIo7/nSlAYNGJFGi88YcSkTloGsKU6uuCHPMiSuRNjbJuRWkbU4h5IF2OYFzLrUOHWSwpEH9LR2toGw+cJFMk6IYSi91fj8x4EsIgkmy3ApC49vhVmArfU8D58QasbQymN8a15V9Jvf08efEcDDX1jULpJgoVUG7Rk3srlRCNSMfd5nuLFPBhXf8OLpyTOWSAK2lEcogO7y/OIKf4huIscH0cTIOO7fvBTbx/pxyOuOwHEXn5IBlLnHkwSU+KmpKr+JWhqqI+7JyeWkcSx1Ggn2URx6AY5MQ3LwI8kSIHTNEfy7NlZ5W9DRaHrRDudP6em0GCdpbBMYyj1Z6cg18ebjjl4QZM0pJBt/saDUGwmw5cCNNmdx8JXuBub39Lr+ZF1quouVhvcV3q9cY7zdJOeRRsH/kHysuuJE9dTMhoB0duH55FmbaEyEeBPKsHYAtlo8OdeXShVgjwBXsr1kGv4CSb4BODZWG2dA7V5rvoHHbTr+kkk+n/G5RV6JwL1PZT3x9YbmZFluPjeSfJRW82yX6xQvP81nWnv5dMkoAl5x6RmIZ/Xh9j+9CcnoOOJ4Vp2eYF2rwucEypeHW2OTwildHMP50jG+QdTI5po8YZQktVM+2rjSrkSQL4TlY5D3BeLJr9rgPLUxRHXFx6hcc6W+7NKfpY7Mf/s2ejnPEPuC+llePc9HrjmWwkLCrTiuNHLsNHryQ9MP+XfSjfYl6gK2DZDlYcsVaCKpWAP+QaFNkJqxIr/Tb7ngyAWLFkLLALKMIuu55iE2VUdqOv3oTicBWl0Kp1CPCp8SbpFvUadnvrGeN78QGTQjwQqn353Qv0OOoVK8qQJsqQ9JwIbH9dW/1R70LK9SZ23gEbXySJkPRA8pq0yv1YXmwaW1m28M+TyENRAo9DeFhSj98gol6j/c0CA+BADRH3/bdqjHChmO0siR8fjRdR9YlWd+kqS1o0s34Z+8bp+++RHc9uxBiJDi+I+8CkuOWZoBK+K4BuBROtLZ+At5OJAtT4Zo40XzJLTKwfUoH/m8US1gSoJgkieXkd+9qsloeXHyuFpezcwrvrT8ed650NK1Q/6AWp1xL3UNBAJq4EKjZab08v5P/pznRXlzG0Qa13xMcxCIZJhqHdvaiLKehaRvRAaXjjCVxDdpyAMTqLU1eYPTHEZzoOulY5Sewik+nxtprEtvXQm8krcnB94oPmADtlIeisvz4uWUmzVJUgOq6YWEVBaKR3H4Jh3JSpuzIfMiJw7kA0DPnMoO1H3/fBsOftepKMzryXjZ032/vb3ZzSredty7ltpZbizTeOfjNaR/ara5NZfJMrvqIM+84NO3XeuJ9sm/c/ua2oW3P9A6wJantchnf4To9rx/+fJz8dZ4tmJ+lGOAk6Ynt2Mdsfqsj2YyHtMFbBsklzGoKeSa8q51nHZ61vrCGyVNsdQ8FoDsAJZhcjHmz3zk2gny8QjdjbL41D1ju50uhaBLnUtdoH3vJR/oYYX54stnErTSwA5LWQ1R6oDaC9EseTTe8u5ECchIfi6l0iU3hbnGka+seZRVzTDhnpqWzJo8rnCXgRMqYzPzCje4JABEnjf05zrOTeUCasa7XHu17z65ZD/X2tf1jJOmS/F09EnGPN2Ru+3Rl7D57mfxxLcfAAC877i7UDjhoDoeHPyieuTjl3szSc9nCX4RNbvhIetO3lks5deMSlmPZDDx8SC9nigM0E9E0advnPM4/FoO7pmcpllvZZeBTWEEbHA9kX739GTz4HwonHuFaePZ9ccBKSmDdIwAanlxD24JJPE5RILmvA6IOHgm65zIqkMuGwfSSEd3jStt88HyfJTriGbzaGXk8xm/moLna4Es2hxhzfPWHKaFT7XuJzeCgOx6zG0qoNb/+DxP/ZHPT5SGb+5Reg7k8pdB0hiVG3TWH+XH1xepL0mdy3rpGMlLm45UbqoHrV00e5LHJX60IUEnCXp6avlrNmtIv5i/cjGiYow7P/cD9K3YH/PffJjaJ+V8oF1LQd/Jq1meaOHzDvGMYwRdieAjDRfgcxOvV+oXlhMaoF8Ho9nkVBbZpzgP+ZvK5ipDKwFbvoEeiifkxR1kfF/5NHLpANzrHmheR+Eb2JxcjgKu7/y3nHNkHLm25KFWOqRMNXUB2waoVUaXBdjyCVKbxLQOb33SIsTDuHLE8+E8fRNTyHPXgKIydsHMLrnItUD5lHMX+RQZbkx1qTVkeQxZc5dF1nPXIq+lcykOjcTX5ODySMXX4hui3FgKZwhJ4Im3iTberLHiMpxlnKkYR9ITia9BGkBJvzUDQRoinA9/YVZeCvHa8s1r3PDj8nFQin+XLyvJK3ea1jyZqG6BilHJDYAkqcQhmeRbpCnNxIRd/1ZdyD6qAUzEI02B77znK9j1zHYAwJyecfQWyhhjwCE3xPj9gWlauzaCeHLjgBvaHMTjstERXYpPBi4HqzSDmtqGj0HpNc7T0GaNvOuX1wv3CJbAvmwbbojztFQHVA/ce4yn55tHcs6T5FrXZfu6wDhuTEtPK5ItjmtAPrWp9RIg68U+xMvy4PeVQ9s44kBaCFEbaBt/cqPKVe9kuGtXmkigXoKnJIdrQ4aTlFEDfyV/WWdS/lDAltrLklXylePD1y6WzqDpIRxwdK33FnhPz7i8fL6Q8zuFUVvxsWnVl5xzpoNcbUBznRbHpUfKOYnmOb6W0zjU2km2j3wp4YGvOgTn33QRrj3zH4CJibrnxWINHJanb3k8PrdSe2mndTnQHccVvoWYFJRs/+dtrV21JTdyXWuxrA9t80CLx5/7MAwrXqhtIOW1AFpLf5Z1Jnn4cI9QWRsdX81gT9p6xMk1j2vPSQ45X2h8LP0kjwyN2DoWyTlyptj5XcC2QeL3t2jGg7Ygah1QGoRSeeIKFO3S8ziW8mINFEsmS3aZh/ZcIxd/GUcz3iie7/ioSxbrmZRhpgzW6aYQsMEiqw/xZ1YbWguUa1yFyOPrvyHhIYuQi0/IGArJOzS/EBmsugmpa0te6bnZSL1RvJm0wErSvGGbAWxDFVppdMi8+Dxs8bOUVa08rjJa5OPtK5u8S5QDbaGAresOW27YcfDERzRuuIeeLAvv0755TRrYknwGt6wjX1yehhu2Wj5xnPXs4h5LnJ9Grj7i21Solqlcxk8+cRN2b9qBw995PE7+g9eh/5fPRzFOMGbwtsAPfjUAAVfkFcpfFMPnJQLCKIx7VnJPTK7ncDDPKpdmyMr5VTOoCJzQ6lObO6Qxztu/1XOulIH3LY00MEyCh5auINvVAmc1AIzzbrSc8h5Ll34r10pO1Le0qw2oXihPOZ8QACT7iuuaE82DTn7yvOWcZc3p2jws16Centp40vqr5KmNkdA5utH+LdNZfZTiyvYOAYB4XvyTvsty0+aQPDlA+XGdWtYbv8dcKw8/uSF55vGwlesC5w/Ug4u8bJwHfdL93zwtX/MlsGv9yXoJHfPF2RUByqMls97kRpcLsKXN0Fx0993Aa18LpFHlL0orn2VyKy6j+n4VehYntfhphChKEP/yO4GLLqpjb437LuWjZtdRa23gJPV9uaHHdRYin03msuFd8eiTe/ha61UeezfEhvaR74SiLy9X3qHzeh7qArYNkKYcy0/53Qd2uAASrmjSom+lk3lZ+Wrx6LNTvF5b4ckcmkeX3DSdAJk1oWqGpvbcRb60lpHg++3L32V8+GS00oTyCpXBVTd56kMz5BqlqZgT9gXiRgkZNL6+ETrOQvqHRj7evn7fCgUpdD2QoKdVT/TM8kYBsga0Ly9pXMuXVwE1jx7iy41naYSGgLu8DByMld7IBLjw/KTxToY13eXHAXPiy8ECngcHdKQBTM+2PfgC7v3ibZiz31wc9vaXYfaiWYjjVDXYZX1S/ROoxfUsaaTSkVoJLBBRuXm+fA6U109QeWT5uYz8hVXS8CfiMltefZK0fslBmdBxFQKIyPwonXa9BPcG5XHkJgtQe6EZXY2ggT0UXizWXnJGjhf8Lk8OnPD+y/ua7NcaEEPfNSBI6zOyLrX5oBmdh9sOWl/kxMsjf8v2CwVstXichwRsqf6lUe3SSbSxLWVuxTpBFLJxJ9cKTj4nCLmZwPME3OWW4fRM8pB5WOtQ6Npo2ccUTqcapNc5oN9tS+PUVVeaVz4vC5ddbtxIT3tKx8N5G2v3+KaFygB56f7nsWvrkejrq721cXw8+0c86DuXhZ5pgK28EoFvGBbf8e4KMFsGkjRCkkYoRAlSRCgllUaPo7R6dQL/TvHLaYzknntQiFPgA/WALd+IlOOV9zPtpWNUZ1SPvE/KclG98n5Ic4APM5EUCvrJMAuc1OLn3ezR4rvm87zzvPWc6j+KbKDSmi8s3q75VFt7tfQur3aNv6VHNEJ8bnLNbV3AdgZTFNUUPqC+MTVFjit8XGnj363FUt71ow0o12eeOER8J1MjbkBYJJVaKgt/zid9WR+aYq7JwT85heyuW8qFlFE+29cAI254NkPaZB8y8boWjkYXtZC0lmy+37788yw2IYtoHl6hMuRRIly/XbK75ieNWgX8dmnmkOvIFQ/zbZxqabXfeTbwfMq65vEr10R+lySQnRflvKsZ49YzSsffWq0ZWkD2DkSXnsFl5wAn1R3pOXxN57oSUJGlv78GyMlycM9ceWxbKysAPPHdB7HxOw9h13M7AABnf+Fc7HfKoZW4UYpCnKKnpyYLGQqlUkWW/v5aWH9/tlyy/OPjOsioycg9K3kflHMo9xSV/Y/CuPenvBaDjF5qEwJFNMCC8+XyEqAg13kJVtCVEbzc/IVDcVzjxfs7fwN8ktT6PXkra2NRe2Eurz/ylCUgUoLjPB73qk3TCigyMlJLQ7zpSoskqb15nuvDHDzi49/lxZd33bIMyHY7F/A+BmQ/p3OjtFMAW61dNBvCBfrQbyLXGiLBRQ3s4mOPxgwPk/cXU7+mDSXpaU750vzI0/OxT8/43a98k4WPWb5maOCq6zuvdxlG4CaViUi785t+UxriQdel0PrM51ut32vt1TuvD1ExxqNf/j/09kV47Z+dXd+YLL21xss+7LoSgeopjoH4QxcBH5oEWRMgLQNRAYgAxJP1EvdWnlE9IAHi4mRYAiQlIH3D65GkpWo8q7yNUh7Qn1MrZWgl8U2UTiZt/rTsOJ+tKZ+H2I+yT/P1Wa7VITJqn42Qz4618gzl12rqArYdQr4BbyksVuf1KS2+PDWljb7TIuYarJoCYPHiv61nFrl2vloN7nCjie9OS4q6HoBdEmSBTlw5lCQ3LaSBLfueNha1oyaaDFq+ljwaD+131xN27yJrvuaGmgSjNPDP4skBRfmcG4Rav+eGqfSE42HUJ7m3IpeXgzqanHLMkMHFyXUCJ2QMcR7ccORgGPdAofJLw5vfXztVp0g0Y9wCM0hGSsP7DP2emKjdiwtkr5UgeuBr9+DWP70Fu57dUQ0rzptdA/uSinXKj8JLeWVdkxyWoWiBqz7SvHyBLIis8ZTAP4GcPC1958ADpeOgoiSpK3KgOY/skoc2NrRyEYijAcqhQJhLz+TxeJ1xUJvzobbVXgwE1N8By3VB+i7nEf6sGWr3euoCVDoVNJlKascJH5cjBI1FuqpHArYhY4wTn+84f/rOx7+08bRxLTeSQsoaOo/wvmjNwfyPU5LUXtylAba0ycPncNm/ZV3xMDn/9w704dybP4z/PvefsefF3eoLxfjLxGh+4boLv+6Eg89EcqOM0si6IX4018mNMqoHbc6LkgilKAZKtfLyDS3qEy773DfXyf7u6l+cfM5VnJ8PePQBcy7ZeJxWYwxdmj7yzcP806IuYNuhpE0c/JiHvHuW/9aOJRFpx100LxuiRgFbUvot4NUFxs4UCvEK9U3sPE6IYlRp/wgRpshC7tKMIJeiH2IEaAqxT1ngypYPsNWOjGnKiQ+Qk+XQDASZjntR+Tz2XWW2jHeirsHZOHFQxdWH25k/Xxc5WWufjCMNMw6AETVTDp6WjCVuMLoAW8uDx+Vp5/NC4WNPk4GDTkRyY0h6cdJ3oD4tGclJUtEtpDckpZEeYLJPcXl5OaUus/XBF/CNt3wJY9tHAQCrf/1ULHzZ/ugd6MXio5dU0/O65HMdbTJUj7WmtTrhoAKfe3lcKqckCUrzfEnn0uao0H6nHR+U33keHKy1xgaQvWLDevkY8eZ3RsZxzUuNrhsgcLRQqPewpudcZnkEX9YNj0P1zoEmumJD8xLn+dBVFr292ePPAwP6HdPEm+fPPeVd10bI8diq9SevLmAB2txeIfm5V7aVtwaOhcphxZMy0jik9uDzqKxr3teA7NFt6gvakWqgsTaR44+TNS6B/OAmlc1at4DsnesWuCTHMbf56M+qF8lXzqV0pze1F998o7z4cXjeRjSmKO9iERitTOXo6cluAFOefGxS35iYqMWnPHl9y7JpL+KkPkLzWBxnrzCgOkpTYGys5plcLteA1P79F6E4dxZe+tlzeOymx7Bi7UoAlTKNjtafyh0drZWHAFa60oXqgcs+OpodexxXkGOL1xOBxHJe5LhFdTMgiRFHaRWw5fHpmga5gcz7HFCpH6nLa/f282e8D8dx/XjVxoumi1pzRJe6tDfQPg/YRlF0VZqmF+dJw72JgKwy7wNs5Q4dKZG00PAFmRYRy7gC6u8i4coKzx+oN7QsRc6lDM40QMSn3PoUXx9IpOWX0sXuhoFu5RUqYygPH1ntmleGZvNyLcohhkge44XHmSqvMyLrWAqRZohwpUjykOXU0rvy4DJI457CfUaJxpfPA3nquZ3t0Q7PmH2JNMBUKv+a8u5ToPn45cY19QXrKiBOMn/Lw1bmpfVZWoetdcC19vE+Rs99L3ziefOwnp6aMQ5kQS766+2tGYFJUr/RK40mSa0eE9JT1iLNw0YCcsSnWMzeGRjHQGnPBJ76/uO471/uwNj2URx34Yk48XfOwMCyOVVvXG5gR1GCOErrwAueN68r+s29sHk9aWAGpZOf8tooArKnkizQX/ZhaYxTmFxzpFcbHzP8jwMncuxYOoCUT9MbqG8QX349BKADtnyTgAMkWn/lXsn8qhB5DJnGqJYnzTfyHuROWX/4XKeFTyfJ/ENk8sXRnru8N1tN1KdavbGpeav6AFvtuRaf8wKyGzrUx/kmBgFtFJfmTj6f0j3dxFsCtsSPr3987pHX7RAR0BlFtbR0rzWPR0AsXYXDN3joighaW4nkNTp83eWbNwAw//DleO6mn2P9+/4VS0/YH2//j/ehv7/CjK7e4bITH5qbenoqcfhzSX19lXg0p/X21l81yAFSKhfda0/1QHJzADsulNFbKAPsjnmKz9vABdgSQKy9YI9IbtDxfsL7jfWyWBpHcu6e6rVVkrUZa5GFD1D4dM/FXeos2qcB2yiKzgOwtpG0XCGl73QvThTZgC0HYWlA8vvlgCywSneK0QSt7ShxZYR2+0gmnjfx5feU8WMZxI9PnhTG8+Nx+QSqAcdcQZa85KTL89Xk0Mg1QVu76rI8IQqhtSuu8u4Cth2h+Luo3R6B7SCXZwcQFi6/8zqwgBSNnwx3jVFuAIcAeT7AxyUX5SeJb7JpQDjJFzJfWNRpfd4FPNJ3HpZ3nvLNH660VjpaHznwmVfxleXi3yUvft8eN6iterOUcd6XqK8B9V4i8m5RkoHz4HXAj12TnHRNAM+b9A9+bHJiomY8EfHnSVJ5LscBH5tcVgtko08qG1+/tTQaMCj5ad/p93Vv/GdsvmcTAGDhEYtx2qdejyQqmvysIekbrySrNHKpHay0NM/x+2uBrI5kASPaph7Jwq/14P3VIm0jwJo3eRtzeayxJ+uFl5sDND09NW9cKn8eD1sZhwMNXD75ki+rHEmS9R4mUEG2hwY4yXbhfKx107ee+tY6izReefQZ2c80eaeLqD/KzTpLRstm0V7IaNk1oRSy+cFtQyLuXSrnKZ+Nw8c+UA/OEQ9eXxRPjis+zuW7Ubi3OJ/neH8nYNSav/ixfpqf+MuyKT/Lw5Z40hzB5wDOl36TfUsbe5SWe6vKuqa+pQG2VA660zyO6wFbfuc5L0epBLzyc+di4slTcPfn1uPpHz6Osee3of/gZQDCAFs6ocDLItuaXnZptbOlW2vrAJ+7K3WdoBgnVWRIrn0ko2wb2U/oU3p0+2QJsSNILtfJI0tP8/2mMEu3DeFn4Q4aufRmrkO65LXkccnq09VDnofaBTK+pafJ77x9XY53jczjWn4uXqHtz6kda+k+C9hGUTTYeNqstwVQaTjN84IvbqETk5YfBxRC01rKRTuAKpmXZeBWjagpADdCgVifl9FUATGufCxDy/U8lLSF3be4ukiC91ZeliEUIiMPs8aTTwmeaYBtq2mqwMWp9mTR8vGN4WZlnMoyhtJM9ip2eTBKkvNHyFwggRwOMqWp/oJQIGvgaeu99FyTZQhVLiWAJkFODRCQugYZyNygk+CwTKPVt+aZJXlYvCz9g79ER9aNpdxPjIzj2+/+Orbc+zwOPmsVXv0nZ2PZsUsrzyYc5YjSjIetZghIIFl6jXIZ+W/aROdjTHqgUh2GEMWz1ibOJ8TrMGQMufRWns7VT7Q+wvsfz0sCSwR4SOJtIvOlKxFoYyMPYMuBKnl/J8nIX2I2E2imyBlCnbbxSSTndova4QxggVDaXOnSbUM9bCXQlocnUONBzzUPfEt+WRZOvnmJwiTwI+d8TR4rf7kG8/thZbw0jbDwZftj9a+/Ck//8HH88A/W46Q/fCP69lvoLB/VrzYP87JqZdbsH9c6bYUBlbUyQtqyC/20NRTwg3+yrxMIam0eA/qaPR36r8+xRiMtfjNA5Ewna8x24rowlbTPAraoeNaubzSxXBy4gsjvquGGHymJ/Ds9k0qm/OQ7bdpuGv9NSil9cqWUp5Gy8fR8ArEmV+14ijRO5ZuU6UgMTWqhC7JF1sJjhUmSOzdafbomCnVynjQQEVgOMiJdYLyvfHkWBx9vl5EXks++vNDMJPJ5YFl91lIQLZrK/hAyhvgcZ8WR333P8pSRKyOWsupTaK18Nd5yTtY20fLkwcObAbi5ch3Cx2UIu8rFv7sMB0A3mKwNAA5UudJbBiYReaLUvfmZxSGPIy4zP5pJvIHsPaI8HslJxygJNKX1n45OclnzENUF9zCVdcDDKC+f0Ul/2x57EU//YCP2O+lAnHzZGVhyzNIMX+7RmqlzAdhSf5NAQ155OCAh+4jLy4e/9EzTPeS45fG1+uX9RupbXLej31re/Dn1RamT8vlTesaRnmTVkawXbY6j5/wqBXltAb/WAKh5kcsySLn5lQg8T34/qgbOaPNKJxqOPpBTHRfKHOX7lDxdv0PC8ugR002WVzIn6vOtvvYgT3+zwFEiC6jkcfncyDc3eDifp7h3apJkryPQrunLSzTm8o47C2RvBLAlsl5WyP8WHb0My07YD4/f9CiWvvIhHP6+U8y8KT8rnOfLT6TKlyISUZ3z9YPLyuPVlTONUE5jpIqXKI9HdSDXXUCfM0JsSk1v4muOj6zxqfUbn42gydZpc34jpG3YcHK1kxZmzYPymdY/+HfX+AT8OEwoaY6FnHw2UGh8oD1r2YwBbKMoWg3gnWmaXuaIsxbA2QAeAzAIAGmafsbg1TBYy40rvnDRb3lcQSq2fBGkNFLJJNLi5wVsJV8CTUMGrgRAeFkbBWy1uDJf67cW38XLeib5++Jq4ZYXVSOAbahC45tw8hBPO1O9TV1HJVxkKWM+Hq68XPla6XwyWPz5sWsiTXGjcG2xs3hbMlnKv4u0NNqiK4HGUF6aLNbi6uLDPblkXXFDXXooyjgEDtB3fsc4HWPnygcp10TaesINIx4PqL/uhuQkI0UeR+P5STCDE58PZV1JQ0AqV5qirdUXySf58Kt/OF/u/SjlkfXI02qGEC87xY3j7EtHuNxjY9m2p2OY1jFXTU6NGvUccHl/Wn9cOSajS/Yr12aCNR9xY1oCihz8I6IXUQG1unbpIHEMPHXTg7jpg9cCAF7zp2dj2ZoD6vqDufk6eUURNzZJRm3dcwEDsmw+/YT3ayINDOTyUp+V8kyVwejyYpJ9iuSkl/8AtblubCzLg8YaPxZN8WmzQNYVB2gpDR/D9OIe3melLk3y8Gu6SHYCNrjHN/ULOWfI/t6lGlmedJxculIencMXR2s3i3dekmuK5EVrA/VDbW6Q8rjmEG19DyFrY4Tnb/3x/Gh+5V7p3F6l33yOJyDPsmt4HtYdtnS3KsXjY0+uT1Z7Sy9Ynr+cX6UtrP3RmJcbg1q8OcsG8N4ffhB/Pu+T2P7YiyiPjCEe7KuWRctT6iq8rvjcSOWSV3zx8vF333B9htc9zXVyLg/RSfjaK++qbSfJddDCCnzrcrP5zkTqZBt/qmSb6Z66MwKwnbxr9hoA13rivDNN0/NZ2NooitalaXq2iL4wTdMNzVyLoAF8GgDqCuOdZyo7UGhenTzAp5Isrz258E+FHEB7jlvNxLbeGxbRRinPwtNJi5TVz6ZbRj4GrH7ViIxWeaU3gCtuXuK8Nc99a22y4hAfbRfcZRgCtlHsArDICLR22bUXeVnUSH/SNoG0tnH1h9C21DwxNYONhzXTTwhspPYuFmsvaZFvvJeeSdIwp0/y3iUjkRve9Jv3LQqTm8bWS8fu/psf4u7P34oojnDGp87GQa88ENQ83MOHg8NZ0C5BhLSur1OZ+V2kxJN7mPIXzEpQWjMMiZ/1ghxedxK8AOqP+fO8p4IkYEt9lMAo/gJdvukiwVBr/NJ3CUZpdUX1L8EFyZPPcyE6OYEM5AlI1ysA9XfTWvp7J6ynnUAzoR609atRwJYDWxov13rIn+fJj89nWl58XMmx2AhgS0TH//mcwOdX7slJGx98Q4zHyQOg5dHtrXnG0k3kc2uukmmtuU7+0eZPsRhj1qLZePDfNmDP8Dje9E/vUDeNQuuD5hy5Xml1q21i+vpdFGHyOoSoylfLQwOxJZBOm2H0W/MEJtI2OGSf4ZtyfB2QMhIvq+9oY0GLo/WXmTDPucjaKCaSZdbSt7MONJzFWs/pO//MQ1Ya7Wom13NLr2sXdTRgG0XRlQCGAHwdwEZP9GsArOABaZquj6LosiiKLkrT9OpJnuelaXp9M3LxyYhPHnyScb10jCa6zNsZ4+xCx9NJnpy3tsBqxh7JCug7j6GTunyuGR5SDlkfPJxPApoi4iNNifE9c01M8jd/AY5LieCToXzpWCuBGNfuYjM0UwFby2gG3HUilQ/Xc42X77cvTONryetSzlzpZT8PqSefImiFh/Q/X5wQjzWfXK58QmT2LdhW/nL+k/JoLw2htYPWAxqD5F0iQQoeJ7R/csCF/9ZAJ0t26fkWknee/qHxswARCUb75i1eTk1GzQhxKYVcNtOjE/XeuPRcejNrBi03Rigu9Qdebs2w0IxHDjhSnXCyvHq0NtM2GrR4LmM5r7H67P88jp6BXrzqd9fixA+fVOFTqhmv8sh/XV+O0ozsBPLK45xUL5wHN0g5COEiObYkaeG8Taz2kOQCF/Kk57+lEewy0DRvanohDrUvXc8B1O6H5vMe1YcFbhOQGsfZlwhpL+uJosob1OnkAvHm+VBc2mSgUw++k18ayfmHyz0T9alGyaUX59E3rGfWnKzx1eZ0DWz0yegj1/pP40huVPG4HCh06Tx55hsX+TxTtbmaxyUevA4lEBfH7n7vAka1vEJIKztfF3h7yM1r35yr1UkIYMv/zv/Or+C/3nstRrfuNtdmjgUAWZDcZatqclM8F7imgbgUP0WEJI0QCX3Bpyvx/svneSJLv+TfrTzodwgeQOXbl+bfdpHmuADYcwV/Lr9b41x7ZoVrc5NM46OZDrx3NGDLrz+IoujjVrwoii4CsDVN02Hl8ToAFwO4OoqiIQAbWiGbBGytnSxrQeTGV5L4d8RcnZpT6CJMn/JeHNdA5HK3gnweayEAjkuJ8yl49MylDHLDkpQDl7dVaHgryZpYfeRTBlzPNUUpA1p7eFmTusxjXyCrj1j1pD3TqNH2tXi75hKXDHnjuBQBFy/Zj/LwcaUJlc31nc+1RJrRw+MmSdbg4PwoPq1D8lianM9pvBJviiMNkJlEoXNrXsA21Gs9lCyAFMiuL668ZJwQwJZ7QPL41A85eMzrx1qTCTiTG6yarkMGqAZqW7qJpetM7J7A4pctxzHvPykTTv3XqxtNbqDyOuTpXPqB3NSQoK4GylC+1lFRzos+yTuY85AetpbB26o7bKk+5NvjpdxUNrl5lCT2cWHJh/N2AbYEBlMcajeKz49pA36A2ZLJRVYfk/XDx82+orvMBJKbTO0AbHm4Ky8ukwRAXfn4AGsOohLRuKGxyseJBbpZ66JLFplGgtAkB58vtHHoy8sqO+VH82hfXyWMX8vA11AKo00f+s3nEJpX+FxD/Ui+yJPP1fxZsQgsOWoxZi8dwMRIKTOvcr2P2ofypVMvfE3g87i8X1y+2JGvF1z343lr9VmJlyIR62Re0jbJXe3o61dWHI2PHAN7G1kOCJKsOYI+XWszX4fzeLrPBJrp5elowDYHnQ/bA3cjgNWT1x+sBTAY1VpsEYCFURRdCmBDmqbB99ryiZR7YUoFOfQOW+6VwDuUFr/ZO2zpd09PdqHg6fniy8FloN5o4WRNsJqyQUqLNunKxd0inxJjPZP5WXG1hcJaxKqTAbvDNsQgb4amY/KR/YCHt6qs+9IOaXdHuL2keUJNJ2DL5xhLFgm0cmNCU9j4HZBAdq7nRiEHgUOVaEnaHC+fW/OoRrxseSnE45OMIk1GbZ3ipylc6xnxdRknXB8gI1I7gs/D5FyQJJX7QSm8VKp4BmrgPQ+fmNC9dymMx5eGrdaGJAPxl3cGc36UD68T4lEuA+WJMh5fvxH3/9vdGH70Rex4ahuSUoVxFEWYvXQOZi2ajRfu2gQAGPqFYzIAs3ypCoWPj9fqs1o/SVxNw08tURwJcFtAuPxOvyX5wnibaJ67Esz2zTkaAJ4nvSynBqbzONrGrJZWzmPTTY3OL6HpZrox2KWpI95XXDaOBWZp8fhzbZ3h87y2McNtWkon7UepS3D7lK8xnAfNb9o7F1x32PJ8Nd1JK7t1CkLWN08n6007eUR6AV8brThcDgAozurBjqeG8dJ9z2Pg5OV1cvN8JRhstb9VBslbnjbQ6s5Fck30rTX0W35a+rbvuWtNtNYnbf1qxdysOSNZa6j2TCNfOSw+ee0Q/tuVJ//u8/4H/HOXb/6yvlv8NT6+Prw30d4C2J4I+37bjRSHrkUgmvS4PU97MZmLpCHXSlBO2w2Wk7Ll5ZmXuCFrGdg0iGninypATjOcOLVaOba8Q7XJn+pBHjWtRYgrgG2p/moIyZvCZRyZn1Qa8lKe+tImSf7dtRBpipHkLfPRJt6QxW5vIteuKQ+fyQah1ge1vtaq+U3mbc1xvjAtTh4lRfZzeSWCzNflMUdloXrkL/KhNJwfN6q4wSUNNunl6xqTUh7pucHL6pv7eJm4RyKvM6m4yrJKb0CtLuK43rvZ1VbyzcfcyCWZyCim9Np8zjdX+eaoVj88jPor8ZeGIDcOW0mu0xpyjXQZVZbBUS4DW+7bguvP/gckE5UHcW8BK95wBAZXLADSFGM7xrDptqerYO2ykw/BsZe8ug6wJZ0kjmu/JyZq63O1bgVgS8ABHUWlZy7AttH5yAI3+XPNY5nLoIEVVGYi7QoqPqa1udel67iMujx1wTcANMCEPkMNQyuNZbzJeHn1Ct+mDc9HS9uOtWxvIT4uunXUWvLp+z4QjsgC4+QzVxyenwy3QDhrDtTylzLw+06lPFY6Lmej6yof7zz/2Uvm4Kl1D+OGN/8TPvri79Wls9pCyu5bb2X59nayNsrl/Mw3RXlcjSwboRm7NoS0+I3waSXtyxuQmpMP/5ThGrWj3fYWwHYQwHBAnJYQHScEasqxNIz5HTTWRGwtGkRJkj0ay/OkSUimCbnDlhY08sDhz0gOMp658SjJmmTkp6ZYN7OgWB6eVlzXIJPGkwYsyLbRdh2zmZIFVnveCoW0GaMRmJrJ13W8n393KSL8Ozf4NJ58zMm0rgmTvxFaI6t/hval0HSWciafAVlP9xClzCdbiCIOtG53OlQZbiQuYM97wN6leMgy7w1ls7xaQkD1vKCNFmblzRV2S2aZp8YXyIK7PlmAGtgrXwhWKtXAYg7+EkBHd3QSz97e2j2iSZL1sKX49GnNqcTfeukY/U6S2kYALwd9f/ymR/D9S7+DZCLBib95Ko7+xeOx+IjFKBSjujl8fMcoRvekwKxZVcCP50XzNz9SKoF2ANU7bGVbuNpUK79sP59BRfXB60qmpzwtYJCDua4+pr3ojJ7xI73y9BYnanvXlQhE1sktnpa3D/cy93m6aeQar5KXK51Wd41ugEueMl+K1wUj60mOvb1hDePk2vgK1RnpuQ/E036TjqCB4lMBxFgbX/I7yRoiT6gd6vNcds0hIXqA6zl/iSWFvebTbwLiAh781zsmX34ZqflZMsmyyO+87lz1HgTuppU7bKH0OR+WoeXHn7ey3+U5ldiK+dfS9Yhc63sIafEb4aPJI8Ncuos1lvY1ymODTiXtLYCti4YnPxfywCiKzkPlbtuhyZebfT1N0w2tyLBVje2a4FyLl/ZJxgxQA4K5vHxy5XccEvDMwWcil+JhKRkmyKnw88Ujo9MiflWFlQ955ligps9DNgSwlXf/aXKE9JdGj8675Ne+06TN03FgyKWIWgpYo4CtC+wO6Uca0WaFtvPK+7qVp/W73YAtySfL4qofl2whgK08susqv0YSZLbklMCjz+OYgwQyvpZOznG8fC7ZeB70XVN0tDmJvlNc7a3oSaK/Qdc173CamMiuExqIwmWm+Ujz6vCRrw/nGYuhBgWFT6fi1CpDwwIDLSPNlafGK8TglPE4WGiBWj45tfy57OWJMn74J7dgZMtuPHfbs9j9/E4c94HVOP0TZyGNYtN4mL2wH/EoMDamHxGlfi3Bw7qyTAK2BBxSOh5GV4oANaO7VaCS7D95DLHQTQFAP64rjflQzzPXeKY5RL5YT86Bmv7Fx7p8D4Sc03l+FEdeBUK/JTAq+wO/qoPrNmNjlXSjo7W5lM/XmgOEvAOctwGR5rAh67ERculDM4lCPL5nKoXoyTxeu2Sw7EOuD/jWC2u+d4E/oSepQufAvCRBS9c8x3/zuNY8qOlN/CXe/Nqd6hVCcRF9S+cBAPbsLiPuKVbnMp6Oz0/8GZANo9+Ut5SB5mapd3KZ+bqfqZ8krgC2bFOXiGSkcOsEh1aXfM6UbdKIzmc5rWjtJjEMGV+S5BtqG8i0oTr1dOu3RNrpKYtcNoNLt9fSWnXmSiN5N0o+np3QLpz2BcBWpTRNrwdwfWj8yRebXQQABx98sLp4ESjK35IYsghqixmRdqePdqSWiDo2v8OWJizu5UCGDim61jHSmaxESc8VjbgnMaAbqfTpepbNuHaHra8O6WoF6e3ZaRNGKPDGAT5LYeTfNYVQo6IyU3EFR6s7ix+l4WOUyiZlt2Tz/faFyU0CH0Dp4kk8fMpvaJv48spDof23GSPUajP+XOPPx2ZIH+TpXG3VqFeVBp75jJpG5odOmVNCaboBChdgq3l48++a0ulTVmketU5xWMakDNfi8e9c9lb3CeL99A834oa3fqUaPu/g+Tj6F0/A2r98U2bt4+Wn7xz44/M1B8LyzFGyHSXoTeNWAp3TSa7TFFq/IvmtetXS899W3+JxtE0uDl5wwEJu9PO+J414H2CrAaAkD4/rK5uUgyh0YyaOa3qjNTe104txKjwk90ayjuXnIZ/uy8ehb9zRnOazD+Rva/2QvzXwIUnqXzap3Q3O9VQCCkle/jIvDhRyyts/SW4uB/3mwCEHEPmcI8ubdy7Q5oNQ0pwmaIxWN3SKlQpNJhLEPfnzsMiytTR7QJ6gIUwgUz9xUgFsxYvM5EvYqtHj+vuSOWYBZNsolORGmIWXWPYkj9PpGEajjljtkMP1TG6IhugVLj1Y4+UKl/l1ogdsu2mfBWzz0uT9t1cDwJo1J6balQiaJ5rPcHJ1SFr483ZKaejJ+3/4706YKKaTqM1ogbWAQe0uSf4sQ3FSAWzFgifjSaNcLrzU9j5v6lCSXkOW8irBep4PyeMCCENlzgPY+p7lrR/yNvfdJ9lOwFb+bgaw1epAA0AsYFt+l2CIDNfqzCIOJGj1xvNvB1kGriazNf75d1ddU1nIsKEw+UINHpe+0zzET0JY847MN88dtlo78u+dtiZYnoE+A80y1GSYixcRea24jLxQRTXUwLZIAo2aMWMZLxSPz+Pt8LAlQ27rg5sBAKd/4kyc9BunIOopVq9WAPQrDKgOaNwkSe0FYdwwpPHBw0JOqfAxIkEW4itlma4x0Ygxx094ae3vIld8Hi6vOOBzF7W9tp5qsobISP1UXv3A+1GaAv39ld8yb7l+0dUapMf399ef1qJ0ct4Gam9x961/IWOqEdrXDNVmqd0gt2sjyKIQvUfybVZG3xpB45hInhbVNr1adfpEO00QaiOQbcNBSH7fvCSpW3F9iJ/E4PE4f6nP0Xe6fqivrzKnJEkF8O6dVVHqegpl9PXXZOrtraQlDKFYrM1hxJvqn6fh85ksh9Tf+Zwtn7UCsPXpBUB9+2q2KOchTzuE9AdL57HiauSan1190JIjhNpp++QlaYfyfkXPOWnlnAoAmgP6ja6hlF773SkguqS9CbAd9IRvbbcA/EhAKwBbfrRBM+zkd0D3zJEeETIO56MZlJq8PjlcRrRWVo1faDwtf9czn9yucgQ9U+6wtXhUkzh2zptViLjByScoVz24nvs2EbTJziobf+YKc9W/S25Lvk6gEK/YLs0MsjwtNeNNfkoDKXTO4Hm55jrXvCp/k1eINkasuTJ0rrbCfXxc+Vplkh58cVx/bJvCiOK4YlyNjmY9iSic7o4lryNu+EggUG7oAvVeQySrvBLDepkU8UuSrMcKpbU8p3jfo7RRlD22yZ8liW6Iyzts+VFL+j06WonzxPcewk8/8yO89OBmIAJW/8arkBZilMVRSmsuzqM/cT2J+i6FRRGq6zHXh4B8YMN0ejVyYzfEkPB57RG5dJ0QnYdk0fKTxra2zvHxEgq0a7psq9tGbmJYAESXpoZ8/Vn2VW18aOAPUSM6mCsNyRPS7/l3Hy8iDpjJvHg9WKcmKUzeVU0nLnnf5lfIyPqTfF2AmPZcC9NOlPK1wqona7y6wDVrfLdjbJOHbXk8UedZa+7V5lhao10nHUL1q7p5voE7bKVtKb2huY7DT7FIkJkTOZVJ3YnykXoRD5cbb9Irm8uq8eDyaGNUs6Fd+pyLrPgyPHSN09pd/vbp6i4dPEQGS0fRHLl8ILo1b1g6aquoC9i2lzZC3FHLaCGL0xKKouzLL6gDWQsQXxApnlyQtAUKqBkivh0jIjIoSSbtJSE0ILVrFvjAdCk5vOwyTH5aSq9MY8W3Jr9Qvq7J08V/qsg38cjjNY0QLez7+nE6rgC5jshZBoK1kLnSuNJZi2czz0Jlc5XdZaxbPFxyhBpc3ItRU2LkPCuVOE02Fx8NaJDjI6SNtSPIUqnm4US8L2oyhraxxpvzsfjK39M9F7aKpGdQKCVJti1dvKeTmpHB8rSSGwcUV+vDgN73KvWX4tsfuB7l0RJmLZ6NUz71OiCKVWOP8vLNj65+S+OM6ysZb6i4jBRR5mVodIyTPCXlHbaWUVYFgaeYuE5Hsmj6jU//8pErvk/fAvSTRDxMm/t6emqnCmQc3ubaS/G4vis94Dlp/Ud+asa3NW9b+fCydZqeJcfZdM9hIdSIvtpp9T6TSANUXDZcKIDjWzu0cJ4mDzgpN09lHvwuVg7+cTue4k1MZPmkaWWzluaiUil7r/b4eCUujzM+DqRRhenX3/rvOPTsw5ACWHz8QRg6eyWSpJJPuVybJ0dHa+WhMcD1W2kTanOWBFD5c219q/xo7A7bJKnN4S7AlrcRl4/40nyuXYUhdX3Zrlwu3o+1OV4tO/R4PttF/m71vMp1sZlC8tQW18taAdjyfNpFloe3i9ptP+0tgO0GeDxsW/VCMSINUNS+WwueS6F28ZDPXXLJOBa4Kr/z4wr7GmDrKo+vrFUSd9iGGE2yvjlwQMa09AzKOzmEpnNNklp9tBPACJHZZWBK4iDaTDBY9iXixpkF4rgULh94qfGRBqzWl0KUN5dS5wJsmyFeR60CbF0Ualy50mjhPj6ufLV0EsTLSxLQ1HjQ8Wx+tYpmJErwKknsa1g0oIvKol2jUSzWAEeSicJpQxmoHdOk/LixSrzpmCXnTwYU91rVPGz58fJdz27HV868BuXREk775Fq84rdPRU9PrQLJeOPyWfO0LGuS1Mspj6bKNujtBQrFEsppjGSyHnj5+bUlmvcPJ94fQo49+/QWlz4hNxUprFVzRycQ95ptlo8EdGQ9NXKtRDPzSKdtjGvydJJ8FuUxmvmY2pvGSaNkeb/z9ZL38UbzcJHVxzQQl2STMlr5uByKXHOBpS/I/IkHHc+n340AtgtXH4olx++P5+98Ds/f+VxVluM/8iq85o/PQrkcoVSqrT90bzDfiOQvIuNrIH/BmAuw1Z7VtUG5UAFsx+vT8nJKwJaubuBpXIAtbzN+pSTJZgG28hSz1raUhuI24mHb6MmNdtiVeXi6bBWtv8vn0unEajOpR3KSID/nz8cR8eO8NPllHO13o2S9tN7lpc1J6z9E2vV6zdLeAtiuA3CZ8ewkVADdKSFNcZR/MrzVipPvWK0lD6UNVZK6gK3BvwHAVvLkC5MER+XuVTvJtTvOf/sWFZle4xey2MgwK9wlBwe+rXb19X/fb1+YxjfE8A8ZCxa5gIi830PKL5/75jm5K24pTKFt5pNNhrfbyHMZUJKsuVvG4W8j13hpY81ah3wUaly50mjhPj6ufLV0vnXPxUubw7gXC5+fLYOR4oUq2XKOzQMQcbCKPAytPyqnpZvI57xcocbL8GMvYWTzbrzsvcfhmHe/HFFO5aYR/YnP6SpPVI55av2C85PGiozD823n2kv9Sp6q0eqFf3etnxpZ44NeHKYZIzycP9cMHM3I4Wn4uxQs2UP6K8nmIq0bWvWp5d2Iji5B304k65RRI3NRlzqHQk7l8Q0THt+lq3Pic2GezaRWbWZYPFrFP46zJy+It7TpuF5A99/y6yZ6eoBFRyzGed+7EFt/9jRGtoxg1wu78H9/egvu/vyPceKHTsScAwarG8C0qQhkN2r5xiQHruRGhbVGtesOW3ou7/rmpyqoHjV7OnQtDQEuQ0+rhtoEnF8I1hA6BjqR2r3J2Klr4EyivQWwvRbAlVEUDaVpulE8Ow82mJuLoig6B8A5Q0OrMpdi086Y3P3h3y2Dg+6i4y9pIHIZWjwOJ+lt4FJEJU/raK5Mo+XtysPHx+IXGk/L3/XMJ7erHEHPGrjDNnSib2QHL089anlxxU4zPtq9SFnKYEi5JMkX8IX2Zys81Ei20oUoxHmfhcoWYiT78gxpe95ntL5rzRMhIO9MI9dmmNysCeXXbB25vAXzbjrQ7zyAvmUAhcrk2wTR+Mgw+s7feMyfkwcJGSHybljOm7+0hB/1BmrGizSw6Fg+8SIPXmkkkZFGMnGjiHuHhtShK54FXLvW3iQBxkcqKN3qi0/C7GVzVZ3Bml84YBCqP9GfBHpn8rxBbU9tTXMhb0PLmHa1syRtLk/TbP+VvCie9lzrf1wGSeS9bT2X5Bu/gBuk4v2D6zauvtIqj6np9LhtJu9O8xTOQ3K+2pfAZwlKyT7M25XXiezvfH6luuTzAN3rLkkbz/x+dZ9t5rIfZXx5Byjnb6XR1hKZj3RekicwuM5A83FPT+2KFw3EPfjUg2pz9aw+3PyhG1AencjE1eY1bT7lafiLaq21IASwTeMUSAAo8yv/zk+mEB8XYEsngahtXNcOxXH9SyWJrHmff6f6104sAdm+r61xVl+bStJ08pA1ksint/v0Qm2sy9+aXsJJ6iiAvZZaILqlt1u/81KoLRHaBs3IEkIzCbAdhHFPbZqmw1EUXQjgKgBnU3gURecB2Jim6fWtECBN0xsB3LhmzYkXcm+MZgZ2CLCqfedxJL9mZZEy8PxDAS7XgusChKz0rnha/q5nPrld5Qh6pgC2U7W7ZIHuofVoET+q3oqy+I5zh4ypkHJJIi806ZkYmn+evsRpXzIWNPItyC5QzUpjhVmLsMYnhHdo/pYcXLGXwJwlDylDUrHlxI0K7QUj9JsrVlKhlyChTyZNbm4IALqR76pTrQ+QPNNBltcfGYeA/aIISivvxeM8NL6Sl+uUjBYuw7Q/Hs/FRztiTs9kefnntieG8eB19wIACv095rxuzdvNKrsSVGjH8UTLw0ojV7hrDtF+a8aby2il8ucl1+kd1xwrwVdLVsnPWjOl0wGg91e+roZ4FfJy0rwpgQFt7iRQhHvby7JoxMOnE7B1GZzWmqVRMyC3T6cL1bm059ocwz3VgZkNPjdD1pU+fJzy+uLE9RYeJp9rwBoR9QcK4wCvHHfyehvZ10JBHR6utXuS1G+cUj2QHFLf4XOG3Czt6alt6BaLWcDW6nPF/h4AwPiusQz/PJRnjXPpNZR/miLopWOhG15Ecl1xrV+uNUQL52npk49535zWatLq2SJZxxqfPBSqr+XFA7TfefWLEM/nmULWaUlO7ehvHQ3YRlF0KSpXGqwGMARgKIqiO1F5gdjXORCbpun1URQNR1F0JYDHULu79uw6xk3Llb2DjYgvRJYRyp/JeDytxUMe5/aRxjfPs1BFz5XOpehrcoQo+/KZi6+rnqy613j4ylolcSWC7xiGxtMloxUGZBdfi79PDlccCQD5+FhhXEEMbae88vrCpvpKBN/xGlc/D4nTaLta/F3fQ8rvykfysubBRsZDqGyhvEPzt+TQyuYjPme40pFh0CxgK8th/ZblknFc11hYpPUBiu8DkX3y+PqW1kZamjgOU1A1oDUEsKXv/NOXphWALZ3wobJaL+6T3zV577r6DjzyjZ9j1qLZGNh/nr+y2kwZ4DngSgRK4zNWZoJhMdUyyvlKG1uSrOfa0Wwen6fhLx0D6jePOG8exj3iLD1EliUUDN5byfJK0+J0Qj1JwHZfJal3utY4WufkyTqrDjVwStvooyt7iLQXe/L1hzY8+f2xFIdTkuj3o0obhQN4/K5YypPiUz7lcoqdO3di584dGBsbQblcxidf/kcAgG3bHsDwsD4fJAkwNgbs2JGtjzSthPF67D+mhNd953XYsudpbNvwPPoG+1HoKeTadOJ4AM+vYfrU71U+n32gjr+Lr5a/Fab1J5nG4uH67QtvFbnK2gnznkUhbZCn3tpdz9Pp5BTHBfT3z8b8+fMwMDAXSVIRhM8v7XAI8FFHA7Zpmn4mZ/z1ANa3SZxpp5kwKXSpnkJ23KwdL8u49/GZCUpqKwDbVnqUu8AJKzwkjUbcw9eVVyPPQmVzlT2kP1p8Q2Xt1D6qHQukcHrBg+yProv2Kb7m1c35a2G+OcMF9sk4/LcvnZWfJSMHgVvZrp0E2NImk++4mitcPtdkcfHR5LXKapWd4mrXP7jqWsbZfNezuPGXr0N5rPJa5rHto5iz31xc9OBH0dubPQJrlUsrm1UeTQZXe9Fnq/sjoAPpRBK8kKdTfGuLay62gHcNNGkVaZtH1nrcCsCWSJZL3qNIY1LysuSxfu/r5DrtpPXVEO+iZkg6OLjmd07avDLdpzQ0yqMz+tZql43g0+MIQOX3UhOQynUgqw8QDz7XWCCm/KSTbpw0wJaDsWmqbyjy64mkLiL7ShRVQGDKjwBcil+pgxQ7dmzG+PhuLFiwEAMDy1EoFBBvq0QYmndEhi/pBVw/5F7JJA8PS1MgKacY27obu56bRHdLQN/cWRg8dEFG1+B1TmWQdR0C2GptU8ejECNNI+Dww03Alr5rpxuovFS/JI8E33zyUvk1Hlr+llycfyPey5Z3usVbyhmShxW/1TiP1ZYyL9dzK35oPqEyarxDAfs8pI+HFKVSGbt378LWrS9iZGQPBgeXIoqiXPZSO6ijAdtOJblwuBYRek5xyGinePRWSfoNZNPx5/yti/TpMtClwsvz4YuMlra2eGWBpVCAywUMhBg6eeJp+bueWXLzyUUzzCSQo72Yo5IornjYlrJt7zIOZL1TmNU+Pj4yLLQefXx9/SBELkupzMtTKpYhaa1+GZp/q3b9Qhf0vZUaVUZCQHbfoupqf/rN21kaGhZPzoMbOxKwlfOBNj/wNcWaN+Q6w+WQc71l0Mj8XICdtj7xZ5qRpM1rPJz4yLWS1iYOysi0ZCzyNzYD9Xe10R+fr3kYpYljYHS08kdrHsk1Pp6tI+tKBFpXJyayLwGjsmntQ2u87JNxXHszs7zDdmIiexSVwiYmKmG9vZW0ExPZNYjXS5JUyhrHlXosFGreR0ClHPd99WfY/sQ2lMfLKI2VkZTK2L1pJ17Y8Bx2PDUMADj83GPQN68PSQosXn0IRkayeXIvbmonrX9rfXZ0tFIOOnJKhq98wVqpVAkbG8sabnEMxEmMUhJX8yXe/L0Bcsxq/Y3L5tqEda0drjXcNyfJOK41uZXeKfv6WrU3Uye2bSfKlIdmgvyWjDKc1kUO1NB6EUX1V4pYGy/8k2+2yCsRKA5/8RblT2u95E1rOV8LNV2EiK426emp5wMAe/bsxPj4bhx88CEosGOzEQCutnJPRR+wJ0HWKAKiOMKsJQOYvXQORrftwY4nhzG2bQ9e2LYHADD3oEHMXjw7w9Pn8WqF8fhyEzGb1t1xLdAsVBZZhk4lXldELoc5GRZq32j5uHi0q86k163Mx8rXJY8Gpvu+c7I8gn2yNkLZdo7Q01PE4OAg5s2biyeffBJ79uzEwMA87wZvuzeAu4Btg+TzENE8P+SVCTKe65nlPdKInED9QuMy1DUvJy6fli6PR4NVb1YeWv4uvq56Ih5y8XXVtayzOv7iSgStjV3ySJJ3SHG58/BxpZsO9/5mSWsnTiFh8sJ+Gcdqf203WRrizYzPRuKELCYh4y/ku2u+cOVP5APkNQ8VDaBvF2AL2Eq4b97j9zlSWOj4z0s+efhvGdbpCrNvPnLF4fXC/0LnuUaNbkrXTqNd4x1qgPt4rvvwN/HsrU8CACZ2jWN00niM4ghxbwFxMUaxv4iB/efhkCMPx6GvPwLHf2A1gAoYOjLi3xTTxplPRqn8W+XPU/fcWycPNeKp0yri+omld1J+ITqUJJc+2qW9j6Rub+lTIXE0CtXL8jzvdPLppUR5xpgvrmYz+eLJO1y1FwlygJRvolIa2oTO2yesuctnP2qALcULBWxJB5AbiRR3z54dWLRoIYrFggpIamsMB4/kc/lM8onjCLMWzkbfvD7seWkESFPsfmE3Rl7YCSDF7MVzVHBYW7usMP7MBaQBKVIHaGsBeVwulzemRVrZfGTpAZbMzepjedNLYNuK46sfrd18+YTy5W2k9SurTa0wHj6TSPYRKkOhUMDChQuxffsODAzMmx7hGHUB2wZIU3JCjUDfgmQ9sxYz4ssBJG4oaZenu4Ap6/feTnmMPBeYW4nUWsC23cBKo4ZruykEXMnj4UTPuJeU9HgP4aHllRewld6JWnzu9aXl65PRVx7ructzzOV95pLDSmeBO7xd8hAHepsFbH2yElngkTXH+z5lmAtobBZYbJa0tTCvkW6tc0C9ERlFNc8YikfeONKjk5RQ4kkeluRNSmGUho/h/n79ft/e3lq83t76l6RQPPrNw8m7s7+/3lAm3hSm8eFlJg9fLiOdyOEetqVSVk7pYUt5k0wbv/0g5h00H/ut2R8AUOgt4PQ/fi0Glg/UzZUkA8nNZeJXImgetvwdAMWirsMQr/HxWhvTS12oLek3ryNq31r5EiRplIlLvCleHGcBCVcf1ub6qaKQcattdmmkzcnyT+PdSvJ5KluexNYcb8lupZO8tTSdphc1Sq7TKTKMf8p08kShRppOY+k5vueUn+a4wGXsUoX4mKK64Zs48qQH/631Cev0TSMbXb7NJp997AKhNRtWi08OGhZgOzY2goGB5SrQFyE7B1ugrAaKugAxACj0FDB3v7kAgDQBRl4cwe7nd6LYV0D//H7npqVrTZBgqOWdGEWTHsTWsxxgYB6q9/INOyFigdV5Tpe4AG/Nm5jiNEoWuOlb17X2mu45z5I5BFgO6bva5oRr86ERsjYVON+BgQFs3rw5CMNpN27WBWxzUBRF5wA4Z2hoVUZp4ff+AFljBqgZF1zRp+/y/h16JtNx45J3CrnDyRVPMj5ClFqXoivjWM9cefhADyuvUKApRPkMkVvjEWpQVCkly9NvALUKOGmGQkEXTo1OXtZmhIxPE7JPyQ/Jywprp9HtM5pdhqKMo4F1rnQyvfzue+7r7xYPlxzScJAGoDxiXi5nTySE0HSMo6lSmlyKqAuktuZ5oPn6akfZNVCBr698c4nuoqN42pVBQD1gC9SMf+tKBAmGEvhJht3oaOW7BdgSMMzrm47tUxySka434GWhOHQlAgefiZcGbMhrG7QrM6gMSQI88u2Hcfff/R+2PrS5Us6d4zj87UfjVb93RpVPFGVlyENybSGers3iZogr9NX1ZXIDVa412tojAQUpt/x0rYOucAtgsH6HrLetIheISuPQpwtK3U+bnyxePj4WPy2Ni5f8lGlCjemZQI3K30nldrXD3tBGFskx4tLV+CkkrnOFjE/XuLF0cU2f0+TXgEyNQje7OeUFbLV5nH+Wy2UUi4WqPO0kvqby+WZg/3lAFGH38zux7dGtWPryZYgKBRXclPysfLRPNQ2L48tD80C2+Ib8loCkJXeIXI2QKx9L9+bPphtE3ZvJBd42SrL9tLFYLBZQLpe7gO1MozRNbwRw45o1J14oF8lWkbVYWbuP1kLJDVzfbqZ8FvJb4yFlk2Vw8ZE8ZXqNQvm6BpHPeLLqzsk/0MNWto+vHJrcrnJpNFOUWqnctQOwpd+usJA+pD1PEreC6upXkjrR+zkvcaAtT/xG8giZu6zwkPbg/aOdoL8krWxSHh4WEieOm1NupTePJN9mBP9O4Kz05JQborTu0Ruk6bd2lzwvJ78fl0jepUpxJC9t81Qb85wPfSeQlsrG05bLlXLQ5qrGhwBWAk5JHpl/CGC7+8U9ePp/n8TAsjn40R/djGd//CQAYO6B87DyjYcDUYQjznt5lQ8fUyQHbxcurzT8Kb5meLWLSF5+LUkoYJvHw1bjYcXXwvnYm4qND400gHIqga8MqB5g6Pj0RBnHimelk2HS+3omk7U2Am7d1kXyBAInDdzzbb77nrvyA2Z+G2mUdzxa9p6sW9pslL/lnECnH/gcpdkxIWXQ9AVtjuqEdoyiyFkuDlT61jbpsRm6ETRn+QDiYoSdz+xAUk5zOzA0TAq4bnnYcqBrb7BTXOQDb6eafN6tIZ6uPMwFgk5X28oNDS5HK+RxjdlaXhUBXBvFGoWsoXmpC9g2SCGKj/Yn40rl3QfYhnbSNK0ZiJJox7Rd1MgOKf+uKdgahfJ1DRzLYHAZAj4jIRSwbQTs8Rl4Lk8VuXvk2qm3+GqKVkg5rLx8k2Beo9OXpt19n5NlIAHufmXF9cXxLRA+ICLPd2u8+PKXbS1fOsGPbucBQ1x1lAdQabauXWCANW/45hj63q5+6/LenQ7S1g9OZFgSMGddiWABtryfSQ9bij97drZv0jF8uhIhjt1XInC+8oVfxIPyp3u06aoHzbjmVwgQ8XIQkeFN8ux6bgdu/+JtVaZ3fP6nSEq1CXL/Uw7Gqb9/JlaeeUhGbi0v/klEV0vQM+0vj5HaSqqClmmEJI28nmWWt5jPO01S6PrTLq8cXsekB4bKyecBVxrNa49/53XEdVAtngvAo/qizQpX/fP208Y+zRG8n/NPeQ0PbUpo1xfJ35Zux9c8HqfR+bZT5mnfhkCrdDnKqxPKPB0UugHt0i9c8bhdqbWpnK+kPLQx5pKNKGSe43OPZpNov+VckMeWkfFD+lme/ujyKvXziVDorSzwLz24BbMWzcacpQOIewp1IJb0TAXC15d6kK65BWkmj1cOXFrlcIGiVro84Kklk0wj21mGhW6kUDrpwSrzcnmhctLCXYC/i08IAN2O/tap/bcL2DZAFTfp2m/NwKJ4FmCnLZo+hSZvJ7KUKgJyXUo2D5dxrGeU596+0zZd1OwuZoiHBf1uFPxz8eVh2rjwAeuN5qWFcW89V/lDZHPl1QVs3XE4qDPdJMeHVabpktVSbFpBfK3i5BvDMk5IH9OeaX8WPzIwpczWWPXx98VxPffVQcj8QoBtyDykyeOS8aHr78Vtf/Fj9MzuAaLKnbR9g/0ojUyg0F/Ea/70ddj/xANUfjI/TY5GQScC3Dth3E81Ubll+XndaoY+By99/PmcmudUg+ZhrPWJ0HZrRRuH8HAZcy6gl39KwF5L1yrjsNF66YQxM9X5d0KZ92aS84UrngZEWXOYRSHr5nRR6FzTzNj1eeXy570DvZi9dA5GNu/GyObdSCYSzDtkEEDUtg2/ZskH7Pl+azwongQZZb4uHVkL0+rOBdaGlkWmd4GSvjVFgvwu2V3PQ5+F/vb1OyuOqzyN2DjNrA15xpBvo15SO+ayLmDbALm8C+g3V/BC77DVjmHyY4etmpi5EitlpuOn1NmkvLKsMp6WDy+bBgxzHrwuLA8MLpPr5USWtxDPm9e/Vi5+IX/Is0oGccXDtlR/TNUqh+aFYYU14tng83iw4uytyrI05AD3mLbIt4HhS+dqz9A5JkQ22qCx+pc2zqUyzcO1+cEnB89HjkE63s7TaOPS2hzTxpDL+4n407xKn5q3iDTqtXbhn3y883KMj+tyafMDny9dde9rDxmH9xse5psHfXJrsmhpZDjxoefaRiKtSVwmmle1epdtwtcUuQ7Leh4bs++wra7FYxPY8eI45u8/G0kSZeqZy6fJpdUh3Xer1Rm/EoFTyJUIP/rE93Hn39yKYn8Rv/3ixxFFUaad0rRS3lBF1FovLIDLmuPk/OKa2xrVeTLjNK0sYhqQzn9bgCWRBBlCQW4rXKs/kp17vGnGvVa/so5JttD1m/pEyMaVq47knzx6Lcsgx5pWRimHrHs6LsznIqm78HFF+fX0VOKQl74mA3msE0VRLT/f/GbpdjOZqF5DwbmQsDzPu9Raov6s1bv20moXtQqwdc3TFj9Ndwmdx+lTA1Sn0/6JCjHmHjAfA8sHsO2xbRjdtgel0RIWHblk+oRqgCQY6/K+BHQwVuMZ6snqk4vy27BhA7Zu3Yo0BdauXZuP2QwkzePbBajK8SHj8HhWXpaHrZZfqOytIBc/wvGILD2Zzze+K3waoS5g2yC53vKuGfWWEaMZNRIg0ABWmUbLq5EOHbJzkoeXy6iTxEEl+SZTTlIZbhSwjSK3geqT13wW+NIxDfixnss8XfKGprEMcCJuvPmMQx+5jH0XWDDdClMIWRsgLrLADC2Oxs/XD3gabZF18ff1d4uHTw7+XetP02WocWCEy2ophC458xgd1qeWVuPvCwuJ4wOf8hg8Vj4WH5kmjmtACNU7N6I0r8RWk2v9iyIgLSf44rF/jZEtu3HImStx2p+cCaB23+XCwxZh1mCf2n67N+/C9qd2YNkxizBrfl/meUj7aM8sECuOgedufQp9g7Pw6t8/A4VCVJee5J5qsry5rbiNevFmQH4kHQMEUXkswFaLP1WyaxuZPG8e5tKB5f3JHLCVOi3XLzhRXA46S9lc+gGvN2ueo5cPhoDPXdr7yDqF6Io/HfqoZkvRd0sn8+l3vngWfy0vl9zSc13ad0TanCKv9HPJF6JTy3g8vub9KMvAfzfr2cd1Gs5fC4uLBcw9cB52PbcD4zvHMb5jFIiAnjm9iAtxBnjk3qkcGPPFCZFZ+66Va/HiBRgeHsbQ0BBWrBjC4OAgoghYv349hoeHsXr1agwNDWF4eBhbt27Fhg0bAABXXHElLr30UlVmK6xVNDw8jKuuugrXXXcthoaGsHbtnZmySg9f/kyWPxRIDulDluewz4s4JM+QfqM9p7DQMoSQVWdafrKOG5VBG3eWbHzj1ppf2q0ndAHbFpFl7FtKn6ZAWsplo51Rm/hD0/kMd9nRrY4aukPKy6gBCRZvF/k8ASjcVV4fmKLKEXiHrVaOULDDZ0TkSUP1L+vcAsxD8nel4+l9fQMIM9rz1Bv/HgqUuGSzxldIm/vaPk8c1zMOgBHJjQ/+XQKoMpwb4C65rHzoky+AmmdX6Nh31VGe+YPkSdOa14klMw/TnlFaOZ4oToic5J1m1b2vPWQcCcTItnfJpPEmGTVZtDQynOej7UjHca0dqB/z+isWa95xlId1hy3/k21A9Uy8+vv1tkx2j2Fky24AwJO3PIav3PJYRt7D3nQY3vOt99TxBYCvnvlFbH9yGEe87Ui865vvzMimKYO8nuUdtrIcsiy9vUBpdAJLjlmKEy9aneHN64qMTy6nRrwvSz7yrl9eFnrO2zuOa56NXG4iCeTxfLW2lM9kXcRxgiSNUPKsV1NF1I+1MeBKY4Vpc1+jxqwGWriAH+u7BQhJsNYFVst0PA0HbLW4eUhuuLZ7U6hLnUGNtPF09A2en+UMxCkEsCUgNI6z4EerAVvadJHzXR6QsN31ze10zfPTyj+vcxPnJU9NSO9GzWuxZ3Yv+gZnYXznOLY9trX6bPbSOZh34HwznetTTYMI8hpbC7QGdC/J4eFhfO9767B27drMs8svvwyf+9xn8PWvX4ehoaFM/IsvvhCPPfaYCvLzPHkdShwipD02bNiA1atX15Vv/vxB/MM/XIXBwUHcfPN6sy591Mj64+rjmpcrD5fzA4U1Kn8nkA+UtUDsRvJx/ebUBWxnGEVRdA6Ac4aGVtU9kwOFL5rNXInAvRS0TiKP00qlli6F551f8uWLNV0x4NrN5WV0TTaawiAVbqJWd/TQXVDfomvJ63w2Az1sgfq6CG0/n9Jm8QoFbDuZXAplJwG2rvTWc9f3UFDUF4d4aZ5O0wHYuuZai+R87wM1XPOAFdeaP3y8NHnyGmUu3jy979oNixdfi/ixfiLpZUPrk/Yn5bLK6fq05rgkAcZ2TwAAXnn56TjgpP2rY79QAP73z/4H25/ajtEd43UvHUvTFDue2Q4A1TgAUCoDcV+vCV751g4Zd3TXBH7+pTuRjk9gx1Pbsd9Jc+u8lngb8SuXtDrT8uR8XHXnGhO8TV2ALe8Pss9oHp7ymo4oAlwvHZsOI8bl0WlRHsBWbn6HkozrOpVhjWdtE4Hmdhmft7N1JQLxcPVLzUvSArZ8456XbSYZuF3KTzMFmCc5yZZz6VH0nX/KePz6EG4D+hx1GtXxKFzq/bQprqW1rmJwlV2TPXTe5L+5o5PlxaiBZPy5Rhr45PrUwMhZi2ZX7qMHML59FHu27cHotj3omdWDKI5Q6C9iYmQCxf4ieucobyrNSRaw6wJLt20bxjvecR7OOqsG1sq6XLBgYebZ/PmDuOqqa3DxxReaNrkEtS1ZJagp2+Pqq6/CP/zDVWaZFy5cpPKVcvBn7fL63VfJaktA3yBo1sM2pP0sHd2iduAZXcA2B6VpeiOAG9esOfFC18KRpjXjVXrZ8rg8jbXgSgU8n7z5dm+AMCXG57naCcQBZUlcEbDul+UAghycrmeVDNp/h62ljORJI+PKeJp8fDHlho2vz7hALPot76oModB6I5J3S1rpZJuF9HVZLhfg6DpOqoVbbUWk5ZWnf8nvEniT4RLYdNWPlg+NTWoHrS18ZfKV0VWvxF8a8jTfhioEM8HgmyqaSmVV87izwBgiH2DD42gg4+Z7X8B/nPtlAMDgykUYesPh1b5VLAL33/AA7v3y3bhy/qedsj+/YVMmzqv/8Eyc/NunIGG794W+AoAIpfEEpYkERYFo7XhuFzbf/VzG4C2XgWduew4/vfKH1bCFRy7xgqeuOuPUSsDWl4+Lp++P86l6dCqAbTOKficSjYlW6WWNbEZKfZZeqOci1zpJz1358Dhy7m+UWuG906UutZJcdlcewJZ4WSCn9btZwFZ+b3aMdgJJTz8OuEoQln+ntUeegqXfVDf1c3CEntm9iGOgb6ACyO56fhe2PzmckSvuibHs5cu9noh1ckaVzWXE9fE0XVuWt+ItuxVr155dt/El85L9YMGCQQwNDWWeWTw0XTPU63Ljxo32QyWty6NVi+vzfOW/G6EQz1kffw38tsK0504PbcczCnPlAWQ3TCz+Lm/ivBRSX3nvsJWn4lpBXcC2DSQnHOoMfNdQHiOVxwo5L+InO4l2HFIDIKxFNO+F8lrZfGQp1loc7bdLfp8y4bqfTMtH483bTypMZplm4JUIrnjyOe3y83DXRG8R9VMOouY1opsFbDVv8qkEbOVY1fh1GmDLjfBGAVtatGkhnE7AlisQFK55bYWAWvsCVUEwBVRrFVjkytsC6uSGj1wDtZMloYDtff92N378x+uw58URrP7wyTjwjJV1ffbk330NFh6xxDZuCjGWnnAANt/5dHWOu+Pvfor//cQt+N9P3JIpZ99gP/rm9mHnczuQllPMWlzxrElKCZLxMkZeHDHrKO6J8eFHfhvxnFlI48I+DdgmCYA0RimJq3MuV/hpc51e/OYa95xnp3nSdKq3YMjGfjsAW5lW6pOudNoa2aUudalLLrI2+X0eoVp8n8MAhQ3sNxezFs9GWk7w4gMvVp8npaQCvCKqS6/9rv1A5TYEFscFPEuKosr1BitWDOkRlPTcdly0aFFLADjJm9bHq6++2im7BdZKOafDw7ZVG8wu71UJklrPWymT1r+0cA3MlXHzUujGrLXBJand9k8XsG0RuXYsNcBOUyAtJZKeNQLY0t100jPSB8ppv6VnZacDtlZ6Dcixyi89pOWkniTKcb44qQC2xWwcGS8PoMbDXGBgnjQWCCjLaNUfJ+7N3ejkGToparKEArY8ThRV7lJ0AXztAmyJXJsmnQjYlssVsNa6b1MjLR8pN/1xvlMF2AK1/kt3a4aUa18laVBMFYV48fN+S8AahWkvQuIgL49D4N7u53fiB5d9B0/98HFEcYSTfvc0nPJ7Z2BiIqoDbOceshCrP3JqlQ9QuxKBy3fgKQdV0y054UA8/eOnMn19bPsodr+wCxEAFAso9PegtGsUu5/fhScn78xdesL+OOLcY3DwaYdW8y+XgfExYM7S2ehbNIDxcX0jhNcR35jickuisSLnH85bnibheYcYsKEk12RNV8iERSkidikfX6P4BkCe9avTAFJrIz3P/JU3rkuXs/TePLxccnVS3XepS51GcuNJfu+0DaeZStLbjzsiUD1rAKz2m68p1U1eBlrxdDVP0whRsYi4J0XPQC/KYxUvlGS8jOfv2oRCXxFRHKF/wWzMWTonkxfnW80rrayUUZotk+aQQzaUpPnzK56yVt1o3+mTrlHQnmmfkixgcdu2YVx33bW45JKLcdZZa800Gj9Nb3F5lYbIFxKueZC2CrTtJMpTJrPfNkh50obqMu2kLmDbAEWR/uIZfleXZtA04mHLgYtGAVu6+0hLr8kj+dGAyrvQS8OK8+U01YCtlY/Fm5dlb6dmAVf+p5ELDKXx00j+Vr9yhWmewhRHM/wbkcnXd0P7cEicRtPHcb0nvwXYWnmF1E+oge8rUzuMDa5Ya3Ml4PZCdHkT+tKH5KV5JVphrjihfDRqxNtMnkrQiPpfHl5an6Fn8gVbUVR/Vx5/yRZfY/nfyAs78cVj/hJpUulwr/2rX8DL33dCFei11g/f+sXDDjz1YCx/xcHmS8cmJir9kY5XpZOdv1yO6vSGUgkYHa1tDvK13XrpmNzYtcgF2Ia8dAzIKtk9PfUbwERyQ4U2POmTb7LxsvJ8Sefp7QXiQuXC3FJPJS2Xi+Lz8ltH+GVbu/qsbw7h30PmFY2kPubboPPxDpnDOV/XtT7aXdSSj7bOWHnxOuJltk7CaPIkSW0TgW+iuMrdacB8q0n2070REOhkyrP5ac0PMpyDhTJtHGcBuFD9IWQ+c3mCyjnJ0jH5nMHz7PRx2EqvUMlPK3e9d2GEhYctBgCUx8vYs3UEyXgZSTnB+K5xjA2PYM7SOSq/zO+oAtaaz5VwbvOlKbBy5VBdOm0zVPOcHBwcxEknrcHGjRtx1llrcfXV1+Caa64GAKxbtw433bQOw8PDuOCC87Ft21YsWLAQN920rsrzc5/7DK699usYHh7GF75wFdaurYCz11xzNe6443YMDQ3hzjvvwAUXnF9N8+lPX1l9AZokynv79mHcfvvt+PSnr6yWrxUU0md8IK/mLd3q/tgKcsnrA+JlfCtu3jkiD+jL59oQW6gdeFEXsG2QZtKuv+YxqYEjnPhvMnobAbHktQQzDbCdiqMOnUQauBLSZq2ivN57jRi5PB8fuJaH8qR3AXFSNs0Al+m09vAZ8DKMNmVcgK3r3l9fWbkcnG+eKxFk//DVkSabBIR4XHnVg1aOTgdsO2kdCg/VxOMAAJFzSURBVDG0NEWefmtzNF+/NONDm7/k5qYEbOl3sQgke8aw+eHNGH5kC9IkxSmXvQbHXXIqeub2V+PxNIDtKS83X2U6Hs/yWk9TzifKlFOe2uCAqQuwJYVeq1ONXOukxkP+EXHF3JojpWKs/dE1BjwNUG/wl0pAnFSuRKDTASF9phmaqvHXSeOcz8tae0mSz0LBbQ4AAW6dVOoRmgMBjUVLl9TmmJlKGjir6Vt7S3lnAuXVdy0ecvy42pCDazJvTZ/g/cRaz12gXrMOIM3yaTVxmWQYzRf0yeuN5hnpKQvU1y1vF95emm7AnwNA1FfA3P3mVnltffQllCeSat5aWarfo7RyFiWuj2Pp8dJJx+onlo7HP1euHMIdd9yJs88+GwBw3XXX4rLLLsW6detx+eWX4fHHN2JoaAjXXXcdLrzwQtx114YM30svvRQnnLAar3/92Zk8Lr30UkQRcNlll+Guuzbguuuuq6aRdU10ww3X44ILLsCCBYOTslyPV7xiDbZu3YYQCu2vrnEVEi/PeAyJp/Vr7bkljzWfWbws4LW7eVhPXcC2QfKBMy6jQ4Zp8WWYlo/LiOeGjUzPj31qu55AzbDRwJs8JMEnWW56JgEXKZssI5fZimOBPqSERJH/pWO8DJLyvHRMS+8rhzROfOWi53KScxlNob99/d1HnTb5asYbkQUS5aW8AAhXwmQcDYzk7dAKwNaSUcpi1ZmPXMC/xjdkU6DVgG3IVQ8cJKO5QdYPTyvLFgI2aPy03zJMmzNC0jXSrr5yhpI2Fjmg6MqHFEYtniynC0zkv3/0O/+Jx7/1QDX9kecejVkL+jPzrtWmnJf87nruitfIfOsiaeC1g1zzK6D3dS2Oq52sZ/TdqjfXBkErKISfLHMjbcH7vuRtPeMk6ydk3GrzIuVD40PzuNb48HnYikN5SYBAekHLcWjpbFQ3Wn4WuTYXOk2vscgylpsx9rvUGsq7YSTHnhYuyafrWTz4b8seCeEr42p2Jf8ux2denaLdFH30txDdc3edN2qMyS3ViLZWgWKKyjUDLLyaLsp81H2XFDvSWenn7SlVTgnN6ak8S0Wk445H+pd/VfmuzJmhx/195OIjAewTTliNb3zjenz84x9HmgJr167FSy9tq4KnFU/ck3DXXRvq8iGv2mZo48YKMDw4OJjhOzw8jA0bNmD16tVN5wGEzbUWeJkXbJXetzIuD9Py0tK4ZND4u+S2yqfFnynrbqupC9juxdSoIcJ3BdtJ0zngXEefW02NtANvA817xaJyuT6/VgO25XJjID7fAABq6V1HJ32UF4h0HeOUGwb8WR6FlL67wCuXHEA9oBKyWeOTx/U8hLe1qeSjvJtbaVp/5JxI69sW75DyyXxdL8Djzzgvkpd+877D+8H4eDa97P+8rPLIrrZRw8FiyUtukHHwj+dPYeTh7DLYZH3KPkw8GukTlDdtgnGPElkmiie9smnuk2Xn37V2l+Ejm3dhycuX47RPnIW+eX1YdMwyTEzo/HgZtL7okoHC+KaqVk6tPmXZKYzGDc+L5+nyUHTNVz4wXPIgQM0CI0IAW6nwh4LudeWafAkoj+/yCvGtg63WjdqhB7UahPblFQKoW+SL0whYI8sv1/hG+eR93ik0U+Tskpumymax8vZ55LrItV7KOKH6pWtN98lh5cHLaV3zUPlS+6hGSYE0qgCyaTT5212E9lMEpEmK0mgJxb7pg3x4PVpH2/n3rVu34oQTVlfD5s8fVONaQLB1giDEq314eLgOlCXwduvWrXV5ca9TV5/Rwn36hNUXNZ4SlA3lJ8O0cllp9pV1JVSXaSd1AdsGiBv2gA64uI6IyTD+m/OzjED+2wojwyK0PFJGAgK4wS/zC+mcGijHeUrZtXJI8gFAPL31rNN3aKRiRvL6lBFp/AM62EPhgA5Yyt/0PYpqeTQ6OVmAVSOKqDb2tDAiVz+UQAnn0S7AVgJoGj9e/1xWORbzpJfPZTo5PiWw18qXjnHwjY5y0/HlPB4eBPTJaw1c5eNAllTU5fxpAbYyzAJs5caEC7B1gY+c5DwRsoaErCMaWUCWtpbl4aXJF8fZdcmKx8P5eqvF0dKUy9n5bONNj2LnM9ux9Lj9cNAZqxDHteP3WltafZG3NX3XNgl5mKucrrrnYZKfKz2/VsDqo0S8L3O5pSz8T1uLQtYxrrvweJ2yXrfLI7dR0NK1yTJVZJ2iculwvjkjVM8LIT5H5Gm7kA2HLnVpKqhT5r8uAelf/FUViCW9E8g6GvBN5zTNXsdjAWJRBCDKzmsUxudYvg5rfCgsTYGJ7aMY3ri1Gj5/xQL0ze9HlEH6+NcISOr7mwRL5W/uXGSBsK70klasGPLG0cJdgK0EeS1wVXtpGhHXszQZrHS+MB9e4wOofWEunlZYK5+70smycY9eX7tbGwF5SKbT5tq8Nk47dIQuYJuDoig6B8A5Q0OrAuK2X55W0EyRs9XEPXaAxoweE8yb9OjBpKeRD7xzeRtpoJmPH6DfndgKwJZ7T7UKsKXPPMcULV5WGBEBQaT8yLssZbp2AbZAbVNE5qXJHBKn0fR50lleU3nGiwyzvLHkXZ8h7WodEQ6RR7aHRdoLJ+lT3pXK+4GM4xvrBD67xr01ljTerrBG2lXL09fnXbykPFIp4sCW1mdC8pXpOc+0XMa33/vvSMspFpx7TKbutTJaeWv1SkR9TAvTNkFIYdWOiPI0XAaS2xpXPN9GNy6tY20h7SLHqGt80gYOvaTM1/5qn1Q8bH3tZ8nTpXqaSd6bM0nWLnWJk6vvNgpUdBrJzSufXkNhPv1Ghmu86DfJYK2N/Ki2jMOfucAmoDEA0pXWStc3vx9Ljl2OXZt2YM+LI9j++DbMXjaAgf3mKWBXVAVvQwAxzaPTqjfNCcJFCxcuzPxuZt620rZqLeCAuXaU3/JGteLzNDIPl4er1h6hcvOwkI0ATeaQvGQY1YF8btULyeMam6HkKmcnUhewzUFpmt4I4MZjho658MEb7mPhwEGvOhjzDpibiV8aT/Dodx9BuQwc9NpVQK/++mHLw0bzjuLk8pbSvBukJxJge3fIxc4Cb3zkWnBd3y2DV+PtksWXXr4UzcdPEoF+2cRJBbAt1oxuaVxTWspLA0s5UMDjucBACmsnYOsCzkJoOgFbens4eYBxL86pAmwJiCOgxpI3pH9wOfOkl89lOqvvSaAopC9ocki5OV/KPwSw5WHkHeiTjZePe+91EmDLZbfmRi1tHHe+0hFKcl3kXpfkHcrrI+RKBOnl+vSPn8LT//ME9mzZifJYCWk5xUm/txYnf/RUUy4JGgLh65e2M+/ysKVnExPZdtWunyiVUL26IU0rV3CQx49G5DUs7wMNJVmXebw6LM9LoH4elboMjXXfS8eq8SdfOsb7C/3R/fI+PUvK0yi58vHF9z3LK1cj5ZDya57QLh2Up7X6PFGjmwk+4u1t6doyrAv0ZkmOGUnUN7T+bs1H1nNfP5By7C3rXyjNpH7J535rzAPueYETn4Omk3wglgR56bsE+iT4ZoFWNEYkL2nbU5xCT4zBQwbRP9iP7U9tx+jWERSKMQaWDwi50wpma+Qr89EAavpupSX5LaBbK6esDx5Xmy8onOvDXC5ef9dffz3OO++8OhktgJRktwB7rR+4AGMf+Gm1qw+wDAFtQ3j40oSA4a5yzqT5a7qpC9g2QNse34Zvvuf6TNjR7zoWb/2XczNhj37nEdxw3tcAAG/+8gU4+h1HqQYk/03fZRgP57+tMG1R5IaVpkxZaTRFPC+F8LDk8cWz8gsxCKWCkIdMGWm18xgledvWFS75hBiZMqxczoJWXIG2vjdCMn277rDV3giuKUvtIA7qyPwJsAVmHmBL31sJ2PLvzQC2RI0AtiHAvLUZwj+5zBKwlfLJPF2ALZfZVX6+ESDLyvlI3hKAlGXmeclnvb1ZHiEbL3J+4vnT71Ipq1xzL8skqZ83rDEny8bH/U2/9p8YfmwrCr0F9M3vw8D+87DfKw9FFEWmp492aiIUsJVhHGDW4nHDINRjQpZXXi3C+RcK9R65GrnGhzQeZxp1wbjGqN111kntEuIxt69QSJu0st3y9oNO6TNTRXnqx6ezu9b/vGGStPEj181GqFPmCQ4IWqAlxQPcXoISrHV5AErw0HW8u29eP2YvnsDI5t3YvXkXBpYP5C+okf90E5V9eHjYGY/fQQsAjz++0fRW1epTejzztrJOLbk8bH0bUpbncl4PW/lMxrHCrOe++pHfeZgli09Gqzyu/ELIVQb67dtgngrqArYN0JKjl+JDX/9w9fd/feA/8eD19+HxdY9m4pVGaxblxI49VTACQOY7GbkSEJDGtOwkEhwA6oHX3t56AI6MXfk2X55OAwo4kMLzdJGMw/NxAUIkpwRteDl8YJcGcFjpfXK74tTFjVLE99wFnPVaII0QJ/HkkUyR2SSwG1dvqJ/8Ts/SqPabx5sMj+UrSgHESTwpE0eljTQizySJAUSIo6T+uUvWvCTSqzI3yIvCUkSIoqRexrQ2u0eiThLOi2QiGQPKSulTREhToBjX55+k2ZXZWZ8B/YPzyZVePpfpjL5X15dD+oIiR0buJM7ypfxl/U22K1BfBrA2g5Ct7lW+VHdcHorjKofkz/OgzzipxSP+UVr5Kxey6d/zLuCii+z8GiDpQUDkAw5DAFtOUwVc8LKQYsbvKI6iyhoH1OQnYJevARzET8tlbL7reSQTJex5aQTHvu8EvPkfzkGhGGHXLmB0tBK/p6cGzlLa3t7s+sfXbNfmAZG2plG5QjYaiORd0hRG6zr9SR2Ak7w7mgBirW25LiLlkV7lsi/5DHwXSMz/qG/zeuLlpO8kU62uEyRpVH3OeVJ87mXsA601GfNSXtBjusehRnKuke3l2wTgmwt5T9doGyn804rvS2/FnembEq2kRgEa3+Zus44A2tw0nWR5IUuHkU4Au6aCtH5jjbu843tfqcNW0Jxlc5GWEoy8OILSWAlRHCEuNnjMpkHSADEL/LNAwvnzB1We69evB1ABbiUgumjRomo4pZF89haSIL/Lo1luEMg02vPumJt66gK2DVCxv4hFRy6p/j79E2fiof98UN096Zndg5/+xa3Ys3UP9mwfQ5oAcW8BxWKxDrGX6L30ogvxwpSArZbeeuYKt9KFUggPCpvxE8G73uUGfjqIUkRIyMu4Cl5l40RIERMeJUG8JkiCoc3wqwdGG5dLEq8jF1H9JWmUBX+VOERxlHrjanF4HhSeJ718LtMlCmCbpBFKk8Cqj4dLDgK0Kaw0eWSZnvM/zjdNMQnY6rxLk0Apbwdf+ShOIUoqAIKjHMRfy5+3RYmB/ZQPlw8AcPfdiNMI+MBF3hdYyY0zK571O8TDVl4vQGQZwUlSOX7Pf2vH9C2yPGz5y70kP/qUYKw8MVIu154/f9cm3H3VbYiQIkmAJ25+FCObd2dkmXPAfJSTCGmpBmLSH/GZmKi9RCtJKtcN8PqS9cpfUEdXNfAy8HqVnsJ5AFtO8poA+aI0SRywpfzo6gW5BpPntiaPtraHeCOEhFP9kVy8n2jXH/BrMaoy0Hyi6B0z2fCYqXITtUp+3/F8IDt3zPR661LnU2gf6xTvxE4m1/h22cAWaeuWzM/yauRhPu9B61SMjKPxdKWz4rnSAgKIK8ZIkxRbfr4ZADD/0EHMWji7jpfMP+S7VjZJW7duxeDgoBlveHgYW7duNXmkKXD++Rfgkksuxtatw1iwYDCTDgBeemlrnYzveMd5uPzyyzA8PIzBwUFs2LABa9acmIn30ksvZX5L4JMDvl3q0lRSF7BtgNK0YrAR7f/qIez/6iHVwJrYM4Gf/uWt+J8/XI//+cPKzk+hv4gP3vMRDOw/P2OUyreQ8yPq3HClRX5vBGxpIgwBduV3GSfUIGyUTBk/eFHVcy5JgKQEIAYS4w5bxNnvGfl5n4pFuGKEJ9SHlDtsZRpaXFMjbbU9+OarImteqiurInOjvCjMqqO6tmdxMu0xKVNUyNZRiCzVflF051/Ny6jPoP7B+ORJL5/LdGbfE305pC/wOBJco7rmfF31V8+c5U/3UTIPTF/5eB+PjTFVTWeMrcxnsRavWu+TfJPxWpx07dmVZ6UsoCf51sksZUryG3zcM65RD1tAv9qhGY9Dnzyat43LK3R0eBR3/PWtePib92HeQfORAij29+CAUw/GUee/DIuOWIRyOcKyNQdm0mnHn/iduYAOcGuALYWTjJ0O2PLNAw4mTBeowI97uoBh+lP1h0nAVusjMxkwsWRvhYdinriNetgCzelfkoerHbX5VH6GzLmh8naB4X2bQuaVRsfpvkT7yhia6nLOXjIHhb4ikKTY/uQwymPltuW1YcMGXHnlp/H44xuxYcMGAMBJJ63BmjUnYmhoCF/4wlXVuBs3bsTHP34Zbr55PYaHh/H615+N1atX49OfvrKO7+DgIL773XX4+Mcvw+rVa6rhF154ES655GJccsnFuOaaq3DbbXdWnw0NDeHrX78OF1xwPs4++2zMnz+ICy+s2OrDw8O4+OILM3lfdNHFOO+88/DZz34G1177dQDAxz9+Ga699uu49trr2lJfLvIB6SFhrboSIYRcXrtanJBwLouVXyhpnsSWLJouY23KtIuitLtVkJvWrDkx/b//u6P622dgPfCNB7Bt4zYUCsD2p7fjri/choWHLULPQC+OeMfLcPJvn4piUX9pDnVMDtiSMVUoZA0sSsP/XFci0FFSypOn0zy76HsjVyLwsnGePJ6Vl1Wvsk5kHMtY1dJbcruIDGLtOB+vc+34qq8cIXVkGeFA2EvHfGldMnBZ85JMr8ncKC8K87U9fZdecsSrEZmk8efqu0S+PmzFkcZkaD93eWfycKvdZV8O6Qu+vOXRbFf9uXi77mC2ykffrasEOFlji3/yeZz4U9vQJl+xCCRnnV3Jc/26TP5auVzjnsBeqz20+RzIlpe3qwuwlWNHrk3WPKeRNQ5dHrbyuDt5udIdujz/Hc/twnVv/3c8v2ETlh67DBff/aE6AJPahK+Tu3cDe/YA/f2VP8p/fLy2ZhaL9R628koEud7xtpD9Os/L8ngaWdfySgRZNknalQjUR+V44OWQ8pAMpRIwMlLRS/r63HMo1aumePPyj49X/ih/au9SqRZOV2BQmYGaR3CxCMRrz8R4uYDxb61DX19W+R4drcTv7wfW/usZAIAfvP8Hpjwh866LLN3DMkDyrLV512VtLcqTh/zO+5LsixYf2Yfyylou1zzfXW1BL5cjc4fy4/Onb+6U5fcR32zwrS37AvnqrlG9Mo9u0wkUYr+0M08Xyc1DTddpRT2H2ha+Ocoao3lsJJnnAw88gKOOOqoOrHr4pYcAAKsWHJEZ23zuppd8xnHWqYo7Xrm8dwGdL9+01DYDQoA0K87mezYBERAXYmBiAimA3gVz0DO7F70DveiZ3VOVV8rHeRPJ+rRAMCKNj9avZH3Jsligmyt/i0dePpKnK45VBs2TW/vd6ZsYM0XOPPTggw/goIOOqpszZFl5f509W55Vbp66HrYNEDeQAdvwIDribUdVjb2xXRMYGx7F+I5RPH/XJvzfFT/E1gc24xf+6a2IJ8+dW0YyJ8rTB9hqymaSZI+zaumkFy83VjTA1uftwb2HSXZ5b5yWl8yHl8MHdlmLtmU0aXK7iAAAV3puyEhylcOl0IQoIzIfVxorbahSlZdk+na8dMzX9vTdMsbkG+fzyMLHkRXHF6bJKp/5ZHOl9+XLFyRSNrW+HNIXfIq+9PRzjX0Xb1meUC+nUC+7EFCX9yf+WRc+eU1CrABhFj/tN82lEgDhz139QLarLJu1FlnzlZaHRpZMGh/tU8ZLEuCx7z6C+7/6M4zvGMXGmyr3yR/+tqPw2k+tNcekDG/n/jUHCmWb8k8Zzsm3o6/lYc37PJ4mVyOU12M1j3Ivy0Z//EV7JH8mjMZa3JlGRCtlypxe8FCetU1L4xq38s/iEzpnWM9Dx6s0unm4Vf/WeAXyjZOZ7MXdpfYQjdOp9MQOmRtIJm1c+fS4PET5WHlYv7X4eXVjOefs697wA/vPw8TIeOXtEDtGMVoqYnTrHoxu3QMAmLVwFoDKKcP+BbPQP78/F38fmJzXa3OmUzP9ja8lmu7kCrP4+eJ0ySZqDw2wbQd1AdsGiS8I1aPlqR4nSWpHKqPeHrz+H96O3l7gof96ED/6g5vx83+7BwecchAKsyourwVq9DjCoWcfht65fRlAgt8nR54DfGdKKsoSkErT2p1wXFa+iHJ+vmsKQjwIZF1YnjV5Qa8Q0KmR9CHkklGTw6WMhCodvJ20513A1l1eWecWYJsk+RdV2cdl3cn8eV6yDJo8PI7sH6EbEyHKNq8/+b2TPWy1fDRjWZaJp/GVQ4L4GvDg87BNEiApFyog0rh7jqO0Vp+muZTfr8rLIdNZ/a8ZwJZ4kHdJyJxqjUPuBTsxUX98i69LWx8fxoNfuxsxUtz75buw67mdAIAFhy3C4NACvOx9a3DsL6/G7MWzqh6yPC9qE16WiYnsHba8fpq5EoGI1lKeLvRKBH6diHUlAp9zmrkSgchqf+13qVR/h6wWj6cn+ZrdWNGusaB1Mk5ilNO4GtZpxnmrjk83a/jmWc+tDYdGNwHy6hKuDQgXUf9wrV/8u6Xbttsw69LeS3ysTxWYH5rHVAI43Et1OqnRNrCu2OGfMg9evzSvuLwsJT+pp3J7XdalzEujKALmLJ0DYE4lzkOVO22Tww7HyJbdGNm8G+O7KopreaKMZKKMWYP9Kn+uo/E5UwMRfV6mlNaqD6sseX6H8GiUT578Qj2jQ+QIDcsjI5Emg69v8e/SQ1uL7xpTMl9fniGU50oE/sJhS6ftArYdSNpxBVdHoTdNS6XwiF84EoX+Htzw1n/F9z7y32b6Mz79Opz8W6dk+BHJTk6GM89H60R0XJCIHwnj5aEwKgNPpwFdkuQCQ8flCJDh8TSDyqWEW0q2jBOSPs8zGcdVbi5DI+XQnrn6m0+mkDKHyGDlkYdkftJQmm5FLo+3ElCLy4EVK47Mx7fQ+Lw7mxknrnTcy4iP81YCtjy/VgO2LrJAB434MTYfYGttxGTi0EvKHBsz8rfVd1pBvJ05+eqSpyEejRg/co6k9YbLVyhkx8B9/3In7vjL/63GWX7iAXjVH7wWq163MlNfkrcGJtH3QqHy50ujPdfqRNZfnvlEktzJl+0ljRyXh6CrTDKOVg4rjq9uZBqezicfL1teipAG62szlZotV5713Jo7Q/pUs3lb8UPz0tJba2Qz47VLXdJoOuafvHnKjQ0e5tPj8vDX9Lbp0Pu5vSG/u0Aq7di6BrBxpy6eRubDP7X8ebiVv1a20Oc1ijB7yQDmLB2ohmx77CWM7RjD5ntfQBRHGFy5EIXeYp08loxWu1r1UZVEqY/QPpInT1ebyt8+gG+mkQWoaqC/K0zybFYeFxjcirrPA8aH6BfNYiI+6gK2OSiKonMAnLNy5SoneKIRAZ18IUwSYNXrVuLDj/wWUCrV3a1z2+dvw/3X3YdHb3wAr/rdU9RFVMpA3lYEimp32FI6C7DlxBdTGiQhwJ4Mk0q9jM8NMj4YmwGi8qTP80zGCTVIGymH9cwnXyN32Mq0PB1QP4E2OzlpfYPLDIRPxo0acC6QwuIbQhYApnk4UnxZVqnIyo2UqfCw5fx5H2olYMv/8gC23LPUKqMlT14PW94ftXJYc7Pm3VosAkmcOK9ECPWw1Txq5e8QD9s4rgGi8rnMy5JPxneR5WFLv4vFelkKhRTbHtuKQjHG6LY92PTTpzB7yRz89nO/m/E65X2Ie7JYwJIMm+nKN1Gz5eCbE9qGgbZZMVXGtgZGa7pFHKN6JYJmQGtewLKc+/qR2S51qUtdAuwN67xk8ZCgpo+/tS650jU7n1ueg/yZ9sm/S3BMi5/Hq1IDezWZXKBcFYhTyggAs5cOIC4WkJQSjG0fRWnPBIp9xYxXLZdHrrcaTx9Z9REK2vq8Nl11HOJ92fAGssLTxcsCUaUMLhBzuh2gZgpZ84M8weWjdoC3XcA2B6VpeiOAG0888cQL8+zmA/WGNjcoFhw6X33p2Bv/5o3YtWknHv3OI/iPX7oBb/3yuYiiyJsvB3U46CE7WV7AVgI5PsC2kQnCMq416gK2+WUKKbMmg7bwtROwDc3DAgMtgNoHFBGvRjwHXLy1OKH82zHx7w0kTzq0mywQnpMJGslwdq+mi7R1I2ScaL996TRPEp+3sPXbRy6+/A8A7vibW/HChufwwl3PYvsTwxk+B77qkLr4koe1ySHjWvnLsBAj0QI6XWusSxls1CvLdUpAU0D5xoQ0nEMBW8qznWNzKr3U9laP3C51qUtdCqWpmAN9c20eO8+lq7kcriQA2ixZQGmzPK18Qj0hpXOUj/rm9qFvbh/KYyVs2T6KXZt2YmTLCPrm9WHOsgE/g2kkDUCeTsrjGS3bKK9XtcXPansrLy2NFeYirldaskhPdItPu0irY+uaM058TmnkJeo+6gK2HU4v/+Xj8dJDL+K+r/0cqy8+ET2ze7MdIY6x5JgllTc8tpHICHMZnJw0g48+XUYv/x6SX4gx2kj6EHLJqMnhK6+Vzkpj5afxDimnZoA3Alx2qUtTRRqIGtpXrQ00X5oQwHa6FcJWUJ4jR6QQNzpPuLwl/+/Pvo9ifw9mL52DwaEFiOIIcTHGyz94Eo77wJqMDJbhxj3CeV40x9HGJr3Vnv54HKAWTkAw1Y0FqtNniAJq0XQcu5MGTuhGH79SgtqDX+HE01gba9omcbGY9ZYmGfOWSd08QX37dalLXerSvkh8w81HjdpPoTZYiL0TajtJnq7j8nK9to7QW/HkFQHan5be4sN5cXBLO55v8fMBx64y8rBCbwF9g/1IJsoo7ZlAaXQC/QtnodBTQJqkKI2WUOgpIOqJTb5Wvj65XUCjld6XB+erxc0DRlrpGolntX2jpPVNlxd0qKx5y6kB51a7WjJZbZK3fqZDt26GuoBtA0Roe6j3X5JUXmaiedvIF5vIdIecfThOHh7Hf7//BnzltV8y8xrYby4WH70EF9z4XqRpVL0SAdA9bPlzemYBhGS8yZeaaJ6JRLJu+O6EzJvicz70AhOeH5dJSyPjaMaglV6S9DzTBrRWDpmet7Ek7oWktZUse4jnJ730ReZj1YUsT0i6ZkFcmd56UVpIHtqE3ihY3yyQH7qR0Ag/7VkoeG/xyrvZ4fLIC5XDki1kQ8cnZ2jdujZRQvOSefJPrpRr8iUJWnaHrasPa+l87SrDCXjzUTu8EHc9vxP/fuYXUdpTwisvOx2vuuzVGdnK5Ro4SCR/AzYY7Arjf1FUA3wJsJXzDj+hInfZeV9wzcPWNSPW+mptVLjAb6tetDSNgMzyaCSXX1JIn6Y4ckxpcwZPm+GdRkgRdT1lp4Bk++SZN11kPd8bNsb2JZJrIqdGdC4rXTu9+/dmkkfOGx2XPgrV2+hZp83dmqeq9mwmURWwhLs8URRhwdBCAMDOZ3dg9wu7sOXnL2DJMUux89mdGN22B3FPjGUvX27mIcMkcMZ/u64s8NU79+C0rg7gfFxtp/Gx4vl4SZ6++DyOBSz7yAfOun5roKgFlFpyhXqFz6Q1XfYH7Vq5VlIXsJ0CamaxiSLg8LcdhfP+4xcxMVq5sLFQAOJJfhvXPYbSWAkPXPtzPHHzRvz1flfivP94L5accACA1vQc6blkeaO5AFvNeLTic68cF8gY4hUTmt56Jr16tDiuZ1wGGU+bnELr1CW7S95QT6mQdM16Ivn6U2ge1viaqYoTUR6vxWbGSZ50oQDevkyad2LdvNeBVyI0Omc0Ow9ISkoJRrbtwaafPoOdT2/HkRcci6MuOLYunjbuNcAIsMEjVzweV/LNAwhY/YH/5p8yXPvdbsC2UMga7KHrhpwfXKBvXsC2GaKXjkl5NMDQBSDMJGNiqmk6QJVGjdcuTT1N5wmBLoUR1VsocNKo8wZP5+LBn2ltqm2C+jZGfTKbfUcAa5bNYQG4LvBR+22BeS57R0uTmw8qoK0mn6Q5ywcQxRF2bdqJLT/fXA1PJuoX0dCNf/nbVUehQHnofODjIUFb1xgJzc8H8Mo4rv7n4qUBrI3MkT5b25LBCpdgrQXIyzSt8I7Nk1abT2he4h7QrbaHOHUB2wapUc+yvBRFQE9fAStfv6q6EPF7aVe++QgAwGv+8LVY91vfxsP/9SD+7bVfRHFWEQe+egVO/u1TUOwtYP+TD2xvT2oxcZB4OgHbVrShRdoi0grAdl8jzQi3jsK4DPNGvDXzpm+WLw/L4/0Q4p3p483rNY+Haigow7/7ypemWQ98n+Iv86Z0Mo2V1jICfIAPT5O9AymuALaGlz6Xi+R05S/nK8t4kXlJ3lIGaQhZ8uUhaQxW67CU4Pp3fA2P3/RIJv4rfuc1GDhgvtlnokgvpywXPyHC20S2EZ2I4CcjJiaA8fFa3vLUBJeHt7Ums6wz7WQN8bF+85M5nA/PQ/6WxMtKcaiM0ttXftd+Ez8uq0WhfZrLKPOmcC6/vGesUACQRkjSCEmiG/z0Kec2i1pxPLHTKMSbjuK5jCjXJoCL8s4hsr90AdvOp1DQpFHdtqsTt47yAt6taLMQe6wTaW9bC/JQXIgxZ/kACr0x0iQFUmB89wRGt+1pqGKsqx60o/IhVwlov2WYdvWAT75Q3iHkK0fotQ6+OM2skY2U06orV3ml53NemdpJ4+NuHV3qsgNtuNa5C9g2QEkCjI6GAQNE0sCiBuZvtpYvHZMKND8SKI253kVz8eavvBOH/+f92Pi9R/DA1+7BE+sewRPrKsZv32A/DjjlEABAoa+AuYcuxMt+eTXmH7KgmqemsNMRe2ncArZBKb9T+Skf4qO9UZ1/t3ZJQ3Zn86bXvKCssvEyyXJo6XkbW+SaADhPHyilPXfVhSwPkO1/ISBRXpLpZb7N5kEGnKYrWGCazLOR/Hmevr5H1Ewdcl6NjJOQscP5a/0hZFfRl7cEZST4ZfEslyv5TydgK680ke2ifU8SzJgrEazfIeCOpLEdY9jz0gjmHTQfcTHGyJbd2PHUMH7+b/dg813PISkleOHuTVh+4gHY76QDMH/FIvQvmIXBwxar5ZB1rj13xQG6QE+7yGfwy7lFG3cW6MfHKn8mvwOTd+pGCYAYKNQ8h2W8OK7JGzJ/hB6PnAmUpwx7S5m71KUudakVtK/Ph1EUYfbiOdXfyaadwDbdBtO8IjWQlofz3xLIcwGJPG4z4K72bCr0xlAv95lCe1t5poO6gG2DFOo5YMXXjA4faABkAQqNjnj70TjsrUfj9CvfhBfufg7FOMWPP3kLJnZPYOez25GWEwxv3IrSnhKichmn/enrAOiALQdiOJjSCGBLxMHATgJsyWCjCSUEsNXKwcsj03c6YEs01YCtzLfZPHzHcPn3VgK2QK0P7SuALeA34l0Aupz/QoAcTlFUu7d0OgBbkqFcua2mbh7V0hSLQFIoVzxse91gKQejQ8aiax7h5SWSvDnxzTrOm77//Ct34Ud/sC5MCUtTjG4brf6ce9B87Hx6eybKoWtXYuVbjsTpn34DFhw6v7qRQ/3LBepZv3mYtuZyAM/6k2lcIKKUIVRmLa7rt0sGS3ZNDnpJGH/BGlC/aazpBzIuEd3z61LQQ/s0xeF5kCyUln5L+SldHKcV75+49UaDzyNHi99pBn4XhO1Sl7rUpdZSuwEqedLDBzbmkSePV2o9VQRKSgmiAj97HyFNK2uxBuRGcYQ01RciCeq22ts0tB5l3FaRtgZb+TR7tUMj8XxpQq5E4GGyjrVw39UPU62z9Pa63zORB2NplLqAbQMUx5XGCwEGeBpuUPT2ZhuYX3NgedhSmAYyyTiz5/fg0NMOQU8PsPKsD2TixjHw94f/NTb83U9w99W3YWC/ubj4Zx9Gb19PXTl5mr3Zw9YFeGj8eXofYMvb2KJOAGy1/jcVgK3MtxV5+PKm79pYygP+aUSKlKvvETVTh50C2PpIAzUkIMnHCAdpXP2cZKGL3qcLsAVqyoMLsM2ASXFSAWyNkw3TDdham3VEt//dbbjtr25FWk7xsvfU3y+rUVQsYM/WPZjYPQEASFfvjxVrhzC4ajGWH7cMsxfNMtcGAuZ5uSVgJ8sp41A6CWjKMPnH20F7NpO9BhoB66zTKK2sG9r04n9EMkx+r4vDrkTgcej7VCr+XXC0S13qUpf2LWr1nB/qZZonrAqasXffhAJjHEiNJl+ws/neF6rP42KMgf3nYsdT2y0WiIsx5h86iN65/f4M9yIKubO1S9NL/LonTtrvLmDbgZS3YWR8l5Hj4xuatwYEEJ35uTfguZ88jZce3IJHv/UwNt+7GfMOHsTsJbMRNXDvjM8w0wwpy2OHx3Pxkt9lnEbS+35reYTECeFlpQuVx3ruk1Gm1QzhPDKE5mPl24o8QvL29b9myLoTsFXlCmlTX3nyjp3QfjTVxK+KCaHQMWmlsZ5r8bTvSYJpvRKBz9cEbo7tmsCjNz6AuBjjiLcfjWJvjNJEgoe++QDKeyoXm+7ZNooXH9yC8Z3jePRbD6G0p4RTLn8NzviTM5Ua0WWVwDCF+9Yz2b4aYBcC6ln141ufZDg94x71VltrMksZrDTWb4t/HoCUlFDLE0IDZel7KGBrkeQnNwt4/wzRnSSfTNjkC/5gPY+zmwGhel27lfMudalLXerSzCQJqrYCjJMvaKLvltep6+VMUqba9xRQw918KLx/wayMMCMv7kZ5rFwFa3vn9qFvXl+Gx8iW3SiPl7Ht0a3om9+HeQcNotBb8Hpp6vK75bOeu3iE8tLk9NFM3vDvFMpb13nGotRFOXUB2y5NCa160xE4/C1HYONNj+LRbz2ML73qHwEAJ/3GK7H2s68P5uNaLPYWssAg1704Lu8fjbqA7dQCtu3eybQ2MToNsNX6tgasxXH+4795ZPMBZlp6H7AVknZfA2w1cPvRbz+CG99/PcZ3VoDZeQetx34nHYDn73wO258crstzwWGLsOCwxXjNH59VfRlmCJEssh9RX4vj2ukLoP4FVtKzmPdR/lvzsCV+mqd3M4BtXuXMGm/ap3wuZeHP0jRbX0mSrUtNTj7+ef1TfH7VB8+L1ycPL5Wy8TXZiUI99nl9t9M7VfZHF+UFxrvUpS51qUtdkrqPdtRf3r0qj5t3khemvCM2TQHEMWYtGaiu6bOXzkEykaACBEco9BTq+MxZOgdju8ax/YlhjG0fw5btL2DuAfMwZ1ntzU0z5Q7bZnQDVx4h10FMhVyh/BqRpZkrO9qVjsZs3peO9bfBUbwL2O6FJI+zWrsAcQysOHMF3vyPb0UyOoEff+bH2PboS6qBbHqvxLXjyJoXjKRW3WErFy4rP5cx6JKXfodMkJZ3kJQhxLh37eCE1K/ruU8Gy8PbStfsTpLWn1qdhytv6kOhdd5oPs08z5OPq59r94C6QGVrPFt1lpc0ICmOG7sSgS+akqcvrUyTJz+NpuNKhBBFbsfT25FMlOvC4xi4429vRTKRYP+TD0QyUcbEyAReemAzirOKWH7Cfnjrv7wdPbN7kCTA7CVzqt+5fCHEgUY+f2vtKNcG/sl5yT4j6ytNs3e0ArUrNHhcfodrklSuLNKuPaJ7rOScLvsShfNypGkN0NTGlut+LPmb8pBpoqj+ahlrHEngWVvj81I7QdVOuk6gk2TpUpe61KUuTR9p+pfmBSvv6uQgLf3WwjlPyxtUep76vEatNSwCkLI4LtLkr5crQqG3UJeOU4oIfXP7sPTYZRjZshu7Nu3E2M4x9A/WUK9CXwFAZHoNW964mlesBupqvzVeVl5a/FCyvKNdz6eLfOBto6BoI88azbMRGV2OPj6HnlZRF7DNQVEUnQPgnKGhVdMtikkchHHdu1H96y/g+Pcdj2IReOCG+7Fx3WP4qwM/h755fXj/D9+POcvmZtLQdxnGw+V3K01IWk1+CxTVqFnA1kUuYIvHofBOv8OWaKa/dCw0byuPvRGwBcJBBle/bnW7ZOYiZT4Jqb9Gxq6MFwpUWTK50qtg2OQx7bz5yd98LuReiDzOY995GNef+1VnPqvefDje+R/vzuRjAYcu+fKQBkDS71YBtkDtxVoaP/nd6o8hz7U60dYuLRzIB9jSbw2wlXf95gFs+aaClC103qaXALoodJxbc0MjJDeyJX9NNh+/LnWpS13qUpfykgXOukBQC2icanJdkxB6vYBMT+WZvWQORodHMb5jDFvu21yN0zu3F/MPHkSxf++DrbS6kkByo3y0Z3k9tRuRz8Vf29zQwkPy9uWlpeteibAPUJqmNwK4cc2aEy/M2zCWUeAz/kJ4ceLH9fJ6gbzqsldj4WEPYPcLu/HQfz6ITXduwsGn9aFndg8Qd451opXLZ/BZz6z0edvWlS7U4OykXbR9lbT7KBshK32rduFCZGw0r6kAbDmfUqnyx/MI2ZjoJA9bOh7O5aDvlCYbJ64AtiW9nUI9bGWaPVv34LHvPoxocjK5//r78exPngYAvPnqX6jzdAAqff6AUw5Wd42t3430LavPSr6tngddY5rC+c65DNPCSU5rA4i3tcyP4hDJuD7AVl65Q58cuNfKpsnSaUcs20ldr9ipJd+40z4tcj3PsxbuS/29S13qUnOUmS8cx+fld34UX702wJFe+y15+fK3qJkj53mvFWjG63HuQfNR2j0Oukt3+xPDGN85ji33bcbspXOAFOid14fegV5EQiEOkd113UBI/bXD6zOEX8gdu0AYyJlnLWwE6GyGLA9z+TyvTI3Iz50suoDtDCS6zyIEGCAiQEIagTxc3glnKboaSMGfW4a1NCi5/MUisP9rVmL/16zESw9uwUP/+SC+ek7FKyvuibH02OWIews4+/O/gMVHLK7ykWACkawbKluxCPNN4NL4DfEKtUAaV3qXl2UeQCqk3LyNXR62cqGweIcAWfJ5aF3yNnKlaxa0k+llvq3IIyRvDQiRoEeryijDiZrhz3n5+nkjvKcDsJ2pVyLwPiznXAKKJiZqR9bTchGFKEE8Xt8nZFlIzuEnt+NnX7wdaVlHJ578/kZsYW/mrVIEvPoPz8TRv3iCs2zj47WwOK6//sJaS0L7gtZnKVyC2vI7/+S8JMgv1yQuo8ZP3vPK+yJfI+WmQrlcfyXPVAG2PEwCtnkV0pkMYsoTRPJ7NYy9dGymlnWmUaf2q06Vq0td6lJriW9scvJt7mjAqAaIal6uPkDP9dwFImppfUf5ZfpQL8mUvXHM0il8gKd1/UAoFXqLKPbVDMK+ef3Y+dxOjG4bwZ4XR5AmKUa27EZUiDBn6QAQR5i1cFYN6ItjRJNOZrIerLL4ANa8YHc71plmAPdm4vnit/pKBN4mvv7XbuCZYwIWNqc5cfT2hucRSl3Atkt1tPCIxXjDF34Bo9v2YNtjW7HzmR1ISmU8cfNG3PiLX8dr/vgsrHrLkdMt5l5FliFhgcE+kER77gNXLNDKStcsaKcZ163Ow5e3lUcXsJ06wJbnMVMBWyIJ2EplonpkPS6jECWIctxh+/D1P8Ptf/lj9MzpMfNffPRSHHXBMXjZu46t8EmBOcvnoae/EFQ2IvrO56WpAGyJCoX6+15D5jRNHgpTwby4Po78055LebS+BNRv0rn6aOiVCBQmr76QZcqjxPoU5E6kLvjWWcSNlU4+LSTl7PahLnVp76JWrQ3WUW3XPbL8T0vH5xzOP/RKBK1s8rcWz4pT/zwFHOlcXo9c3kY2j81nhRjzDpqPeQfNBwBMjFReUFYeK2HXpp0AgF3P7sikmX/oAvTN7weiyAv87WvrQKvKm4fPxo0bsXHjRmzfPowzz1yLwcFB77UJIUB7I9eDNKKfaKcouY4+FX2oC9g2QFGkv5BEkgaocPSdG6ocnJCGm+SpgRT8OQ+zvBalYZsFGiKs+eAJGXmjKMV/vP8/8dA378eGv/8J9j9hGRauXJDxZnKBYLxslGZf8bDlbRxKFm+ffJZxH1KXWv/T0rUazJT5tiKPkLxdeXQB26kDbPnfTAVseR+22pi8MuMYQLFU8frrDQdsyyNjKPQW8Hu7fi9YxpCxHzKPcZk0+UIoD2Cr3ZlqzWm+O2w1UFfmT32tWMz+yXqk8NC5uZ2ArcZHArbSC9VFcZx9IRvn76o/7dOXn+RnxZfzg8xnXzKyOplmKng+U+XuUpe6ZJO2mSnJem4CogJklSAqB5Dkn+TrAlS1cNdvntZVDitOXRlTeF86Jj1oueyf+9xncN11X8eGDRsAAGvXVsA5ouHhYQDAeeedj4suuijDx5UPp57ZvVh01JLq79Gte6pK0eiOMYzvGMP2J7ahZ04P5h08iGJ/j9fr1wWyh8oFAIcfvhLnnnserrzySjtSAFneoD6QE6i0wbp163DzzesBALfffidOOGF1HQ/Ja3h4GCtXrsDw8DDOOmstVq9ejSuuuFKVRdt4cMl5883rcc01V2HDhg247bY7sXp1Vp7DDqvU2xVXXOmUUeatxWnHhrGmp/p+t5q6gG2DpBnZrjj0nX9yo1J+t/LQAFr5W8vX9V1LJ+PFcYQ3X/M2jGwZwcbvPYJ/e92/4Nce+S1nWo0PL7erLCE8tXKEpPfVQyiFljtJ8k8g0wHYakdzpwKw1Y4PdwFbP//pBmxd9z35DGHOR7vDNk3dcvvmDxdpc22eNNZzX7zMdRspua2GzfO3/L+bcdvf/hS9A204Z9OlaSfu9RfSr0PW70bWHUsW13izdBpLdpfMVpxWla1L7SEL5M+zWZCHrE2zUD7tNqy61KUu7X20Z2IEj257KOOBmqEq0lnFPjNhWjyTUs/zdtCskcrn1ocaZvG2X30r3varb8U71p6LZ558Bp//6ufr4uzYvgO/9au/hU9d8ae4Yf0NmDd/XuZ57qU9nvwDgIVAOpiiNDKBNE2xafMmPPzII3jZ6pfZ6VtY1xPJBJ7a/AQebqIOm6W3/upb8dZffSs+94nP4bovX4vP/u2V+JM//4Q33bVf/jqOOu5oPPPk0/j81yrt1qpynHHe6Vh99gk4edUr8NSOJzB325zMc6q3R7ZNX71ZtHnkeVxy/SV1HvfWbwD44a/8oOVydAHbBimPcqjF15Ran5dXI3m7FFufR5XmBfOWf3o7vv/xm3DvV+7Gf73vG3jL1W9BcVavGl/jZZXT9b0Zhd/nveOTN4R89Si9lvJQSB350vEwVzqr/1npmjV6XF5crcrDl7cvj1aVsV38OZ+Qfp6Xp8WDA97WUavQcavNgUBt3ISkt+T2pZXfG51729GHy+Nl3P/N+1EencB9X/s55iwbwGn/77TGmHWpY6nr4dcYdb0jO48I7PdtioU4J2jxrWfNpHfF2deOynapS13SaWH/QmwFKuAeB/jou7yHUzIw4mUiR+I3D+fpfL+1cCsOjyvl0WQKyQvA/AWD2Lljpxp17vx5+OL1/4STV70C7z/3/bjh5m84BDNIMmZyRlGEnoFelEZLSCbK+PqXvoajXvbH2ehRhLjIXsLrA21DQHYAN922ziu6l1q0GT04OIjzf+kCXPeVa/Enn/MDttS3586bm0+GwM2IDDAv+thNt6+rjS2Lt5Y2R/6hbViXRjgn+V5i1y7qArZdykWzFs7C8R9YjU23P4v7vnYvXvGRk7D/yQdNt1gdTXmOpUrqArbN5eHL25dHF7DVebie5fHsdQG2U2Eo82PjJI+LWgbYshchWfTo+kfxn79cU2Rf+dFTcPwHTnAL2KWOIe2lJxYotK+Sb230bWh3wbTOob2xLbqbAl3qUpcAYNGsJVg0a0nmOgO5dssTiVwHiONaGkoXx/Y9t9ZLxaxj6TxMxpPPON8MvTjp3XjgEcEvD5PxqLyzi7PRE/fg8IVH1AsySe+84F245pqrseuJ3Zkj8iFklUXebbrnpRG88NgLWPDcgjoe8w8ZBAD0zutDXCwEXTcQsh40u9HneildHr6LZy/Bxb90Cb74+X/Ez75/L97xjvPMuBs2bMC7f+G9+NF3/gdjxVEc5mg3Tnn6H9HB8w7N8Jdt5+JvxWsnlTcn+Nb5P8h1bVk7qAvYdik3HXjKQXjjF87BV874J9z6uVsx76D5GHr9YVj1+pXTLVqXujRjSAN0QqlVXkV5eYccd87rzeS7GiZUxmauNwg9mu167ouXCU8j4O67gdNfiySt10jGSgU8+8xBAA7Brxy/AXN7xzBw2w+RnHEFEOnaSpJGFV5RWo2jhTnTESlxuZzV7w6+Zj4iDy5fklQ0niROkJQLWVlYPlzmJE7qykm/K/eyJZXwSd4ZfklcaYt4Mk6pWPkrlIFiqRa3XKj8FcqVuFp9sTqJkskL4WTd8HqzwtIIKSIkYPWjlF/WoWznNClUvAMKZb2NZL/jdRRTh2a/pRxaXF6XWh48rzRCBCCKEtvjgdc7b7c0qrUB/Y7SSlwub5wA99wNvDyfMdil/CTBTW0TzqK8hk4jG9Kh+bXb6OpSl7o0c0neS6u9HMkK45/ye0h+EoyUcvi+c3KBtymyvGU8CSZrebnuICVaubKCGTz++EasWdPcGm3d9fqv3/hX9M7tw35r9qs+G902im0bt2H7k8MAgP6FszDvoPmIi/7JPwQwbXaTT7Yv0BhgG0XAqlVDWL16Na655iqcf/55VV6Sz4YNd+Ciiy6qhje7DrrklPc7a2kaKW87KeQ0Zxew7UCKorDjupxkY3NvEZcHSQgvX1wrvc/LUD7n8i0+YhEGDx3EE99/HBO7J/DMrU9j1dkrqhOe1ZGtcrq+N6Pwh3oeNjPwQrw1ux62/vz2JQ9bbXe+2Xw6xcM2T74uD9s86fPmmydeW+hd73IAqMD3n1iBOzcdgDhKsGT2bvQVyyqw2yU3VaDPqXdhjaJK3rHRxlo4hUVIkSoIpisN/01hhagC+fIwF/F41qfrGf/05ceft10hP/544IJ3tTmTLnWpS13q0r5GnQIodRJxD2GXt+ljjz0GAHXetb47Qom/q+63bRvGtddei0suuRhnnbUWfFe4b3AWlhzbCyQptj22FaNb96A8VsLiI5e4gWyPGrVx40YMDw9j69atWLt2rTtyAPEyhgCYVpyLLroYH/rQxdi2bbj6AjhZfwsXLszF17cREOqJDFQA++HhYbz0Un297csn0CR1AdsGKE0rb/z2Efeoopfq8JdlJEk2nF6+5Lv7i4MUvpePaN/jOPuSHy0dxZNpKP/ivNm4+IHfRBwDN37gP/Dzf7sHfzb7T7HwsEV4279fgKXHLMnw4mUjPvKlSfKFUCEvynK93MlKb714ioNoIWCO6+VMIXI0wtvneq89D5VhOl86Jr1N23XEwGp7n4zN5NNKvpyPT2HpetiGp202TW4P2w9eBEy+IZfC0yTF7X/zE9x82U0AgIVHLMbb//089Lz8T5Dw9I6xnySTz2M7zJmOyDEmMt8dfM18RB5cvoTWiSKQjAtZtPUqnowryqmVm+Y3vkFEaxGKld/lMSAZA5JeIOlnMo5P/vXW8pP1xevEaist3Neu0J7LsGTyj7dHCUiTiry+9qzKzeofEO0h8tTiJiI/c8w46igjI6v3iDbJY6W89J36THEyjGRRXmzZpS51qUtd6lIrSHqVSg9C6SlrXbeieR1afKw0VjpXXtHkoaDKD7c8GkmPWp+H7fDwMK677lqcd955GBoayjy74YbrsXXr1mo8ALj00kszeW3cuBHr16+vAo3btm3FwoULcfvtt+OKK67ENddcjdtvvx1DQ0O48847cMEF51fTf/rTV1bzHFy5EDue2o6/+sJfYfkhywBEeOLpxzE0tBIXXXQx4mKMjRs34p3vPB8bN27EWWetxVVXXYNrrrkaALB+/Tp873uVe2s/9KGLcfPN67F69WqcddaddWXWyvWxj9XKtXHjRrzrXXY+3/3uuiDbhYPlSQKcd94F+NCHLsa1116LCz94IUrjZcSF2h2+69evx5lnrq3Dp6r8kgTliQQRgM/9xecwODgfKYAnnngcK1etwoUXXpTJO4qAdevWY/36dRgaqp28vuCCC6pxOBB78cV6vVHfufrqq6thGzbciY997LJMn3n88Vr7rFlzIr73vXXVut6+fbjaJ1asGMrwnWnUBWwbpNBBEzrZzWQ69eOnYXDVQmy6/Vk89u2H8cXVf4+oUF/QEy46Ca//qzdOg4R+aucuTiNH3y3gJ+TodigvSdP1go1m85STv4toQeJ1MlMBW6C2yeDbmMjL29qICAG8Q/KVG0GlUuXUAue7twK2aZpix1Pbq56fD//3w3jup8/gxQc2Y8vPNwMADj7tULzmE2dh8dHLgurDyjukrKH1EQLWN5KPxjekvmVcaxPAJbNMS3OJTN/d5Z9+6t4n2qUudalLXZpu+t5vfxcv3PN8XXioJ2Invcxw+XHL8fq/ekNLePnAXKKNGzfi/PPPx9q1a3Hddddlnl188cVYvXpN5nj+Y49txIknrsG1116HoaEhDA8P4/LLL8O119bSRlEF2Nu4cSOACsCbpsDll1+GDRs2ZOJyfa7QW8T5F56Pi995EU47+bRq+KV/diluveXH+IcvXIXl85bhh9/+Ed767l8AAFx33bX42Mcuxfr16/Hxj1+GjRs3YmhoCN/73jpcfvlluOWW9XV1cMkllXJxcHPjxo14xSvW4Gtfq5RraGgIt912J17/+rPNfFauHKrjXS1XkqK0Z6L6uzxewsTuccwu9OMtZ78FX/ibv8MvnPiW6vO4J0YURbj3x3fj+P2OxYvPvoCJ3eMo7SnhxfteYHwqHorv+rV34cO//OFaPb0SuPyKy3Hr+v/FZ//wsxUZAHzqr/8Uo9EY/uGqGtAKVNpCI6ve0hT47Gc/kwG1h4eHsWrVCnzta9dVvXFXrKjU2zvfeT6Gh4dxzTVX4/zzL6h6E99ww/U46aQ1ePHFbVW+ecnlTNSoc1Re6gK2bSQyMOR9L1GU9fKRx4FDjrv74uQBsZqlBSsX4pRLT0McA3d/8U7seHp73QT9wA334/6v/Qy7N+1E3FfEGZ9+PebtN2dqBAygRuorBOggvq3i3W7AlvNoVAYfyfTN9tOQ4zFEnaIktYpcmwGNtlOol6grjm+TguJEUQ2wpQvd6fRCCGCnnTbwzY0aIE3k8lyX+XHiJwioXD/57I/w0gNbEAGYGJnAo996yCnXglWLsOyE/fD269+DWYsHqnxDy2fViUtuGYfItYkhZQndEKB8aLzyUw3Eh3v5ax6xlsyynFq5nR627PfERP0mCIW76qvRzYyQdvWloXqlTQ+S2cVbmzOlQupaC6bD6OSAehdE71KXutSl6aVGHVK076541vOpXge0O2hDrjiT99r61s9mgN6QeFV5WF5gslnyWM812rhxIy67LAvSDQ9XjuVfffU1WL16dYbX1VdfjTvuuANf+MJVmfAVK4Zw4YUX44ILzsftt9+J22+/AwsXLqyT48ILL8Kdd96ZqWPt7mBejs9+9jMo9Bbw9ve/AxGA8kQZaSnBJ37/k1i5Zgi/dO4v4dgjjwUAHHnQkfj297+NX/ulX8P2J7bhpFVrsHHD45gfz8f2Jypg4Jx4Nspj5epvAPiXr30Jt936U1xx2RWZ8EXxArz33Pfi/Lefi1v+8/vV8KNXHo0bv/Nf+LVf/jXseWk3XnXCKXji3icxtzA3k17S2PAoUlbQPS+OYOvDLwIAzjnrHFx8+cV4ftcLOPTgFcDkxVvbd2zH4mWL0TvQCwCIChGiOKr+Bird4vNf/FsUZxVxzjsroHVptITyeBmf+P1PYMUJK/CBX/4AjnvZcbjlR9/HV677Ch6947E6Wd/06jfic5/7DHY9twPbF23DnGUDKPYXEUURFi9eVDm9PlZRtOOeAp548glcc81VGS/sBQsG8cEPXoTf+73LsHZtxRuX+vpJJ52EK674NH73o7+LubPmVHmd8erTMTw8jDt+chtOPPkkRHF+xTXk+r12X7PXBWzbTJq3DlDv2aOh9yFgmYuvFVe7EkHj5boSgSZ7aRwf/Utrqnf8cho4aAHu/Luf4Kn/fRJ7XhzBA1+/Fy//wBqsesuR6F8wCwe84oA6g9cHNMgyafUQeiWCpFZdicDzy0P7EmDbbB4UNxSwlfFcbd3sBGylb5YvL0dIP89Drn4dAkqFbFBocYrFyryR51qSkEXUlTYkjGjzPZtw5+f/D0jqC1evXKd48Pr7MGvxbPQP9gMABocW4NC1KzF78Rz0L5iF/sG+SswEOPj0FZh30PwqPxcg2siGXgiw6pvHQvNyERksvM/ytURuZHJZrPaSclu/tU9r41TbRO30zZ68HqjahnI782s1TXf+ewM1ArYQhWyoWfFCdN1G8vKl7/aZLnWpddQJY2kqxzStl6/7C90jlfQavrYSqMw3qOWVCNadrTLf0N9auGutl+HNALYcIB0cHMSnP32l2T6Sz+WXX4bLL/+4yv+CCy7AJZdcjPXr12PFiiFcd921eMc7zq+78/Qd7zg/WEYA+PjHL8OnP30liv09iCKgOKsHAHDIghUYHBzExu2P48xj12J02x5EhQjbhrfh6KGjMDFSuX9pdnFW9TtQ8WpNkzQT9idX/gl+/Vd/PRNG9OYz3oyP/v5HcfMt63HaK08DACQTZWwb3oYj9j8cO57aDgDoQRGjo3tQ6CvU8SCKe2MUegqYs7zi8DFr0SwsWLUQAPBLh70Pl11xGb76ra/hiiuurKZZd8PN+KUPvb/6u9jfg0JfAfMOWZDh/Ud/9kf49KevRP+C2Znw+ViAwcFBPPjcw3jNm8/Ap/7mUzjtlNNQHitB3hx6wOL9AQDju8YwunUPRrfuASKg0FvAruf/f3t3HyTHed8H/vvMLgEQJIDBAiT1LnFBvVCkLGGxkCwll/i8u6LjnC4XYxdwnEsqSQkLKVW++K4kLPHHnetcScgFU3e+uCrk7jKucnx3OQALJmddLqZ2IdOOLSckMJR0tiFKh4ElWqcXEoshCYIkuLvP/dH9zPY8+zzdT793z34/VSjs9Dz9PE/39PR0//rXT7+G1Tfexst/9lK3/MpLL+PaS9fw/O9dwq43NhL87tl5F1ZeXsEbL7+O1398ozuEx40fvYZOp4OfuvtjPfUoV7/Rxr1778Wud++2rkOTtbdW8b1n2t241rO//se4fmWlO3KIBPDA3/opvOcz7+3O85G/NhyrDRcM2FZM8AA6ScA2bCcVzO41ndjqbCe+tqCKfvId9LG/exAf+7sHMdCQuPDwEi79xh/jW795Cd/6Te8Kyd0/dQ923n0n7nzHLrz70+8BIPDevzqM5vv3oOFwNSQsMJYkaBYnCOEa6EgSpLPVHSf4EpwWNZ8toBk3uOXCJRCV9HNI048s6oyaP4srcfqYy1m3Fba9JQnuhbXTaHgB28HBjfoGQ36dwjJsox4ImSTD9vK//Tb+8B//AX78rR9h74GhzQXUfjfQ7l0P3I3/YuG/xHs+9e6e/ulthe3nTctn62NWGba27IwsMmyDf6t5Tcs1OLh5evD9YJ8HBzcvZ9hy6/Wtr29sd+pvfVsMlhsc3MhmDdZZdoatrT19OcLqDwtuK1nsu7ISzLgFNl9sNB1LBf/eylm6WQQ5bAHfqq5XBmyJspP2+5TVuVOR3+ng2KymYGgwkzYsEBo3KBrVVlg5Nd0UCO6ZL/BgW1NGsIlLOZffA/XALjXOqD7fnj1NNJtNLC0t4dFHZzE5eRQ/93MTaDabmJw8iomJCRw5MomxsfHQ9RJ05UobAHDt2jUsLi5u2o7Gxsax7679aAwO4Pb9d+L2fXdg+L4D2Hf/PdbluOOeXRjYMdgt02638cprr+DBn/64cb59uAfNZhPPfuci/ubf94LNqp39D2yUl9LLfm0MuB+ADWy/DbfduaP7enLyKJ58ch7/9J9uBNGvXVsxbmvBaWqYiWvXruH8+cVuGcBbz2Nj492xhJ9/voWjjxzD/o9uXtbBjpeksveD+7Hn3iG89cqb3YoGtg1CDDSw6z17sL66jrW3VnHf3g+i/fxVAMA3/+Sb+P2v/z727N6Nb/w/38D169fx6oteMHvb7u1oDDQwsG0QH3jvB7C9eTu279oGoa0r0RBYvfk2rn/3mvM6BIDXX76Br37uqU11fXjyQch1iRcW/wR/9I+f6Xn/V+WvxmrDBQO2CUgJ3Np8ocRqfd3+kK/gQ8fW1ry6w24JtgUpTOVM7wlh7o+pLv3EM3iLpa0tW3+6t7oOCvzlX/ssDv7yX8aN76/g5kuv4z899gdoNAS+97U25LrEn/yv3+jON7B9APs/ere5Un+Bdr+viR17tvdMlhIY2D6Iez/7QQw/dB9EYE/84te/jxs/eBWi4WW3bdu9HR8Y7y3jclIaN8M2zomure6kJ/cu2cphfYgTYHCpNzh/kiBGkO0iQdx+uL6Xpu609ZraqVqGbVxra70PcdQffmfy2o9ex4Uv/Xt8/5l2z1HnwROfxKd+5dPYsXubdd7g8t340Q28ce0mvvM7l9F6/FnrgeUbL98EANx/9EH8V799ZNP7qs/BILNaP/rDJJUqBmzDsjCKCNhWYUgEVS74GxmcHhS8YFK1gG3UkAimuvRlDL6OalMdv9iCo7Z2w6yv5xv828oBvLTLniY7G4hOTgiK2o6i+qEPRUZElJTpgVpqH6O/F7wA7rLPVGX0usPK6MHjqH6rfm0uEN5mVJ1pqKDgnj3N0HJXr3rlHn98DsePn8C5c2fw1FOLePLJeTSbTTz99AWMjIyE1qGWXdU1NjaB8fHxTevnF35hsqc8gG5g0pVqQ42nGlUu2E7jto2sgCyOg44fP4Enn5zHhQvLGB8f7z6kK4rq2/j4RDejObi9HTnirSfXzxAQ2L5nB7bv2dGtY8fe2zGwbQC379/IpBXCG3/21KkZfPnLM/jlk/8IzWYT586cxb/72r/D3g/uQ2OwgcEdXlb0jr23o3FbA3s+sNe4Xe5+fxPN+/bF3mZfalzDL/xff6+bpCGlwN0ffye23+m1+5n/fgyv/cUrEDkfXzBgm4AQ4dlfOpcMomAWTNSJfJyAbTAbNkg/0Q7LNsvjhOn2fTux6x4vtf7Az3/YO1l8ex03f3wDogG8+IffQ/t3v4tbr76JsO/Wqz94Ff/ff3pxU5kbP3wNAPDNhee67QHA+uoa3nrlLWNd7/vPh3H3x9+JHUM78dG/9VORy9C4bRDbdm9cvXrr1bewfuvtTeWkFLh9/04gdEkoqa180t0P9M/vT//3b2LlhZesJ9erb63h4m/8x+7rgye8A47n5y7i6//kGXz9nzyDn/7SX7K2JyWw+wNDePlPf4Tnn3iu5z1Vl6GXeODvHMQ7D77Tul/W95O2AJdSxYCtS2DP1ucotvlNf9suOAbL2bIpbfOHXWw01WWqzzQd2AjSqpOovAO2+kUqU1a0qb9h9Qf/Nv0ftT71bFdTmbD5w8q47t/1wJzapsNe87cjmajf3bChcbJe51F94TECEeXFFEDVA7fBgG5YcNUU1DUNpWAbEsF1KADzPlF1bPMxha3PUcFl2zSdepjWK690rIFtlYHbarVw8OAIDh3y/j366Cw6nQ5OnZrBQw+NdR8uZWv3qacWceTIZDeb95VXOrH6HLU8wXWrxl5Vy2WilsslSB71m6uXCV44GBkZwfDwMJ58cg7j4+P42teWex6CZuq/vgxhXMu5On9+EceOTeHZZy/1BOHFQAMQwG13bA+Ze7PGwAC23bk99rHA4PZBvPPT7+/G/fRj193va2L3+5q5XxBmwDYGIcTnAHzuvvvuw44dkcW71tc3Z7SqgK2abroFNG3AVt22aSpj609Qo9F70K0ydoLBaj2bSdWhB7RXVzf6o8rp9QwONrDjA7vRaAB73/cxPPiLH3MOImw6MV6T+MmfvYxv/suLkNqCSQl85BcewB333IHVN9fwrd9q4U//t2/iB3/0PXz/97wrRH/4PyzZGw342dMP4T0//R68dPkl/PsTv2Mt9+G/+VF86r/7tFOdANAYHMD+B9+BgcHerN+k2VguARlTXab5XLK2ouoNzp8kiJGFsDayXsas6jW1Y/tsk7alZy8G63DJIoxrfR1YfWsVP/7WjyHkOp7+4v/p1TtorlhKicZtDXzi86P49Mn/DLvf5Y3XdHD6MH7v4SV8//ev4rl//h+N8wIbTzxVfvpLfwn3HHwX9n1kP+550JzNH/UdUhfGwi58uU7Xy+jlwuYTovfBU3kHbLPOsFWqPiSCml//Pqyvbw4YmtZB2oAtsPmg2nQCFlw2G9v6Dwo7PomzrSlRF4v191y3MQbmqiNOVmtUAoQ6njUNxRVsL0xYAFm1EcU2XAwRbT2m4QCCATLb8AB6YE0fxsB1uATbLf96P4JtmcpvUDPZy7hMi3ptooKn7XbbWF5lbx4+fBhXr7axsrKCsbGN8WubzSYef3wOFy4s48qVNg4cGO7Wc/36irGu4eFhNJtNLC8vdbNETe2qQGQSal7VZthyFeH48RM4dWomumBAnPU0PDyMK1euZNFVzM4+grGx8U0Z0ysrvZ/n+fOL1n7lwXZsw4BthUgpvwLgK6Ojo8fjZBjZslNMmT16GX3nHSdgC/Rm+5jeD+tjloo+yG0MCNz9wF2Y+J/+WuhJ8/o68I5P/Dw++z//PADg7TfexuWzf4L1W+H3Zd98+Sb+w689g6+dfLpn+qf+20+jee/enmlP/zf/N174N3+GF/7Nn8Vahncefjc+/g9GsO2ObXj1L17F+q1VSAns3L8Tt++73TyTaGDoviFs37UNjcGGF/TyIzg79mxDI+89CnWtvrUKrKkvIiCE6D6vamBAdI+NhAj/W5RwhiilxFuv3QLWpX/wJwHpXQiREmgI6Q1jIKX33ZbSHwPL7X+57u/YJPD6Szex9KXfxU++8cNu+z8//zdw8O9/wto/U3DongfvxtHf+duRAaOVdgdXfve72P3ePfjgX/9Qz3sugSaXAJPqY3Ca6YKYabo+b5wMW6B3DF8GbIsP2IYFI7MM2EYJLmfciwO2/039ML3OOmCr325qq4c/b/1JDz6U2Q8GbIm2Lpfvvy071VQubD5beT0D1ZSRG9Zf+zSvImkoa2vbVM51OAXd44/P4bHHZnHy5MlN7z311CJGRkYwOTmJxcVFLCzM9TxwTLVx8OAI9u0b6k7bt28fOp3e7FY1PIEQwCOPzOLUqRk88cTcpn62Wi2srKx0s3/1rGkTUxnX5dLrMLXlsi5VmZWVa5vKHzkyiVOnZvAP/+EJnDw54zzURXA96eWC6+lf/Is5/OIvTm0qBwAXL17sqdu0bMFp7XYbU1Ob73p8/vlLPZ+pHsDN4zdaP76MOh7NAwO2CeQ1hq1+Yma6xXBtrTeyHxWwVSezeuDXNcM2KE2GbXDZwuox1Rk3OyjqPb2d3nVzG+6bOuj0xXvXz3wIN1+6gYYA1iWwY+9OvOvwuzeVe8df+aB3i7fjTmR9TeIrv/Sv8cPnfoAfPvcDt5kciIbAwI5Bb0fTEACE97//uhsgbHh7IvV6267t2HnXHVplAp86+VcwsC3+LuSbC8/i9R+91n198yev4+3X1RfKP2CQ/p8CPRtuz4GClNZpgaogDdN6ppumadN7+mVoq/tnYNrqGw6DscblGOQFgMZtA9i2y7tlRAVIpYQfhPWCpVJK/z0A8P6W0nsqplwr9ux48PZB/PXfOgoxOIB3f+b9uHnTXta0f3DdZ2y7u4kP/9eH0WhgUxtJg5ougbiiAra2wGbagG3wQDxNwFYd8JsCtsGxgN9+256tqvbbakwpW8A2eFBlG8M2mLUXZwzbrAK2USdpSS+k6heFXeoPXkDW/zdd5NVfr631rgNb27ZAvU4dK6jPVW07pmMl07Loy6H/XXYAkNzoJ0embSarkyUG/YnIxjXLXp1XumSbJs2wTSssWBe2nHow2hRgvH59ZVOgNMr09DSWl5fw8MMzePTR2e70druNs2fP4MyZc91pFy4so9Vq9WRfdjodAF5AVi3D5KQXoOx0Omg2m2i1WhgdHe2+f/y41+ZDD03gq19d6qnrwoVlfPnLJ3um6dm6JqofSZYrTjtRzp9f7GkP8LJlR0ZGcOnSRWPmsK1dtQyf/Wz4ehofH8fU1FF88Ysn8Pjjcz3lzp/3llMFWPXs706n07Ntj42N48KF5Z5+tFotjI1NYGFhHtevd7CysoKRkVFI6T0ULVjv5mXrJPruSBn+bBXTsezOnfHbiSIkj1hjGxkZlX/wBxedy5sCti5DIgTnB7yNWj2cJ07A1hT4ZcDWm25aN64/yHp/4/YjzNqqxK2bq3j9L64DAG67czt2vWsX1t5exyt/ft3LeDR4/Yc3cPOlG8D6OtbfXsf62jrWbq1h9a01vLnyem+wTgXx1gPBu8B7cl1i9a013Pzxa5BrGyuo8/9ew82f3HBfGIt3feb9ALzxaHbeswsDtwXSqaD9aZoWfNFzwBB8YZjmk/50oc0fbKDnM4vRlpRAY7CBHXtv767TbnapBERPYHojcCwR+FvNh96/u4FXeJ9TNzCFQHlIf0zlNTQGVHpaIDCv+t4Q3mKJjeC9n9bbHQTeWw/eexIiEPD35ms0sFG/+h9+XSJQv9ZON7gsGtj5riaGPrQfO/dud/q+pAnYmgJrStKgptpnZBGwlbJ3P1+VgC1gDpjFDdiq/a5aX7aA7draRpDOtFyAF7BVw/6YAraqz0LYA7YAcNttXplbt4A33/Ta37GjN2B761Z0hm0wiKz3WV8HQWGZe0l+P1Sf1e+s62+o/vA8dYHYZUgEfbsNltG5Bmzffturd9u2zd9zfd6BAa98sH617MHPXg/EDwx4n//P/qufAQA88/eesXfIsNxJue7nsmirDK4BecD9mRAuF8aSqvO67gdJ1z8/t/rJ6twpyf4g6v3Lly/j/vvvN84DhAdLgwGoYPBVXaA2ldOZMlj1acHXeh369KjM2GCd+M4L3jwf/HDvdId6VLnTp09jeXmpG2gbGRnBoUOjxoxLm/n5ebTbV7Bv3z4AXiDu4YdPdTNjl5aWMTQ0hJWVlZ6Hdb3ySgdf+tLmLNbz5xcxPz+HiYkJ7NnTxPT09MY5lP//k0/Oo9W6hOHhAxgeHsbKykp3fNd2u41Tp2Zw4cIyOp0OxsbGcfDgSE8wtNPp4MSJ4z1lHnlktiegvLAwjytX7Mvl0o6Lxx47jYWFObTbbTSbTXz+89M9dZw/v9izfGqe4Oc2NjaO8fGJnoC1WgbbetLX+XPPPYcDBw50p42NjeNDHzrQ/fvpp5ci19vDD8/g6tU2xscnAHhDZ4yPj+Phh2fw/PMtjI9P4Pjx6U11TE+fwJEjk3jssdM4d+4MWq0WhoeHcfDgyKYAeZRvf/sy3vnO+63HKaZ9yu7d2T+0iAHbBA4dGpV/9EfFB2xNP24uAVt9GsCArT49eHLv+pWwBSDi9DGsbj2o5HKSmzRoY6vLFLxeW5P4wR+/iLU3Nz9gzYkQeNen3tt9wmKeJ2FhotpIc/tjnG0vjbDPNs0JkGnb0+vM8kTZZT9o66MeyIn63PII2AKb200asF1f772TokoB22B51VaSgK3t72AAR32WwQxYU12m3wtTH00B22BAEkgfsAV6H/SZxXeyzICt+gyCY+GHbY+uxyeu+w+VAX3bbdEB20Zj486nOAFbtd9hwDZbDNhSHAzYbh11DdgKYf5NMwU19YBt8PgwLKgafB2svy4BW/282NTHtKKGZLC9F1VPHrfSJxW1jbjMY3ovKM3ypvlsbes97udh6oPLOojb58uXL+P9748XsN2xI/uALYdESMj1ABMwf5h6YCIqYKsHzlwPTmzl9BNtl+BF8ETXVCaqPr1d13pcljWsTFhf4tSj0z8vW6CozgFbU1vr6wLDP/O+xAfISU7885BnGwzYxmtP1ZM2YOuSHZ9XwNYmzv5Hf3+rBWyV4HYQttym3zHT75bpdye43w5OazS8AGWSMWzDlknvU1xJt7s4v6Gm3+ay6XfABLc/na2cPh2o1skZERFVm+0cLxhwUmXCptnm1/8OK+tSl62cCrqG1eF6pylRWrYLCa7Jc1FDiCStN8j1uDNPDNhWiNqh6ydLpitaDNiG99XlvbQB2zTz1IV+sgyk3zm51FfEDjDPNorasefxIxInIJIFPbDiUq+pHAMxlERwH6e2K32oHDVd3+5c/g5K8p1J+z2Omt/U77BAZ1i/6nSSl+YOCiIi2lps48vqZfS/bQElW/ZqXpmpacS5+7Rq0gT+yuYyBnLUPGnL5V1HUdJ8rxiw3WKCO2L9ZCqPQAhRGlU6WCAqmz5EgausMmzjzGery6W9ONKuD9vFOVOdAwPm2+5URmswSzgsCzjYhinbX2XR6mPR2jJ1Xf+2rQNXZWbYhi2T6QJz1G+HyzoKvmdbhqjtx/SZBf/xWIuIiMJkGaysU4BLZ8rutT10TP87635ErcewYSMUDomQXf+ymDfvIRFc6zUJ3l2nK+KOYIAB28IETxCiUrXD3nfNdowKBJvqccnEUQ8VUfST5aj+NBobY+uZ6jHVGfYlCPuixLktPckXznWepHWbbkvP67boOJhhm7xuZtiGt5dFhm2SeV3mAcwZ51Hz2F6HlUvynbDN4zJfnPWRZP2p+Vz/Nl3MVPsuW9a/Xk+S/UzU73MW4mxDQL0ybMPqDnL5LQN6jxWCQXXTvOrYQv0dfNBLnTJ/iYioWqKGNdDLmuY1vadPixpyQb1OMoZtVB+7dWBzf21j2LqUy2sM27D1liRwXMVjBJchLuK+l8XxUJr5XYfzSFJPku+nS/lt2xiwrSXTsAVRGo2NB3eoE4ngh5z0oQtRQQDbQ8eCdahyYe8D5gwzW8A27KFj6rUqEzY+bz8NiRC37jpfia2LuMETVwzYJmuv6gHbJPPY9tW26foFFr1c1hdrXG7zM/UvLpeAbdSBpPq+5h2wtY2bamon6m+9/0nWdxJVDtjGmd/ls1WC249+klzFkzEiItoabMHOOEHVssawtf3tMv5oXueyrmOXuoxnWtUhH+L0KU6GbdqgbZ0zbON+zlJuJAOYmM69tm2L14YLBmwTShJ8i3uiVjW2gC2QfLl4EmXGE8z8cf3WV3BfFHfIgLBySYYbSNKOa1tJls+2XGHzqYO3JBcik96qb/vb1g+X5bKtL9vt8nrdqlyet/IlrbsuQyIE2ZbXNcMW2Li465Jhq7cZHNaCiKotyQV0Zs9TGUwZpPoFQzUt+DqLDNsqcBlbNe8MW9dyLkMiVG0/YsuUdpkn7ntJpKkv7UPGwsrntQ4YsN0iqrQTyEOak1DTvMyw9ZjWS15ZdnGkTf+3ZR6mHaKiSmz9z3q5wj7bpG0F61RMn1VWyxLsfzDTP6pePcgYJwCkL58S53sVpS4Zti51m/qnyruuE9u247pNFRmwtdVrC2q6/J1GlU7U4lC/70X2v4oPbCGicFmeQxAVyRT40xO0gtMVWzDOFohK+zvqnPUaoy3+3lLdJNlWXc518o5XMGCbQFR6dBjbrX1xbucNe61Pd71lU/Ul+KNgCgCFBXKk3DzGrd5eo2Eel04vowcabAdlSW65rNqVtCqIczCQ9lb4JLcq103U9zLLdrJuy7XOrJZF3w/G3RcmCdjGPfBNOwRAWB1Rt/e79sE2T9pb15PWGdZGnL9N/0etM/W6H/bzZS9D2DAUrkwXK1y+ry5j2AaPDWz7BNN2VfZ6JaINDLxSXemBWNs5ZtzAbF6Ztao+U/BYfz9q2AYiKgYDtgmlDdiqE5bV1WyztvRytmnBdtUJmT52X5yArZpXrRfbyV0wYKvXZQvYqgM503oKO+kLe08/OMwigy5tOdt8Sp4Zturzd/kxTro8tvmjgvd1FPYdMk1P047ts02z3YVdmFGvs1qW9XXvQo+6fTnp9yrufMDmA+EiMmxt+57gawZsswnYNhr2gKPeHlDNTNakgQw9a9ilvJ49bMqONWUwJ+1b1PxRy6Bf0DVlP9uUkf2ri7oFnBeXiYiqKzjUQVRQ0+X3xmXM2bC2XIK9acewjeqvy3tpuP5uR7Xv8pmVxWUs4qh5bO9t1YeOpekzM2xrLO0HY7oFM4/2beWCJzrqIWhKkoCt/jrsoWMq2BMcl04v49JWWF+j3rNJe/KZdd22+ZPsOFx+vPJeV2Hz207I6yzs+5d1O1m35fI9T1O/bmAgWb3BcnEH6I+bzRtH2EWr4GtTuSoGDuvK9BAxxRSwNQV41WvT9Ki/y2Lqr0nUiVvYkEWm1y6yDtjqwi7yBo+5yvyuuZ6AVe1EkoiIPGmCX0VcMHQNjvUE9AKvozJsbQHiPIOhpnpNy+Myhq1LULoMYevVdR7Te8H30yxvHR86lrTP6liSAdua6peArSkjJU3AVgkL2AJeRl3YSVjU32HzxHkvTdm485QZsHU98WPANlsM2EYL/himCdjGPfhNsr1lsX+Ik/1HxdtqAVu9vPrb9H7Y66i6XabZ+mT6LMLaCbsoUpWLIfyOExHVW5pgbdT8ejDR9FAz0zxZ/sa5DOMQVS6v31zXh065PIiq7LttdK7r3bVMEcNqJK0j6fth5bJcF1ICt265H3cCm2NgWWDAtoaC2UJRG1CSE0qVdWK77TQsqGIbKiK4Qa+tef/CMnuLzrDN4pbnLOsOzqeo9RJWl+l9l/bTnnzH4XLiX4WARxpR38ss2wlrK04WqV6n6bunf0eD76Wh+hmn3jTfK9tt8nG+Vy7tBOex1aFf5bf1Kel3X61Xl++/675yfT3+iYrLbxFvAa+PsCzWMHEOlm0XcxTbRZ6wPjFQSkREaYVlqdoyI01B2KRMx0thgTQ9OGnKTAxrS83rMj3qvTTSBPKyKFukrAO36v0yA9R1y7AF3BIF8saAbc0UcaKRdxsuJ2FRf4fNE+e9NGXjzlNUhm1Vf3i2Aj0YUGaGbdof5KIybIFiA/RVC9ZUYSzNJPIIfFUhmGa6/Sn4e2UKCib5zcqbfhePjTp4ty2brV4g/udl2s6j1pG6sJtVwFb1g4iIqAh6kEz/LYwKPukPAkuT4Wia1zXoVSd1PK4uQtmfax3HsNWH8DTJ+3ifAduEkgYYTLf2pdmh5JFhS/VV9o54K6vaQU7a4FeRAds09aZpv8gM22BgLKy8Pl9VM2yj6tQFMzKTZGq7Buxsr23/69MGBszjKdcxYCtE9IFmcP3HDdjG5TImrq1/REREdeIaNIwKPrkOiZBUT30hbUQF21zGl81C1PizLuvJFrCugjzHsFXKWua6ZdgKAWzbZn9fxfHyXp8M2JasChlF1D/CtieXE+28s5FN85turc3ydvuimPpcZoZtFnWa/o56L682XebJsv2s2kqakWgLnmUR2Iwzb1jZuOsjLAO9KgFbFejsBzy+oKqLM2wPh0wh2lrC9g9V2x/oGbHqX1Xoga04mY6uZfMO1GZZr2loiKoIW6+u89jeK3uZ65j5HHZ+UtTyMGCbgMpaSULPLNKzdpLWZ5se7GewbFi2UFhbUePKqtdhDx2zZWhxDFvzfEqcbLS47ee9rqLm1wMLdQ/Y2vqf9XIlzXZ0rVMxZXlmuSxJ6s2i/SIzbF3L92uGrUlVA7a2emy/mS5/Fy14QYyoipJkunB7Jtoaor7r3B/kxzbGbVRWZFGBONeHnyWtp59VZZnTbjt5P2wsyPZ8piIxYEtUY0ky9tKWSVI2j/mJiIionkx31xARAfUIyAZvWc86uzRsDNs09Zlem4KzcQNitrJZf4ZZPHgradl+UYdlzuPhcnXGgG0MQojPAfjcgQP3ZTqGbRpFjmHr0l9Tu6a2TfUkWTdhZeIsY9L1kVfdtvlMT1R3zURMWyZJ2aTz13HcQpfvV9bLlcU+JE6deY2DXfYtOkREREREedAfMhZ37E39gWNp+2Jqn6ju+vVckgHbGKSUXwHwlV0f2HV87Ld/JmEd3v/6TjerK2Y62w45ydVAl0Gro26bCFtuW5mwPmY1wHSSK4Gu8yS9ymgagNu0jrJoP+91lWd/qsLls8l6ufIYND/su5dk+6N49PXq+tCBsAH4w+ZzqdtU1rV8VHtxH0AQtl+0vVbzRV0YCJbR16NpepXl+ZtWJNNnFrbNmD4j2z5Nfa6NBvCNH30Dn3jHJzLrNxERERB9HOd6Pp7lb7MtOxiGNlyPDR577DSWlpZw4cIyAOC55y5hZGQksi+dTgcHDtyLTqeDsbFxjIyM4NFHZ639Vv355CcP4atfvYC9e5uh/XvssdM4e/YMWq0WAGBsbBzNZrOnfQCYnJzC9PR0ZH+rLCweElWuTFk8dMxFkuVOOgxqloTkZZXYdn1glxz51UOZ1JVXZlmSk3vXerM48Y96uh8DtgzYpmmjDAzYZtt+Xt8rUx1KlvvLuPPEPViJ0488PqOivptRvxW2PkVlkJi24bCA7fp67/Sw/XEV9l9JvkdZ/Z66zBvndyBYLux7EqePpuX9pY/9EqYPhZ+s1XF89TJkPXZ+nnVkWQ8RhcvrWQh63Unev3z5Mu6///6eacHfCf3OsuBvjV532O+X6++yKltEghe+84L3/4c+nKyBQBunTs1gYWEeU1NH8cQTc5Hzzc/PY3HxHK5ebeO7373i1Ear1cInP3kIjz8+1w2yRq3fw4cPod1u49q165vWaafTwdGjU7h6tY3nnrvUE9AtmunYNPg6bd11Orcu27e/fRn33Xd/dMGAbdtMlz3SqUDMuH4+tO/DuPB3nkk07/r6xpcli4e3JH3o2OpqPg8dUwMzhz10TEpgbW3z/HzomHk+RT+4ybL9sh86lnUbZeBDx7Jr36Xefn3omPp9CNuHurZX1YeOxfmu6L9lwSE7VB/0Ppn6GLU/Bbzfr9VVr63g+l9dBW7d6p0etj+uwv7L9lusC/Y1bJ40y2SaV23nUdul6XNUwfOBAfsxhE6d9Abrc11HRERERbElLgEOgVcHeQXtVL/37duHz39+Gk8+Oe8UsFVcg6RSAu12G0eOTGJ+fg7Hj/cGbG327h3C0FCne3E+aM+eJp5+egn79+/FxMQYnn32knO/s6b3Le1nbqqvakHbvDNs0yTPvflmvHm2bYtX3gUPUwtWtS9IGYInabYnf0f9HTZPnPfSlI07T15PVM+y/ao9dKxOAVvF5bPJermyDNgG6zT9HfVeHu1nUS6LuvLcPwSFBbKS9NF1+4j7/c9rnxZV1taHqNdRbavytnpsFznT7pvzEPYbayvvMk+aZdLndR1iwvQ5NhpewNY0v62PvKGMiKh86uJZFQNHYWxDGejLETVd/zssmJTX+rHWm7I9Ve8XvnAC/+yfncb584uYnJy0lm+1WpiYGMf58+fC+xWoX0pg794mpqdP4KGHJnD1ahvDw8Ob+hDVR5OpqaNYWJhHq9VyGs4hD2FDZmRRXxXlPbRBmnVQhYv6FehC/Ziyn5IoM8M27OTTpb/BeoLU66jsMFs2mCn72NaWrR6X99KUjTsPM2zz7U9VMMM2u/Zd6u3XDNuovjBga+8DA7ab265ywNaFunhhOtaow0kIERFt0IOWeQzZ5PLgXNu8YZmtYRf99OGF1Otg0DZq6D/XaXUwPDyMkZERzM/PhQZsL168GHvc2AsXljExMQ7Ay8qdn5/D7Oysc6BWbXemQPmBAwcAAH/+522MjpYTsDUNiVDlYdL6mRDAjh1l94IB20Sk3LiVLo0iAra2aXkOiWD6sXQJ2AZ/4BiwZcA2TRtlYMA2u/Zd6t1qAds8h0RwuT09bp1Rdai+2pYrePEuOE9wSAS9T7bXwfnDpqn5bPWZpkf9XRZ9vUWVi5qnrIP8PE7oiYioHHnu06vwW6EHaE3BWdsY+7ZpeTyzIc5vepKxd6UEjh8/gS9+8QQ6nY51uIOhoSG3TgRcv97ptjU1dRTnzy9idnY2k/V05Yo3hm5Z2bUmVdiu+0HS49i4x/R5xC4YsE2IAVvzfGtr5quQLgFbU1sufUryXpqycedRmcNx27AFbPVABgO21dCPAVt1YM2Abfy2kgZsbSczeQbMqhgUK6NPwWzOJBm2dc2EcVHmNmK6mGviEpwOlmGmCRFR/4gzzI7r/K6/62Hjzup1Jc2wzeoYwxZIxs03gBdesM/n2sBLLwHfeQFHRw7iiwDO/MY/x/TRY5uKLX/96xh78EHIF16AfP0m8OabkCHtA0Dn1VfRvPFa9yFp0w89hIWFeVx66imMPPBAaD/l6zeBt9/e1IYq33n1VZw783/gyEMP4V5DuaLlcUgpIXKquR5iL/mPf4zV6V+ONcvgHy7HbSW6zsxr3CLqPiQCkE/A1lZf0oBt2gxb1xOyPAMyUbfRRNWvNBqbT1xd2mfAthj9GLANBm3Ve0A1ArZxskKj2lKqELDV13lQ2MlImgzbOIrKsFXU/s52N0aW0gQlt0LgL+l6r2pgtIoXKoiIqJ7035Ra/b4MDQFYybTK5u7dOPLQQ1g4c8YYsG3/xYsY/8xnYtW5/Mdfx+RDP9d9PfLAA2ju3o35s2fwxP/4a4n72n7xRRz7lX+EsU9/Gmd//X9JXA/1n4YoP8DNgG0CaYMEuixPpk11h7UZJ2BrqtM0X1WyjKryQ5nVSWHS4F+cwLXrdpD3Z6xndtZJ1PcjbHqaNutQZ5b6OdiSJDBWZMA27fc/zvAB+m36at3odWSZeZJkSASyS/pdDfsdCNumo7b1qu/biIioGvTfrl95+lfwzR99o5S+ZO3j7/gEfv2hX/de3HWX988g9pAId90FfOjDAICj/+DzOHZsCu3B23oeDNbpdDD0kY92y2HnTuCtNzdeW6w88/ubyhw/8QU89thpPPGvz4R3cOdOtF98EQ//5m/2TFZDNsz91m9XaiiEXEikfrDclrK+Dly4UHYvGLBNgmPYbkwzjTtoOnEuI8M2jjyHREgqztiDYdRnEhbQiLMsLvWFyXuoirK4BHKyXh7XoUOyqrOIYFWRn3lVM2yTKCpgG7yVLulnlea29GAAT1+ugYHeulyDerbhD0zTwoZECGujaHEvxia9gJunfr4oQ0REVIbucVfMc7kkZScnJ7sPBnv00dnu+8vLy6EPIzNpt9sYHR3d1I/p6RN47LHTWFxcxJEjk6HHDc1ms9uPLMa8zUPW/UozfnFR9D66XhwoYjmqEItgwDahKmbY5nWbaBxRJ1i2IRRcyoeVzerzSFJPUSe3eQYFihyCoI7DHbjo1yER9PeAagyJkGVbCgO2brK+ayCsvrAgor5cRRy4mbI+GbAlIiLqf92MVI1LAKkKAcJgnCDrh44FqbJCeA8GW1iYx+zsRsD2+vUV4/ARYW2cP7+Iixefw969Qz3TV1ZWukHhOEHgqgUtlaz7pT/MrorLHbdPRS5DFY6JGbBNoIpDItgynsoYEsF1Xpf5GbCNbifrbbEoVdgB5qHIQI7tIUlpMGBrL8eAbbaq2KcozPokyk6aTH01P7+PRFQGte8JBjT1aaby+t+mgKjpAWV5BvKyLB9cD0IAX/jCCSwszOPChWWMj4+j3W7j8OFR67MabPbubeLcuXPGdXv69Gk8/PAMXnnFG94grP9b/Tdjqy9/XFk8typ1H8ruAGUjzZMtqb7SnuwoZd6G3i9ch0TI6jNTVH0M2CZvSykzYJs28GAbBqeK37e6B1lM4+gGVWGd62P/RpUD6v+5UL1ksa3xAgoRxRH22x11p6oeODXdah7Vtuv04LQsz+fT1OtaPrgepQQ+8YkRDA8P44kn5vCzPzuOr351GdPT05uOPwD7Z9NqtTAyMmp9/8iRSTz88AzOnDmL6enp0P5v9fhIFY/1+mlIhDzOXxmwTahKGbZRV/GoP/Ezrp88PrOsh0LZymPYpi2Xdp6s56tqwFZx6Zsp8Bj18C/TckeN667PZ2ovqt2o6UVKGrB1madMW/1Eq58w2EpERSp6f+MS/LWVyytgm0d9pvr1No4fP4FTp2Yig6a26cvLy/jyl09a37/33mEMDw9jYWEOx4+bA7ZRbWwlVV8HcS4O5N2PW7fizZNHRi4DtgllldWYth79AVD6yZft5DJpACKrYILLSWSck/m0igzIVKV+Kl6eJ6hZj1E6MMAMW71cnhm2WXEZ63UrixqD1vWhY0H9MoZtHTDAR0RESUQdg8c9Ro8aEiGLIQdswyhkIe4Ytq5WVq5tqntychKnTs3gi188gZMnZ6xth02P6u/09Ak8/PAMrl5tY3h42FqOxxHkSggOiUAZsO3AgmPemHAM2+zqKXsM27q1UUZbRUrz/ciq3SwMDEQ/CCqPdvOuN02bVd4/hLVX54BtnIeOmX5fTNP0300GbMvbbyXBi5lERFRltmETogLGYdPKCtjGbff8+cXuA8bUvPfdN4yRkRFcunQR9923OZh6/foKAPPxx8zMDPbt27fpPf22+PHxcQDAwsJczwPOgm10Op1uPVV4CJxJ1v0qYjzktKo6JIIQwLZt+bbhggHbPhV1JYoB2+zqYcC2+m0VqV8CtlX7Mc9DWODOpMr7h7D2GLC1lyEiIiKidE6fPo25uTm0220MDe3F8ePTOH16I3B66tQprKysbJpnaWkJrVYLADAxMYGJiQmcPHkSy8vLmJmZ6b4HACdPnjS2PT8/j7m5uW6drVYLU1NTmJ6e3tTGoUOHMDo6iieemMt0+YnyImTVB7GooNHRUfnssxdT15PHE7zDbsMNZqWsrsYP2Ab7q7j2W+9X1O3Crm1lddtxFW95dr1dO8u2irwNvd8CJ0UMFxDVbt719duQCEDvFeew/VHcPhW9HKb28viNKdrqqvd/8JYkfblMvy/6ctvWjz6f+m0Mtre66o1hNTjYe6Xd9hlXYR9nWm8mZe230ki63qO2mzRtU6+6rae69ZeIsnf58mXcf//91vdtWYBqaEKXB4CbkiFM2YJ5ZkUWkZ1YRhtx26xLtimV5/Lly/jIR+z7BJNGA5lvUcywJSKiLSvsicFKFce4dmmPB31ERERERFQHLuM/Fxlsj3s+l8eFXwZsiYiI+lDVsgaIiIiIiMgs62P3uo1h69K3IvtfhTtvGLBNKMsPL+vbVcOyqtRtG0kzxpJmjenzra+H94NDInBIhLrhkAjZSPJk3bT6NcM2OL2u3zd1a3+Qy5AI+u+gaf2YfpfUtOB7arr+Gxi1zstkWo6wci5lqyLpetc/vzL2NURERES0WdWGsxCiGudPDNj2GZenT6a9TVYFfePQA7RRdTBgy4Bt3TBgmx0hig0euYx9GfZ+VvOkUeXxVNNIGrANlg3+HzWG7dqauQ5TwJYBv3qLejgrEREREVGZGLBNKItgQpqM1SSCJyfqRDfOQ8eCdcQNAgTT8F0wYMuAbd0wYFt/UcuSZFmLXj+29ur6OYX9Rul3p+hlkgTj4gTxGPArh1rvSbf1Oj+Ej4iIiIi2DgZsE0g6pICu6IBt2nbVPHmfBAdFBWxd3kvaXp7zJFFEO0WexPbrCbPrNptnu3nXV9Yy5q0fA7ZRwa26GAwcrbhm2IZl05qm6fUqwQucdV+P/YCBciIiIjKJexfwVnlAb3A5q7rMVfvsksT8+NCxisj65LeMk8CkGbZ62bz7XWTAtqo7L6qfMoJkDNim148BW6DeAa40Gba2eaKmZRWwLfO7Efe3vV+/00REREREdcWALRHqG8ygaqpzgIz6T5Jxx6si7CFgehnba9dptrtP6rruiIiIqD9kfSxSxLFNv7RBVKYtGbAVQkz7fx4A0AQwI6XsuM6/1YdE0P/Og2sf6/JUa9rQL7do2/TrchFtVbwAQ0RERERERdtyAVshxEkp5engawALAKbc6+iPIRF4AkplYPCj3tQFq366WBK1LGkvcBWhnz6PICmL3V+o3/csHmBGREREpIRlg5reY/YoEW25gC2AU0KIlpRy2X/dAnCqzA6VgUEzKlOdb9G2KStglnW7YfWpzy2ruwyqggHb6lL7iaKGRFBt6vX32/6KiIiIekkpIRxPkPXjgqTHCWq+YLOmaVnJs+46tVFEH6sguJxVXeaikzNcyAod+G/FgO0hKWU78HoEwMWyOlMWPUuYDx1Lrqi2i2iHt/OnV9Y6LPKhY8BGQKsftpmoZUmyrEWvn376PILCliuvh46ZDhp5kZOIiKh/DQwMYG1tDYODxYZHbMccRba3FdvYKsd0weWs6jKrfrn2r4jAs7cvGKjEeVVtArZCiBEAx6SUMyFlxgFMALgCb2xaBIc/8F+3A+WbAI4hxnAISt2HRFDtmv7Oa74kGLAttp0q7JTqbqsEbPNqt0xRy5JkWcsY7qYfFRmwtZWp6oEuERERpbNz507cuHEDzWYztJx+LBAMHoW9Z1OhRD6iUsX9LuT53XnttRu4/fadse9gzOM8rBYBWyHEJLxxZs9GlDkmpZwKTBsXQixJKSe0sk0A4/CCtce1jFsnfOhYdv2xtVX1h44VsQ6K0q+3UxdpKwyJkGe7ZeKQCNVlG8ogzyERwtpzWc9VvLWLiIiI7Hbv3o2XX34Zu3btwsDAQNndIaKSrK2tYWVlBfv37y+7KwAqHrAVQswCGAZwBkBUUHUBwL3BCVLKZSHEjBBiWko5H5jeAbAIYFEIMSeEuBR8n8hVnmN5MmBbLwzY1hcDttVVx4BtVH1FcO1vkRdi8+ayrGmXkcF4IqL+tGvXLrzxxhv43ve+h6GhIdx5550YGBhwHtM2KVP1HMM2/zaY2UxBUkqsra3hxo0bWFlZwR133IE779xVdrcAVDxgGxz+QAhhfTCYEGIawIofiNUtATgBwBaQnQFwXQixnCTTlrYunrQREW0Natz3fh1ygtxwLGMiov4khMDdd9+N1157Da+++ip+8pOfYG1trfu+LUAYDPwlGRLBhAHbYtpg0JaCBgYGsHPnTuzfvx933rkr94s1riodsI1hCvYM3DaAEX8YhFEAc1LKA+pNKWXH/zBGQurokVVWJYdECG+r6kMiEBFVhQok9WtAsewxbAFgYKA+61f1M8lY1HVZRhuXsajrvox1kOcdSFlj5jQRAV7Qdvfu3di9e/em91ZXvf/1Z5Ktr3vvNRrm94D4vzl5Pki2iIfU9ksb/SC4nvplnfXLcrjql4DtKOzj27YDZQBvKISwckRERLXCzL/81SkAxSERNmMmTXHqti/i/pOIiIiqqF8Ctk0AnagyUspFIcRIcKI/nEJLStnKqW+UszqdRMfBMWzrhWPY1lc/jGHbr0xX0dfXe4NvWY1hu1Wz7NRvaN232br3v58wAEpERESUXr8EbMN0/P+H/P/nhRAnA+8fADAWp8Ksbzst6/a8pLdAFnnrZFRbQmydrJkitpGtcmtBnspah1m3m+RW6rpzuZU66zrJjWk9Dgz0BoWyGBIhLNBUp1vpXYdEMP2G1mUZbVyWmYiIiPKTd0IVL9K66ac7qZQqL0cex9BbIWDbw38w2em48/mZuNMA8L73vY8B2wTzJdFP4+rFpe+MOA5QtZW1DrNu17W+ftpmopYlybL20/opky3DVp/m8jrOtK3CFKCu+/qoe/+JiIjqjBdGibKz5QK2SUkp5wHMA8Do6OgWyekkIiIiIiIiIopW1LA4W+Uu2zRMDyXulwvb/bIcUfopYNuMmL6SZWNZpGKXNWZc0nb1lPo8b3VQfVRfxK04tiAzbOuFGbb1lUeGrdpn9cP6KZNLhm3U6zjTTKSs30nBVvzNJCIioq2BxzhuOKZ8/fVLwLaNjTFqdUOBMpSRor746iS5jifMafGhY/XSLw8dY6AnGzxA6h91/By5/REREdVXXolRPOfbelQcJe+Eu6JUOWloMIfoar8EbFuIyLCVUraybJBj2OZL7VC28gknM2zrpV8ybAG3YE8/bTN5ZNhSNqqQYRu3LBEREVFSW/n8l/LD7aqe+iVguwRgxvLeYXgBXaoZ3k7cq4h1wfWdXlnrkJ8dEREREVG9FXGXDM8bqK62WhJFvyzmWQBDQohhw3uTAB7JohEhxOeEEPOvvPJKFtURERERERERERER9RCyJgODCiGuAGhJKacs708COCGlnAibllFfXgPwQpZ1EpVoP4CXy+4EUYa4TVO/4TZN/YTbM/UbbtPUT7g9U78papt+WUr5c1lWWOmArRDiJLwhDUYAqOzZFrwHiJ2RUi5q5ccBTAC4go2xa0/n0K+LUsrRrOslKgO3Z+o33Kap33Cbpn7C7Zn6Dbdp6ifcnqnf1HmbrvQYtnGDrVLKZQDLOXWHiIiIiIiIiIiIKFf9MoYtERERERERERERUe0xYJvMfNkdIMoQt2fqN9ymqd9wm6Z+wu2Z+g23aeon3J6p39R2m670GLZEREREREREREREWwkzbImIiIiIiIiIiIgqggFbIiIiIiIiIiIioooYLLsDdSGEGAcwAeAKgCYASClPl9knojSEECMAjkkpZ8ruC1EaQohpAAcADPv/lrldU90JISbhHXd04B13DAGYkVK2S+wWUSb8/XZbSrlcdl+I4hBCnIS3X16WUraFEE0AowBOAHhEStkqsXtEqfjnh6cArAQmz0gpO+X0iMhdYPudg7cNd9C7LQMA6rQ9M2DrwD9pOialnApMGxdCLEkpJ0rsGlEi/ja9AOBs2X0hSkMIMQtgTko5779uAjgnhLgO4N46/SATKf52vSSlPBGYNg3gihDiEAMCVGf+fnoOwFREUaIqOgxgEgCEEGpaB8AU981UZ/5xxgkAY+r42d9fz/rTiapuGN7+eTKskBBib13OERmwdbMA4N7gBCnlshBiRggxrQIFRFXnBwGGAZwBwCwtqjX/wsOZYMah/+M74Qdsz8HLUCSqDT874IqeeSilnBdCzME7ceJ2TXU2XXYHiFJow9sHj6jXUsrFEvtDlJp/N/GMlPKA9tYCgHEwYEv1cBjADDbiHB3t/RGAGbZ9xb/StGL5UJfg7bwYsKVaCN4mLoQ4VWZfiDIwEcxA1JwFMC2EaNbpR5kI3onRKSHERUO2VhveRTeiWvIvSHAYBKo1/4Iat2PqJ+fgBbp0S2CSD9VI2LClQoiJug2bx4eORZuCfSfVBjDi3ypARETFOiqEWLK8d8n/f7SozhBlpIWNcbd0w/77RHU1ztvGiYiqw79jrWm6a1hKOV+3ABdtac/Z3vDHH58rsC+ZYMA22ijCA7aqDBERFesivAcxmTT9/zcNNE9UZVLKZSnlAf3hYv4dP4A5A4ao8vxtmHelERFVyzEwi5b6gG14Gv/unk4dH9zLIRGiNWHOctHLEBFRgSIe+njYL8NMLqo9IcQwvEDtRB0PNon8u9FsQ4wR1Yq/T57ExjniAQCPcPummhqBH7ANXBwGuF1T/zgRMoxepTFgm07H/9+W4UVEROWYBDO5qMb8ANc0vIsPw2CwluptOmxcOaIaGYY3tEd3e/azty4JIQ4xuEU1NAygJYQ4qW3Xw+B2TTXnX4So3VAICodEICKiviKEmIOXKcBbx6m2pJQdKeVpKeWUlPIQgFkhxGzZ/SKKy3/6OB/QRP3iuD7Wp383TxsA99FUVyMAem4n9y8SLwNYKKVHRNmYqvMdlwzYEhFR3/ADA0fhZSN2Su4OUWaklFMApv0LEkR1MlLnkyWioJBjiyV4d0UQ1ZLlLp4lAJN8yDrVkZ9dW+vjDwZs3TQjpvOhNkREJfMPJucAjPHWcepT8/CCtiNld4TIBR80RltIB+gOj0BUN7bj5o7/Px+yTnV0At5Fh9piwDZaG/YxaocCZYiIqFzn4A0qX+srqUQhrvj/88SJKo8PGqN+I4SYCxmaRp0PDhfVH6KMuMQyuF1TrfhjMHcfqFdXfOhYtBYiMmwZHCAiKpd/m/islJLjJFJt+QGuqwAuSiknQoo2C+kQUTpHAUwIIfRtWSU8nPLf60gpOeY41cFR2Mdjbvr/87yQ6qaF6IDsxSI6QpShccA61EdtMGAbbQn2B9ccBn+UiYhKJYQ4CWBJD9b6V1aHGcSlmmli4xZE3QH/fx57UOX5D2baNByCf2FiEsAjUspF/X2iCpsPubgwAdQ/OEBb0hl4d6mZqEAut2uqm0NldyALHBIh2lkAQ/6Jv24SwCMF94eIiHxCiEkAbctJf+1vg6Gtxb91fN5/wJiJ2t55EYKIqHjPhYxRexTeeIlEteIfQ3f8Y2rdFLzjkk6xvSJKrS+G8WCGbQQpZUcIcRzeg2y6t3RFBAmI6qAJ+/jMRJXnnzSdAHDOf7CN0vT/Pyal7Iurq7SlzPhDfMwET5D8TPIhAGNldYyIaCuTUi7649jOBYfEE0KcA7DsZ5UT1dEUgDkhxLI69vCPrYf994jqZgj2O9ZqQ0gpy+5DLQghxuEFbK9gY+za02X2iSgu/4T/MLzMQ3XVqQUvC/EML0BQnQghriN8LM+2lPJAyPtElRV4sE0T3kHnCrQgLlGd+BfZTmHjGKQDb1zEOR5/UJ34x9P7sLF/XmKwlurOj3ecgHe8MQTvOJrji1Mt+RfSmhHPhKg8BmyJiIiIiIiIiIiIKoJj2BIRERERERERERFVBAO2RERERERERERERBXBgC0RERERERERERFRRTBgS0RERERERERERFQRDNgSERERERERERERVQQDtkREREREREREREQGQoi5ottkwJaIiIiIiIiIiIhII4SYBDBedLsM2BIREREREREREREFCCGaZbXNgC0RERERERERERFRr3EAy2U0PFhGo0RERERERERERERZEUKMADgmpZwJKTMOYALAFQBNAJBSnrbUVUqwFmDAloiIiIiIiIiIiGrMH2t2AcDZiDLHpJRTgWnjQoglKeWEVnxIStkqa1gEDolAREREREREREREtSOEmBVCnPNftiOKLwA4HpwgpVz265kO1DmpppeFAVsiIiIiIiIiIiKqHSnljJRySkq5GFbOD8iuSCk7hreXAJzwyw0DaGXe0Zg4JAIRERERERERERH1synYM3DbAEb84Q/GATSFEOq9fQCGhBAnAbSKyrxlwJaIiIiIiIiIiIgK4z/UawHAmCXrNVj2JIB9YQ8TczAK+/i2KpA7KqWc19oeBjBpejBZnjgkAhERERFRxQkhRvwTm6LbnSzrYRtERETUv6SULQDLAC6EHWsIIWYBHAPwSMommwA6DmUqgQFbIiIiIqIK8wO14/6JTXea/1Tj8Tzb9seDm2XQloiIiLLmZ8xag7Z+sHYcDlm4Kam6h7T2JwHMARj2H25W2MVzDolARERERLH4t6UdA6AOWpfRm7HQ9P8/p99WllN/rgBYTHKbXJp5i+CfvMxKKSe0aScAHAVwEd76z9MsgHMAJqIKEhEREcUhpZzxA7MXhBDdwGyBwdqwvi0CCH2YWV6YYUtEREREsUgpT0spD8F7gm5HSjnhP51X/ZuA92CHKSHElYKyM41tOGZCGOetiFPwAqZdUsqOlPIE7OOwZUpK2Qaw5GeZEBEREWVKz7StQrC2bAzYEhEREVFSK/6/Tfyg4gS8W8su5NkJKeUBP4BpYpvuMm+p1JOKQ55G3CmuN5iHFjgmIiIiykogaHsV+QVrmxHTjce1ZWDAloiIiIjydBZAKQ/M8g2X1G4WTgE4U3YnAC8AD6Cd95i5RERERDlpQxujNmAoUKYSGLAlIiIiojxd8f8vPHAqhJguus2MTaKkcdMsziEiY5mIiIgoicAwCPci5EFkKbQQkWEbfMBr2RiwJSIiIqI8HfD/z+UAWAgxLIQYCWZ++mOfTcN7qm+seatCCDEMdMePrYqz8E6kiIiIiDKjgrVSykP+sFo9Y9pm1MwS7AkEh5HTsWpSg2V3gIiIiIj6k3+AfRTAoh549B9gpW4/awLew8y0MsPwAoRqPLEh/+/D/oE84AVlx+EdZB/yp03DO/BuAxgVQpwLVDsT6ItpXuc++v07B+/g/6KUciIwT9Pvw0zCoKvqV6TAelYOAZgNtqv3Fd5D4VQG8j6/v7NhfZVSdoQQEEIMVyyQTERERDUVDNYGp0spZ/z3LgghshjP9iyAWctxzCSAGcM8pWHAloiIiIgyFwgQLkspp7T35gBcklLOB8sLIS4BmJJStv0g5Kxh3mkEsiP8IKm6hU5NO+2XnQUwotcRNm+cPvoH+4f8gLDK6j2rTij84O0lAHuj1pfBAbiNozYM4Giwn37bV4QQJ9QDywJ9XYIXUD6qBZ9HAFwSQhyXUoYNw3DRb5MBWyIiIkrFFqxVEgRtm7CMU+tfeD4O74L9RKAPkwDaEcc/hWPAloiIiIjSGPYPpIOaADoAjutjgflBzVEpZc9YqH6Qdg5ekPcQgFEYntQrpZwXQugH9ddS9H/TvDH6qDwH7wFhs9qJxDK8QO5IgjHRmvCCvVGG9GCt7wSAc0KIe7U+tQBM6/NIKVtCiEcALAghlkNOiDqwj/9GRERE5MS/WDxiC9YqgaDtKRiyYIUQJ+Hd1TQC76KyusDeBnAmGIiVUi4KITp+fVewcQfVhF5v2RiwJSIiIqI01DhjrmYBPGJ57yyAOX9M2TaAo0KIcypLNODc5lkz5dRHrV9NvZ9qCAHYn0gcRg3/EMWY6SqlXPazlKcBnNbets1z2j+BMc2jrKCEB8gRERFRf/EvZjsFSsOONfUhtRzqWoZ3Ub3S+NAxIiIiIiqEP0xCE/aAYQdeBueEfwv/WQBLQojrQog5/5Y1GAK4pfRReyvrIQKaGdTRgpdxEkfbYZ59ybpDRERERC4YsCUiIiKioqjMzI5LOX9IgkMA5uGNM3vOD96O5NbDmH3MUVT7ruL2s+MwT5ohKIiIiIgoAgO2RERERFQUlYXaDCnTBNBWQVkpZUtKOSOlPADv4V1nAVxI2gGVpZtFH5P2wdEKkg2lENRE/H5GPVBsKEGdRERERBQDA7ZEREREVAh/mAPAksHpD0cAeA/xGvbHsg3O3/GzblcCZaPoQc/Q+WL2MU8dAAdS1jGMGP30x7xtRszTRHbZv0RERERkwIAtERERERXphP/PZBJAK/A0X1u5FtweyHUNmzNlOw7zxeljXq7AbTgDW2B5Et4D4UwP4rDVOx0yjzIKZtgSERER5YoBWyIiIiJKaggxH44lpZwH0BJCzAan+5mrxwBMBSaP6+PV+lmg6uFfQaZ+LMLL1G36844AuGgo1zNvzD4C0Q/hMvUtyjIAl7F654UQ08EJ/vKeAjBmmWdFCHFSm2ckYp7gumfAloiIiChHg2V3gIiIiIjqxQ/2TcAPKAohLgG46A9XEElKOSWEmPYDouoBVvsAjAUCsR14wcMhLSDZlFJO+e02ASzAeyBZUwixBGBGStny22kLIabgPaxsCV726LzjvJF9tNQxJ6Vc9NfRMX++WSHEMdVvx3XUFkJACDEcESB9xO/LSWxkDx9C77rUddAb6G3CG37h3pB5AG85l136T0RERETJCSll2X0gIiIiIiKNyoKNGKIgbp2zAMallIcSzLsEYFZKyaAtERERUY44JAIRERERUTXNYyNLtwqGGawlIiIiyh8DtkREREREFeQPT3BRH8e3DH6270zZ/SAiIiLaChiwJSIiIiKqrhkAs5Gl3DXjzuCP1XtYSrmYYT+IiIiIyIIBWyIiIiKiivKzbGfUeLZJCSGGhRDnABwFMCKEWBJCjDvOfgrA8TTtExEREZE7PnSMiIiIiKji1LAIUspWwe1OAlj2A8dEREREVAAGbImIiIiIiIiIiIgqgkMiEBEREREREREREVUEA7ZEREREREREREREFcGALREREREREREREVFFMGBLREREREREREREVBEM2BIRERERERERERFVBAO2RERERERERERERBXx/wNacBbPDJPYNAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "size = 25\n", "\n", "fig, axs = plt.subplots(4, figsize=(20, 21), sharey=True)\n", "fig.add_subplot(111, frameon=False)\n", "\n", "plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)\n", "plot_labels = [r'Constant, Low $\\rho$', r'Expansion, Low $\\rho$', \n", " r'Constant, High $\\rho$', r'Expansion, High $\\rho$']\n", "\n", "ymin = float('inf')\n", "ymax = 0\n", "for i, ax in enumerate(axs):\n", " y1, y2 = plot_scenario(rs[i], mu, N0, constants[i], plot_seed, ax, plot_labels[i])\n", " if y1 < ymin:\n", " ymin = y1\n", " if y2 > ymax:\n", " ymax = y2\n", "\n", "plt.setp(ax.get_xticklabels(), fontsize=size) \n", "plt.setp(ax.get_yticklabels(), fontsize=size)\n", "plt.setp(ax, ylim=(0.75 * ymin, 1.5 * ymax))\n", "\n", "plt.xlabel('Position (bp)', fontsize=size, labelpad = size)\n", "plt.ylabel('Coalescence time (Generations)', fontsize=size, labelpad = size)\n", "plt.tight_layout()\n", "plt.savefig(folder + 'bayesian_vs_map.pdf', bbox_inches='tight')\n", "plt.draw()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Run simulation and create table" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:48:14,677 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:14,678 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:14,710 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-09 17:48:14,714 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:14,715 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:14,716 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:14,892 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:14,937 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:14,942 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:14,953 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:20,284 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:20,291 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:20,321 DEBUG xsmc._sampler MainThread Counting mismatches for focal=2 panel=[3]\n", "2020-09-09 17:48:20,326 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:20,327 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:20,327 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:20,573 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:20,605 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:20,611 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:20,621 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:25,999 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:26,003 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:26,044 DEBUG xsmc._sampler MainThread Counting mismatches for focal=4 panel=[5]\n", "2020-09-09 17:48:26,048 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:26,049 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:26,051 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:26,284 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:26,342 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:26,348 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:26,357 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:31,449 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:31,455 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:31,486 DEBUG xsmc._sampler MainThread Counting mismatches for focal=6 panel=[7]\n", "2020-09-09 17:48:31,490 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:31,490 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:31,491 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:31,767 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:31,833 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:31,838 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:31,847 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:36,914 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:36,921 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:36,963 DEBUG xsmc._sampler MainThread Counting mismatches for focal=8 panel=[9]\n", "2020-09-09 17:48:36,965 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:36,965 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:36,966 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:37,158 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:37,206 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:37,211 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:37,220 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:42,195 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:42,198 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:42,215 DEBUG xsmc._sampler MainThread Counting mismatches for focal=10 panel=[11]\n", "2020-09-09 17:48:42,217 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:42,217 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:42,218 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:42,239 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:42,242 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:42,249 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:42,260 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:47,309 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:47,321 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:47,361 DEBUG xsmc._sampler MainThread Counting mismatches for focal=12 panel=[13]\n", "2020-09-09 17:48:47,365 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:47,366 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:47,366 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:47,617 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:47,674 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:47,679 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:47,689 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:52,570 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:52,572 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:52,595 DEBUG xsmc._sampler MainThread Counting mismatches for focal=14 panel=[15]\n", "2020-09-09 17:48:52,597 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:52,597 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:48:52,598 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:52,750 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:52,791 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:52,797 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:52,806 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:48:57,635 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:48:57,641 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:48:57,675 DEBUG xsmc._sampler MainThread Counting mismatches for focal=16 panel=[17]\n", "2020-09-09 17:48:57,679 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:48:57,679 DEBUG xsmc._sampler MainThread Computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:48:57,680 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:48:57,857 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:48:57,906 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:48:57,911 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:48:57,921 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:03,241 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:03,243 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:03,265 DEBUG xsmc._sampler MainThread Counting mismatches for focal=18 panel=[19]\n", "2020-09-09 17:49:03,266 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:03,267 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:03,268 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:03,388 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:03,428 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:03,432 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:03,440 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:08,677 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:08,678 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:08,701 DEBUG xsmc._sampler MainThread Counting mismatches for focal=20 panel=[21]\n", "2020-09-09 17:49:08,702 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:08,703 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:08,703 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:08,862 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:08,901 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:08,909 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:08,918 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:13,734 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:13,735 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:13,761 DEBUG xsmc._sampler MainThread Counting mismatches for focal=22 panel=[23]\n", "2020-09-09 17:49:13,763 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:13,764 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:13,765 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:13,918 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:13,962 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:13,967 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:13,975 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:19,414 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:19,415 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:19,438 DEBUG xsmc._sampler MainThread Counting mismatches for focal=24 panel=[25]\n", "2020-09-09 17:49:19,440 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:19,441 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:19,442 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:19,680 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:19,729 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:19,734 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:19,742 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:25,085 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:25,091 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:25,130 DEBUG xsmc._sampler MainThread Counting mismatches for focal=26 panel=[27]\n", "2020-09-09 17:49:25,135 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:25,135 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:25,136 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:25,367 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:25,422 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:25,428 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:25,441 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:30,492 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:30,498 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:30,534 DEBUG xsmc._sampler MainThread Counting mismatches for focal=28 panel=[29]\n", "2020-09-09 17:49:30,535 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:30,536 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:30,536 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:30,685 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:30,729 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:30,733 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:30,743 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:35,797 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:35,799 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:35,830 DEBUG xsmc._sampler MainThread Counting mismatches for focal=30 panel=[31]\n", "2020-09-09 17:49:35,832 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:35,833 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:35,833 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:36,020 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:36,066 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:36,071 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:36,081 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:40,954 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:40,955 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:40,982 DEBUG xsmc._sampler MainThread Counting mismatches for focal=32 panel=[33]\n", "2020-09-09 17:49:40,984 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:40,984 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:40,985 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:41,089 DEBUG xsmc._sampler MainThread Done computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:49:41,121 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:41,126 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:41,134 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:46,028 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:46,028 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:46,053 DEBUG xsmc._sampler MainThread Counting mismatches for focal=34 panel=[35]\n", "2020-09-09 17:49:46,054 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:46,055 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:46,056 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:46,227 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:46,269 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:46,273 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:46,282 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:51,409 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:51,412 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:51,449 DEBUG xsmc._sampler MainThread Counting mismatches for focal=36 panel=[37]\n", "2020-09-09 17:49:51,450 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:51,450 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:51,451 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:51,610 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:51,658 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:51,663 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:51,672 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:49:57,133 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:49:57,135 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:49:57,167 DEBUG xsmc._sampler MainThread Counting mismatches for focal=38 panel=[39]\n", "2020-09-09 17:49:57,169 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:49:57,169 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:49:57,170 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:49:57,478 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:49:57,549 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:49:57,556 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:49:57,569 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:03,336 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:50:03,345 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:50:03,387 DEBUG xsmc._sampler MainThread Counting mismatches for focal=40 panel=[41]\n", "2020-09-09 17:50:03,390 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:03,390 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:03,391 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:03,702 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:03,773 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:03,782 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:03,797 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:10,344 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:50:10,350 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:50:10,406 DEBUG xsmc._sampler MainThread Counting mismatches for focal=42 panel=[43]\n", "2020-09-09 17:50:10,410 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:10,411 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:10,411 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:10,776 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:10,864 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:10,874 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:10,896 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:16,354 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:50:16,361 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:50:16,396 DEBUG xsmc._sampler MainThread Counting mismatches for focal=44 panel=[45]\n", "2020-09-09 17:50:16,401 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:16,401 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:16,402 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:16,584 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:16,632 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:16,639 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:16,649 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:22,491 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:50:22,502 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:50:22,548 DEBUG xsmc._sampler MainThread Counting mismatches for focal=46 panel=[47]\n", "2020-09-09 17:50:22,553 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:22,554 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:22,554 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:22,829 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:22,901 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:22,909 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:22,923 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:28,473 DEBUG xsmc.xsmc MainThread Estimated θ=0.000584\n", "2020-09-09 17:50:28,483 DEBUG xsmc.xsmc MainThread Setting window size w=239.000000\n", "2020-09-09 17:50:28,516 DEBUG xsmc._sampler MainThread Counting mismatches for focal=48 panel=[49]\n", "2020-09-09 17:50:28,518 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:28,519 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:28,519 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4186) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.183e+03 4.184e+03 4.185e+03] params={'theta': 0.13953033089637756, 'rho': 0.009966452606022358, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:28,751 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:28,805 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:28,811 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:28,825 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:33,567 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:50:33,568 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:50:33,595 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-09 17:50:33,596 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:33,596 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:33,597 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:33,747 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:33,790 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:33,795 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:33,804 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:38,782 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:50:38,783 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:50:38,817 DEBUG xsmc._sampler MainThread Counting mismatches for focal=2 panel=[3]\n", "2020-09-09 17:50:38,818 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:38,819 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:38,819 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:39,009 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:39,058 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:39,066 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:39,075 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:43,744 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:50:43,744 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:50:43,766 DEBUG xsmc._sampler MainThread Counting mismatches for focal=4 panel=[5]\n", "2020-09-09 17:50:43,768 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:43,768 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:43,769 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:43,966 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:43,997 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:44,006 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:44,014 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:49,252 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:50:49,257 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:50:49,294 DEBUG xsmc._sampler MainThread Counting mismatches for focal=6 panel=[7]\n", "2020-09-09 17:50:49,298 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:49,298 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:49,299 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:49,487 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:49,536 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:49,541 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:49,551 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:50:54,661 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:50:54,665 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:50:54,698 DEBUG xsmc._sampler MainThread Counting mismatches for focal=8 panel=[9]\n", "2020-09-09 17:50:54,700 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:50:54,701 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:50:54,701 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:50:54,986 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:50:55,046 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:50:55,052 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:50:55,062 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:00,459 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:00,464 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:00,497 DEBUG xsmc._sampler MainThread Counting mismatches for focal=10 panel=[11]\n", "2020-09-09 17:51:00,501 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:00,502 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:00,502 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:00,724 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:00,759 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:00,765 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:00,776 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:06,040 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:06,042 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:06,067 DEBUG xsmc._sampler MainThread Counting mismatches for focal=12 panel=[13]\n", "2020-09-09 17:51:06,069 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:06,070 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:06,071 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:06,377 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:06,403 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:06,408 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:06,418 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:11,984 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:11,990 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:12,024 DEBUG xsmc._sampler MainThread Counting mismatches for focal=14 panel=[15]\n", "2020-09-09 17:51:12,028 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:12,028 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:12,029 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:12,162 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:12,203 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:12,208 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:12,222 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:17,069 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:17,070 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:17,095 DEBUG xsmc._sampler MainThread Counting mismatches for focal=16 panel=[17]\n", "2020-09-09 17:51:17,097 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:17,097 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:17,098 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:51:17,259 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:17,305 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:17,310 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:17,320 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:22,464 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:22,465 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:22,491 DEBUG xsmc._sampler MainThread Counting mismatches for focal=18 panel=[19]\n", "2020-09-09 17:51:22,493 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:22,493 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:22,494 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:22,689 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:22,728 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:22,733 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:22,741 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:27,549 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:27,550 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:27,581 DEBUG xsmc._sampler MainThread Counting mismatches for focal=20 panel=[21]\n", "2020-09-09 17:51:27,583 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:27,583 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:27,584 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:27,735 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:27,782 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:27,789 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:27,798 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:33,192 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:33,196 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:33,234 DEBUG xsmc._sampler MainThread Counting mismatches for focal=22 panel=[23]\n", "2020-09-09 17:51:33,238 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:33,239 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:33,239 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:33,424 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:33,468 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:33,473 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:33,487 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:38,616 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:38,620 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:38,652 DEBUG xsmc._sampler MainThread Counting mismatches for focal=24 panel=[25]\n", "2020-09-09 17:51:38,654 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:38,655 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:38,656 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:38,971 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:39,019 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:39,025 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:39,035 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:44,221 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:44,226 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:44,260 DEBUG xsmc._sampler MainThread Counting mismatches for focal=26 panel=[27]\n", "2020-09-09 17:51:44,262 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:44,262 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:44,263 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:44,423 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:44,468 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:44,474 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:44,483 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:49,654 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:49,655 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:49,680 DEBUG xsmc._sampler MainThread Counting mismatches for focal=28 panel=[29]\n", "2020-09-09 17:51:49,682 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:49,683 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:49,683 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:49,896 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:49,928 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:49,933 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:49,941 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:51:55,182 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:51:55,186 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:51:55,212 DEBUG xsmc._sampler MainThread Counting mismatches for focal=30 panel=[31]\n", "2020-09-09 17:51:55,215 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:51:55,215 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:51:55,215 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:51:55,509 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:51:55,542 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:51:55,547 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:51:55,557 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:00,792 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:00,794 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:00,819 DEBUG xsmc._sampler MainThread Counting mismatches for focal=32 panel=[33]\n", "2020-09-09 17:52:00,821 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:00,822 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:00,822 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:01,095 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:01,150 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:01,155 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:01,163 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:06,005 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:52:06,006 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:06,036 DEBUG xsmc._sampler MainThread Counting mismatches for focal=34 panel=[35]\n", "2020-09-09 17:52:06,038 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:06,039 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:06,039 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:06,274 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:06,306 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:06,311 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:06,324 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:11,698 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:11,706 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:11,741 DEBUG xsmc._sampler MainThread Counting mismatches for focal=36 panel=[37]\n", "2020-09-09 17:52:11,745 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:11,746 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:11,746 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:11,872 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:11,889 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:11,895 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:11,908 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:17,103 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:17,104 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:17,128 DEBUG xsmc._sampler MainThread Counting mismatches for focal=38 panel=[39]\n", "2020-09-09 17:52:17,130 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:17,130 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:17,130 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:17,295 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:17,332 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:17,337 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:17,346 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:22,107 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:22,109 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:22,132 DEBUG xsmc._sampler MainThread Counting mismatches for focal=40 panel=[41]\n", "2020-09-09 17:52:22,134 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:22,134 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:22,135 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:22,290 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:22,323 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:22,329 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:22,337 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:27,512 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:27,518 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:27,547 DEBUG xsmc._sampler MainThread Counting mismatches for focal=42 panel=[43]\n", "2020-09-09 17:52:27,549 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:27,550 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:27,550 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:27,767 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:27,807 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:27,812 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:27,821 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:33,000 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:33,002 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:33,025 DEBUG xsmc._sampler MainThread Counting mismatches for focal=44 panel=[45]\n", "2020-09-09 17:52:33,028 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:33,028 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:33,029 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:33,202 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:33,240 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:33,245 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:33,253 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:37,934 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:37,934 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:37,965 DEBUG xsmc._sampler MainThread Counting mismatches for focal=46 panel=[47]\n", "2020-09-09 17:52:37,967 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:37,967 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:37,968 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:38,204 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:38,245 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:38,254 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:38,263 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:43,090 DEBUG xsmc.xsmc MainThread Estimated θ=0.000650\n", "2020-09-09 17:52:43,096 DEBUG xsmc.xsmc MainThread Setting window size w=215.000000\n", "2020-09-09 17:52:43,121 DEBUG xsmc._sampler MainThread Counting mismatches for focal=48 panel=[49]\n", "2020-09-09 17:52:43,123 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:43,124 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:43,124 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 4653) positions=[0.000e+00 1.000e+00 2.000e+00 ... 4.650e+03 4.651e+03 4.652e+03] params={'theta': 0.13972678780555725, 'rho': 0.00998048484325409, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:52:43,352 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:43,383 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:43,388 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:43,397 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:48,171 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:52:48,172 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:52:48,358 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-09 17:52:48,367 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:48,368 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:48,369 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:52:52,081 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:52:52,754 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:52:52,770 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:52:52,786 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:52:58,436 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:52:58,443 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:52:58,633 DEBUG xsmc._sampler MainThread Counting mismatches for focal=2 panel=[3]\n", "2020-09-09 17:52:58,645 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:52:58,645 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:52:58,646 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:53:02,670 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:53:03,379 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:53:03,387 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:53:03,405 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:53:08,320 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:53:08,328 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:53:08,614 DEBUG xsmc._sampler MainThread Counting mismatches for focal=4 panel=[5]\n", "2020-09-09 17:53:08,620 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:53:08,621 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:53:08,621 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:53:12,514 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:53:13,216 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:53:13,225 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:53:13,247 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:53:18,158 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:53:18,165 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:53:18,402 DEBUG xsmc._sampler MainThread Counting mismatches for focal=6 panel=[7]\n", "2020-09-09 17:53:18,409 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:53:18,410 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:53:18,410 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:53:21,755 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:53:22,494 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:53:22,504 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:53:22,526 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:53:27,685 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:53:27,687 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:53:27,887 DEBUG xsmc._sampler MainThread Counting mismatches for focal=8 panel=[9]\n", "2020-09-09 17:53:27,893 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:53:27,893 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:53:27,894 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:53:31,764 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:53:32,473 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:53:32,485 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:53:32,503 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:53:37,389 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:53:37,392 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:53:37,598 DEBUG xsmc._sampler MainThread Counting mismatches for focal=10 panel=[11]\n", "2020-09-09 17:53:37,602 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:53:37,603 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:53:37,603 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:53:41,435 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:53:42,095 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:53:42,104 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:53:42,131 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:53:47,031 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:53:47,032 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:53:47,235 DEBUG xsmc._sampler MainThread Counting mismatches for focal=12 panel=[13]\n", "2020-09-09 17:53:47,239 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:53:47,239 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:53:47,239 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:53:50,877 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:53:51,564 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:53:51,573 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:53:51,592 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:53:56,900 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:53:56,900 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:53:57,075 DEBUG xsmc._sampler MainThread Counting mismatches for focal=14 panel=[15]\n", "2020-09-09 17:53:57,081 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:53:57,082 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:53:57,082 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:54:01,252 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:54:01,945 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:54:01,953 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:54:01,977 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:54:06,786 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:54:06,790 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:54:07,011 DEBUG xsmc._sampler MainThread Counting mismatches for focal=16 panel=[17]\n", "2020-09-09 17:54:07,015 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:54:07,016 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:54:07,016 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:54:11,152 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:54:11,840 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:54:11,849 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:54:11,866 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:54:16,933 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:54:16,940 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:54:17,173 DEBUG xsmc._sampler MainThread Counting mismatches for focal=18 panel=[19]\n", "2020-09-09 17:54:17,177 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:54:17,178 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:54:17,179 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:54:20,671 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:54:21,434 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:54:21,443 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:54:21,466 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:54:27,456 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:54:27,460 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:54:27,647 DEBUG xsmc._sampler MainThread Counting mismatches for focal=20 panel=[21]\n", "2020-09-09 17:54:27,656 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:54:27,657 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:54:27,657 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:54:32,204 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:54:33,175 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:54:33,184 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:54:33,204 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:54:38,489 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:54:38,494 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:54:38,748 DEBUG xsmc._sampler MainThread Counting mismatches for focal=22 panel=[23]\n", "2020-09-09 17:54:38,756 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:54:38,757 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:54:38,757 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:54:43,221 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:54:43,941 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:54:43,950 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:54:43,972 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:54:49,012 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:54:49,013 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:54:49,217 DEBUG xsmc._sampler MainThread Counting mismatches for focal=24 panel=[25]\n", "2020-09-09 17:54:49,223 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:54:49,224 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:54:49,224 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:54:54,000 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:54:54,851 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:54:54,860 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:54:54,880 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:54:59,907 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:54:59,909 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:55:00,130 DEBUG xsmc._sampler MainThread Counting mismatches for focal=26 panel=[27]\n", "2020-09-09 17:55:00,133 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:55:00,133 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:55:00,135 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:55:03,773 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:55:04,465 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:55:04,477 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:55:04,500 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:55:09,377 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:55:09,379 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:55:09,625 DEBUG xsmc._sampler MainThread Counting mismatches for focal=28 panel=[29]\n", "2020-09-09 17:55:09,629 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:55:09,630 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:55:09,630 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:55:13,494 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:55:14,204 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:55:14,213 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:55:14,230 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:55:19,196 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:55:19,199 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:55:19,425 DEBUG xsmc._sampler MainThread Counting mismatches for focal=30 panel=[31]\n", "2020-09-09 17:55:19,431 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:55:19,433 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:55:19,433 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:55:23,079 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:55:23,921 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:55:23,933 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:55:23,953 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:55:29,026 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:55:29,028 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:55:29,207 DEBUG xsmc._sampler MainThread Counting mismatches for focal=32 panel=[33]\n", "2020-09-09 17:55:29,210 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:55:29,211 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:55:29,211 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:55:33,226 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:55:33,919 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:55:33,927 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:55:33,944 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:55:38,841 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:55:38,846 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:55:39,074 DEBUG xsmc._sampler MainThread Counting mismatches for focal=34 panel=[35]\n", "2020-09-09 17:55:39,083 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:55:39,084 DEBUG xsmc._sampler MainThread Computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:55:39,084 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:55:42,790 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:55:43,486 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:55:43,495 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:55:43,512 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:55:48,466 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:55:48,466 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:55:48,681 DEBUG xsmc._sampler MainThread Counting mismatches for focal=36 panel=[37]\n", "2020-09-09 17:55:48,685 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:55:48,686 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:55:48,686 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:55:52,600 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:55:53,331 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:55:53,343 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:55:53,361 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:55:58,425 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:55:58,426 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:55:58,633 DEBUG xsmc._sampler MainThread Counting mismatches for focal=38 panel=[39]\n", "2020-09-09 17:55:58,636 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:55:58,636 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:55:58,637 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:56:02,401 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:56:03,078 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:56:03,087 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:56:03,102 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:56:07,887 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:56:07,888 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:56:08,077 DEBUG xsmc._sampler MainThread Counting mismatches for focal=40 panel=[41]\n", "2020-09-09 17:56:08,080 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:56:08,081 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:56:08,082 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:56:11,592 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:56:12,247 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:56:12,256 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:56:12,274 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:56:17,196 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:56:17,197 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:56:17,391 DEBUG xsmc._sampler MainThread Counting mismatches for focal=42 panel=[43]\n", "2020-09-09 17:56:17,394 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:56:17,394 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:56:17,394 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:56:21,212 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:56:21,906 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:56:21,915 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:56:21,933 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:56:27,079 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:56:27,079 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:56:27,253 DEBUG xsmc._sampler MainThread Counting mismatches for focal=44 panel=[45]\n", "2020-09-09 17:56:27,256 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:56:27,256 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:56:27,257 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:56:31,101 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:56:31,799 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:56:31,808 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:56:31,825 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:56:36,743 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:56:36,744 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:56:36,937 DEBUG xsmc._sampler MainThread Counting mismatches for focal=46 panel=[47]\n", "2020-09-09 17:56:36,940 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:56:36,941 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:56:36,941 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:56:41,186 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:56:41,862 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:56:41,870 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:56:41,885 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:56:46,683 DEBUG xsmc.xsmc MainThread Estimated θ=0.000574\n", "2020-09-09 17:56:46,683 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:56:46,888 DEBUG xsmc._sampler MainThread Counting mismatches for focal=48 panel=[49]\n", "2020-09-09 17:56:46,891 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:56:46,891 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:56:46,892 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.00975396204739809, 'rho': 0.00975396204739809, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:56:51,035 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:56:51,724 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:56:51,732 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:56:51,748 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:56:57,155 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:56:57,158 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:56:57,345 DEBUG xsmc._sampler MainThread Counting mismatches for focal=0 panel=[1]\n", "2020-09-09 17:56:57,350 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:56:57,351 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:56:57,351 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:57:01,814 DEBUG xsmc._sampler MainThread Done computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:57:02,532 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:57:02,540 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:57:02,554 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:57:07,477 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:57:07,477 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:57:07,676 DEBUG xsmc._sampler MainThread Counting mismatches for focal=2 panel=[3]\n", "2020-09-09 17:57:07,680 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:57:07,680 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:57:07,680 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:57:11,518 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:57:12,189 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:57:12,198 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:57:12,215 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:57:17,204 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:57:17,208 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:57:17,371 DEBUG xsmc._sampler MainThread Counting mismatches for focal=4 panel=[5]\n", "2020-09-09 17:57:17,377 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:57:17,378 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:57:17,378 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:57:21,915 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:57:22,623 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:57:22,635 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:57:22,652 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:57:28,038 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:57:28,045 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:57:28,236 DEBUG xsmc._sampler MainThread Counting mismatches for focal=6 panel=[7]\n", "2020-09-09 17:57:28,243 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:57:28,244 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:57:28,244 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:57:32,574 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:57:33,259 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:57:33,267 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:57:33,289 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:57:38,108 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:57:38,108 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:57:38,290 DEBUG xsmc._sampler MainThread Counting mismatches for focal=8 panel=[9]\n", "2020-09-09 17:57:38,293 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:57:38,293 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:57:38,294 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:57:41,845 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:57:42,513 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:57:42,522 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:57:42,538 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:57:47,470 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:57:47,470 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:57:47,655 DEBUG xsmc._sampler MainThread Counting mismatches for focal=10 panel=[11]\n", "2020-09-09 17:57:47,658 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:57:47,659 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:57:47,659 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:57:51,888 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:57:52,570 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:57:52,578 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:57:52,594 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:57:57,815 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:57:57,821 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:57:57,988 DEBUG xsmc._sampler MainThread Counting mismatches for focal=12 panel=[13]\n", "2020-09-09 17:57:57,997 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:57:57,997 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:57:57,998 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:58:02,312 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:58:03,009 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:58:03,018 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:58:03,039 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:58:08,019 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:58:08,024 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:58:08,199 DEBUG xsmc._sampler MainThread Counting mismatches for focal=14 panel=[15]\n", "2020-09-09 17:58:08,203 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:58:08,204 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:58:08,204 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:58:12,296 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:58:12,991 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:58:12,999 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:58:13,023 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:58:17,842 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:58:17,842 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:58:18,017 DEBUG xsmc._sampler MainThread Counting mismatches for focal=16 panel=[17]\n", "2020-09-09 17:58:18,020 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:58:18,020 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:58:18,021 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:58:21,997 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:58:22,669 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:58:22,677 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:58:22,693 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:58:27,810 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:58:27,811 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:58:28,001 DEBUG xsmc._sampler MainThread Counting mismatches for focal=18 panel=[19]\n", "2020-09-09 17:58:28,004 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:58:28,005 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:58:28,005 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:58:31,950 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:58:32,615 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:58:32,626 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:58:32,645 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:58:37,633 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:58:37,641 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:58:37,885 DEBUG xsmc._sampler MainThread Counting mismatches for focal=20 panel=[21]\n", "2020-09-09 17:58:37,893 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:58:37,893 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:58:37,894 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:58:41,821 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:58:42,449 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:58:42,458 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:58:42,478 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:58:47,273 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:58:47,273 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:58:47,473 DEBUG xsmc._sampler MainThread Counting mismatches for focal=22 panel=[23]\n", "2020-09-09 17:58:47,476 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:58:47,476 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:58:47,477 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:58:51,224 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:58:51,935 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:58:51,943 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:58:51,959 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:58:57,275 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:58:57,276 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:58:57,468 DEBUG xsmc._sampler MainThread Counting mismatches for focal=24 panel=[25]\n", "2020-09-09 17:58:57,471 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:58:57,472 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:58:57,472 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:59:01,544 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:59:02,246 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:59:02,255 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:59:02,270 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:59:07,104 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:59:07,104 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:59:07,276 DEBUG xsmc._sampler MainThread Counting mismatches for focal=26 panel=[27]\n", "2020-09-09 17:59:07,278 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:59:07,279 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:59:07,280 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:59:11,292 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:59:11,948 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:59:11,956 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:59:11,971 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:59:16,953 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:59:16,957 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:59:17,161 DEBUG xsmc._sampler MainThread Counting mismatches for focal=28 panel=[29]\n", "2020-09-09 17:59:17,170 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:59:17,171 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:59:17,172 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:59:21,090 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:59:21,762 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:59:21,770 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:59:21,787 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:59:26,937 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:59:26,938 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:59:27,158 DEBUG xsmc._sampler MainThread Counting mismatches for focal=30 panel=[31]\n", "2020-09-09 17:59:27,161 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:59:27,161 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:59:27,162 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:59:31,080 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:59:31,761 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:59:31,770 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:59:31,786 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:59:36,695 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:59:36,696 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:59:36,883 DEBUG xsmc._sampler MainThread Counting mismatches for focal=32 panel=[33]\n", "2020-09-09 17:59:36,886 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:59:36,887 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:59:36,887 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 17:59:40,951 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:59:41,640 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:59:41,648 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:59:41,665 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:59:46,533 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:59:46,533 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:59:46,725 DEBUG xsmc._sampler MainThread Counting mismatches for focal=34 panel=[35]\n", "2020-09-09 17:59:46,728 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:59:46,728 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:59:46,729 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-09 17:59:50,982 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 17:59:51,680 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 17:59:51,688 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 17:59:51,704 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 17:59:57,082 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 17:59:57,083 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 17:59:57,257 DEBUG xsmc._sampler MainThread Counting mismatches for focal=36 panel=[37]\n", "2020-09-09 17:59:57,261 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 17:59:57,262 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 17:59:57,262 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 18:00:01,858 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 18:00:02,553 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 18:00:02,563 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 18:00:02,578 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 18:00:07,515 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 18:00:07,516 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 18:00:07,707 DEBUG xsmc._sampler MainThread Counting mismatches for focal=38 panel=[39]\n", "2020-09-09 18:00:07,717 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 18:00:07,717 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 18:00:07,718 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 18:00:11,904 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 18:00:12,591 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 18:00:12,600 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 18:00:12,616 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 18:00:17,381 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 18:00:17,382 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 18:00:17,584 DEBUG xsmc._sampler MainThread Counting mismatches for focal=40 panel=[41]\n", "2020-09-09 18:00:17,587 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 18:00:17,588 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 18:00:17,588 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 18:00:21,433 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 18:00:22,107 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 18:00:22,115 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 18:00:22,132 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 18:00:27,188 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 18:00:27,189 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 18:00:27,360 DEBUG xsmc._sampler MainThread Counting mismatches for focal=42 panel=[43]\n", "2020-09-09 18:00:27,363 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 18:00:27,364 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 18:00:27,364 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 18:00:31,258 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 18:00:31,948 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 18:00:31,956 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 18:00:31,972 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 18:00:36,915 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 18:00:36,916 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 18:00:37,136 DEBUG xsmc._sampler MainThread Counting mismatches for focal=44 panel=[45]\n", "2020-09-09 18:00:37,142 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 18:00:37,143 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 18:00:37,143 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 18:00:40,898 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 18:00:41,568 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 18:00:41,577 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 18:00:41,593 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 18:00:46,360 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 18:00:46,361 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 18:00:46,540 DEBUG xsmc._sampler MainThread Counting mismatches for focal=46 panel=[47]\n", "2020-09-09 18:00:46,544 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 18:00:46,545 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 18:00:46,545 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 18:00:50,762 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 18:00:51,453 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 18:00:51,462 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 18:00:51,478 DEBUG xsmc.sampler MainThread Done sampling heights\n", "2020-09-09 18:00:56,958 DEBUG xsmc.xsmc MainThread Estimated θ=0.000562\n", "2020-09-09 18:00:56,960 DEBUG xsmc.xsmc MainThread Setting window size w=17.000000\n", "2020-09-09 18:00:57,170 DEBUG xsmc._sampler MainThread Counting mismatches for focal=48 panel=[49]\n", "2020-09-09 18:00:57,177 DEBUG xsmc._sampler MainThread Sampling paths\n", "2020-09-09 18:00:57,178 DEBUG xsmc._sampler MainThread Computing log Q\n", "2020-09-09 18:00:57,179 DEBUG xsmc._sampler MainThread Xcs.shape=(1, 58825) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.8822e+04 5.8823e+04 5.8824e+04] params={'theta': 0.009552810341119766, 'rho': 0.009552810341119766, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-09 18:01:01,500 DEBUG xsmc._sampler MainThread Done computing log Q\n", "2020-09-09 18:01:02,192 DEBUG xsmc._sampler MainThread Done sampling paths.\n", "2020-09-09 18:01:02,200 DEBUG xsmc.sampler MainThread Sampling heights\n", "2020-09-09 18:01:02,221 DEBUG xsmc.sampler MainThread Done sampling heights\n" ] } ], "source": [ "table_seed = 6\n", "err_mats = np.empty((4, 4, num_sim))\n", "for i in range(4):\n", " err_mats[i] = run_sim(num_sim, rs[i], constants[i], table_seed)" ] }, { "cell_type": "code", "execution_count": 157, "metadata": {}, "outputs": [], "source": [ "columns = ['MAP', 'Bayesian']\n", "mean = np.average(err_mats, axis=2)\n", "se = sem(err_mats, axis=2)\n", "\n", "entries_abs = mfunc(mean[:,:2], se[:,:2], 2)\n", "entries_log = mfunc(mean[:,2:], se[:,2:], 4)" ] }, { "cell_type": "code", "execution_count": 158, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Scenario1234
MAP21203.53 (1656.44)18759.03 (950.83)11827.70 (268.42)10315.51 (236.27)
Bayesian21371.40 (1658.00)19538.58 (985.33)9024.57 (194.65)8173.74 (136.44)
\n", "
" ], "text/plain": [ "Scenario 1 2 3 \\\n", "MAP 21203.53 (1656.44) 18759.03 (950.83) 11827.70 (268.42) \n", "Bayesian 21371.40 (1658.00) 19538.58 (985.33) 9024.57 (194.65) \n", "\n", "Scenario 4 \n", "MAP 10315.51 (236.27) \n", "Bayesian 8173.74 (136.44) " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df_abs = pd.DataFrame(columns=columns, data=entries_abs)\n", "save_table(df_abs, 'table3_1.tex')" ] }, { "cell_type": "code", "execution_count": 159, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Scenario1234
MAP0.3136 (0.0074)0.3052 (0.0051)0.3114 (0.0058)0.3089 (0.0072)
Bayesian0.3049 (0.0083)0.3001 (0.0043)0.2454 (0.0033)0.2545 (0.0052)
\n", "
" ], "text/plain": [ "Scenario 1 2 3 4\n", "MAP 0.3136 (0.0074) 0.3052 (0.0051) 0.3114 (0.0058) 0.3089 (0.0072)\n", "Bayesian 0.3049 (0.0083) 0.3001 (0.0043) 0.2454 (0.0033) 0.2545 (0.0052)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df_log = pd.DataFrame(columns=columns, data=entries_log)\n", "save_table(df_log, 'table3_2.tex')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Linear time complexity" ] }, { "cell_type": "code", "execution_count": 95, "metadata": {}, "outputs": [], "source": [ "N0 = 1e4 #base effective population size\n", "mu = 1e-8 #mutation rate\n", "r = 2.5e-9\n", "\n", "theta = mu*N0\n", "rho = r*N0\n", "\n", "def memory_usage_psutil():\n", " process = psutil.Process(os.getpid())\n", " mem = process.memory_info()[0] / float(2 ** 20)\n", " return mem\n", "\n", "def simulate(L, seed):\n", " return msp.simulate(\n", " sample_size=2,\n", " mutation_rate=mu,\n", " recombination_rate=r,\n", " Ne=N0,\n", " length=L,\n", " random_seed=seed,\n", " )\n", "\n", "def get_time_memory(ts, bayesian=True):\n", " start = time.time()\n", " xs = XSMC(ts, focal=0, panel=[1], theta=theta, rho_over_theta=rho/theta)\n", " if bayesian:\n", " paths = xs.sample(k=1, seed=1)\n", " else:\n", " path = xs.viterbi(-np.log(xs.rho))\n", " end = time.time()\n", " return end-start, memory_usage_psutil()\n", "\n", "def run_sim(num_sim, Ls, bayesian=True):\n", " num_Ls = len(Ls)\n", " times = np.empty((num_Ls, num_sim))\n", " memory = np.empty((num_Ls, num_sim))\n", " for i, L in enumerate(Ls):\n", " for j in range(num_sim):\n", " ts = simulate(L, j+1)\n", " t, m = get_time_memory(ts, bayesian)\n", " times[i,j] = t\n", " memory[i,j] = m\n", " return times, memory" ] }, { "cell_type": "code", "execution_count": 175, "metadata": {}, "outputs": [], "source": [ "num_sim = 10\n", "T = 30\n", "Ls = np.geomspace(1e6, 1e8, T)" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:05:34,244 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:34,248 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:34,248 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:34,249 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:34,711 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:34,713 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:34,717 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:34,720 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:34,724 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:34,726 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:34,726 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:34,727 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:35,469 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:35,470 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:35,471 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:35,475 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:35,478 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:35,479 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:35,480 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:35,480 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:36,350 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:36,352 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:36,359 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:36,359 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:36,362 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:36,364 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:36,364 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:36,365 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:36,989 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:36,990 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:36,991 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:36,992 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:36,995 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:36,997 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:36,997 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:36,998 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:37,663 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:37,665 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:37,666 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:37,666 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:37,675 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:37,676 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:37,677 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:37,677 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:38,280 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:38,281 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:38,282 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:38,283 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:38,285 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:38,286 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:38,287 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:38,287 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:38,968 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:38,969 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:38,970 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:38,971 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:38,973 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:38,974 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:38,975 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:38,975 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:39,370 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:39,371 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:39,372 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:39,372 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:39,375 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:39,377 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:39,377 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:39,377 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:40,119 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:40,120 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:40,121 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:40,122 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:40,124 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:40,125 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:40,126 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:40,126 DEBUG xsmc._sampler Xcs.shape=(1, 10002) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.9990e+03 1.0000e+04 1.0001e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:40,870 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:40,872 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:40,880 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:40,881 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:40,883 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:40,884 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:40,885 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:40,885 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:41,422 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:41,424 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:41,425 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:41,425 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:41,429 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:05:41,430 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:41,431 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:41,432 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:42,245 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:42,247 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:42,248 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:42,249 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:42,260 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:42,262 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:42,263 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:42,264 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:43,036 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:43,037 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:43,038 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:43,039 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:43,042 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:43,043 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:43,043 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:43,044 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:43,948 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:43,950 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:43,951 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:43,951 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:43,953 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:43,955 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:43,955 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:43,955 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:44,831 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:44,833 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:44,834 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:44,835 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:44,838 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:44,839 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:44,839 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:44,840 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:45,681 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:45,682 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:45,683 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:45,684 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:45,687 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:45,688 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:45,688 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:45,689 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:46,570 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:46,571 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:46,572 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:46,573 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:46,575 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:46,577 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:46,577 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:46,578 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:47,030 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:47,031 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:47,032 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:47,033 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:47,036 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:47,038 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:47,039 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:47,040 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:47,807 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:47,809 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:47,809 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:47,810 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:47,813 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:47,814 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:47,815 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:47,815 DEBUG xsmc._sampler Xcs.shape=(1, 11723) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.1720e+04 1.1721e+04 1.1722e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:48,510 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:48,512 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:48,513 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:48,513 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:48,516 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:48,517 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:48,518 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:48,518 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:49,177 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:49,179 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:49,180 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:49,180 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:49,183 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:49,185 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:49,185 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:49,185 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:50,200 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:50,202 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:50,203 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:50,203 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:50,206 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:50,207 DEBUG xsmc._sampler Sampling paths\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:05:50,208 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:50,208 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:51,349 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:51,351 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:51,359 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:51,360 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:51,365 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:51,366 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:51,367 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:51,367 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:52,285 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:52,286 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:52,287 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:52,288 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:52,291 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:52,293 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:52,294 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:52,294 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:53,231 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:53,233 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:53,233 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:53,234 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:53,237 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:53,238 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:53,239 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:53,240 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:54,286 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:54,288 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:54,289 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:54,290 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:54,293 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:54,295 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:54,296 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:54,297 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:55,140 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:55,142 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:55,143 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:55,143 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:55,146 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:55,148 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:55,148 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:55,149 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:55,627 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:55,629 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:55,630 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:55,630 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:55,633 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:55,634 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:55,635 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:55,635 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:56,611 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:56,613 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:56,614 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:56,614 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:56,617 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:56,618 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:56,618 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:56,619 DEBUG xsmc._sampler Xcs.shape=(1, 13740) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.3737e+04 1.3738e+04 1.3739e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:57,718 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:57,720 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:57,721 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:57,721 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:57,724 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:57,725 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:57,726 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:57,726 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:58,497 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:58,499 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:58,500 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:58,500 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:58,505 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:58,507 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:58,508 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:58,508 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:05:59,479 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:05:59,481 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:05:59,482 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:05:59,483 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:05:59,486 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:05:59,487 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:05:59,488 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:05:59,488 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:00,745 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:00,748 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:00,749 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:00,750 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:00,754 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:00,756 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:00,757 DEBUG xsmc._sampler Computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:06:00,758 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:01,872 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:01,875 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:01,876 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:01,877 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:01,880 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:01,883 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:01,883 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:01,884 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:03,019 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:03,022 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:03,023 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:03,023 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:03,026 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:03,028 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:03,029 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:03,029 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:04,114 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:04,117 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:04,117 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:04,118 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:04,121 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:04,123 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:04,123 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:04,124 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:05,269 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:05,271 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:05,272 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:05,273 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:05,276 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:05,278 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:05,279 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:05,280 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:05,873 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:05,876 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:05,877 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:05,877 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:05,880 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:05,882 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:05,882 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:05,883 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:07,030 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:07,033 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:07,033 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:07,034 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:07,037 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:07,038 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:07,038 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:07,039 DEBUG xsmc._sampler Xcs.shape=(1, 16104) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.6101e+04 1.6102e+04 1.6103e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:08,235 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:08,238 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:08,238 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:08,239 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:08,243 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:08,245 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:08,245 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:08,246 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:09,073 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:09,076 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:09,077 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:09,077 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:09,081 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:09,084 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:09,085 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:09,086 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:10,577 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:10,580 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:10,581 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:10,582 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:10,586 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:10,588 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:10,589 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:10,589 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:12,226 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:12,228 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:12,237 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:12,238 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:12,243 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:12,246 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:12,246 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:12,247 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:13,611 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:13,614 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:13,614 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:13,615 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:13,618 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:13,620 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:13,621 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:13,621 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:06:15,151 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:15,154 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:15,155 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:15,155 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:15,159 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:15,162 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:15,162 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:15,163 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:16,545 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:16,548 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:16,548 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:16,549 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:16,554 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:16,557 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:16,558 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:16,558 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:18,014 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:18,017 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:18,018 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:18,019 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:18,022 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:18,024 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:18,025 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:18,025 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:19,327 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:19,329 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:19,330 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:19,331 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:19,335 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:19,337 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:19,338 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:19,338 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:20,656 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:20,659 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:20,660 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:20,661 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:20,664 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:20,667 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:20,668 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:20,669 DEBUG xsmc._sampler Xcs.shape=(1, 18875) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 1.8872e+04 1.8873e+04 1.8874e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:22,100 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:22,103 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:22,104 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:22,104 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:22,108 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:22,110 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:22,111 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:22,111 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:23,115 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:23,118 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:23,118 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:23,119 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:23,123 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:23,125 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:23,126 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:23,126 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:24,538 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:24,541 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:24,550 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:24,550 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:24,554 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:24,556 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:24,556 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:24,557 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:26,088 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:26,091 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:26,092 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:26,093 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:26,096 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:26,098 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:26,098 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:26,099 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:27,574 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:27,577 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:27,577 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:27,578 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:27,583 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:27,585 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:27,585 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:27,586 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:29,541 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:29,544 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:29,544 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:29,545 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:29,549 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:29,551 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:29,552 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:29,552 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:30,977 DEBUG xsmc._sampler Done computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:06:30,980 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:30,989 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:30,990 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:30,996 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:30,998 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:30,999 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:30,999 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:32,908 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:32,911 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:32,911 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:32,912 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:32,915 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:32,918 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:32,918 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:32,919 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:34,729 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:34,732 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:34,733 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:34,734 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:34,737 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:34,740 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:34,740 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:34,741 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:36,317 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:36,319 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:36,320 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:36,321 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:36,325 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:36,328 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:36,328 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:36,329 DEBUG xsmc._sampler Xcs.shape=(1, 22124) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.2121e+04 2.2122e+04 2.2123e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:37,849 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:37,852 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:37,853 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:37,854 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:37,857 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:37,859 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:37,860 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:37,860 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:39,040 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:39,043 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:39,044 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:39,045 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:39,050 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:39,052 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:39,053 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:39,054 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:40,837 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:40,840 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:40,841 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:40,841 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:40,846 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:40,848 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:40,849 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:40,849 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:42,670 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:42,674 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:42,674 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:42,675 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:42,678 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:42,682 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:42,683 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:42,683 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:45,090 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:45,094 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:45,094 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:45,095 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:45,099 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:45,102 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:45,102 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:45,103 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:47,134 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:47,138 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:47,139 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:47,140 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:47,146 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:47,148 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:47,149 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:47,150 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:48,827 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:48,831 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:48,831 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:48,832 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:48,837 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:48,839 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:48,840 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:48,841 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:50,661 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:50,664 DEBUG xsmc._sampler Done sampling paths.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:06:50,665 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:50,666 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:50,670 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:50,672 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:50,672 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:50,673 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:52,690 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:52,693 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:52,694 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:52,695 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:52,700 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:52,702 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:52,703 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:52,703 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:54,337 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:54,340 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:54,341 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:54,342 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:54,347 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:54,350 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:54,351 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:54,351 DEBUG xsmc._sampler Xcs.shape=(1, 25931) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 2.5928e+04 2.5929e+04 2.5930e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:56,015 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:56,019 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:56,019 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:56,020 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:56,023 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:56,026 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:56,026 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:56,027 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:57,396 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:57,400 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:57,401 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:57,402 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:57,406 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:57,409 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:57,410 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:57,410 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:06:59,608 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:06:59,612 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:06:59,613 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:06:59,613 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:06:59,618 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:06:59,621 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:06:59,621 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:06:59,622 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:01,951 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:01,955 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:01,956 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:01,957 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:01,962 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:01,964 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:01,965 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:01,965 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:04,140 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:04,144 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:04,145 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:04,146 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:04,151 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:04,153 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:04,154 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:04,154 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:06,326 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:06,330 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:06,331 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:06,331 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:06,336 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:06,340 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:06,340 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:06,341 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:08,330 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:08,334 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:08,335 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:08,336 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:08,342 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:08,345 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:08,345 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:08,346 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:10,546 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:10,551 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:10,552 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:10,552 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:10,558 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:10,562 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:10,563 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:10,563 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:12,840 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:12,843 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:12,844 DEBUG xsmc.sampler Sampling heights\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:07:12,845 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:12,850 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:12,852 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:12,853 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:12,854 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:14,937 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:14,941 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:14,941 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:14,942 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:14,948 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:14,950 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:14,951 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:14,951 DEBUG xsmc._sampler Xcs.shape=(1, 30393) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.0390e+04 3.0391e+04 3.0392e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:16,919 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:16,923 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:16,924 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:16,924 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:16,928 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:16,974 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:16,974 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:16,975 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:18,579 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:18,583 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:18,585 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:18,586 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:18,591 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:18,594 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:18,595 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:18,596 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:21,525 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:21,529 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:21,530 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:21,530 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:21,536 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:21,539 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:21,539 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:21,540 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:24,334 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:24,339 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:24,340 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:24,341 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:24,347 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:24,350 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:24,351 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:24,351 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:27,135 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:27,139 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:27,140 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:27,140 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:27,147 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:27,149 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:27,150 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:27,150 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:29,636 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:29,641 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:29,642 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:29,642 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:29,649 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:29,652 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:29,653 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:29,653 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:32,173 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:32,177 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:32,178 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:32,179 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:32,184 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:32,187 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:32,187 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:32,188 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:34,906 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:34,910 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:34,911 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:34,911 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:34,917 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:34,920 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:34,921 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:34,922 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:37,780 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:37,785 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:37,786 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:37,786 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:37,793 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:37,796 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:37,797 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:37,797 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:40,336 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:40,341 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:40,342 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:40,342 DEBUG xsmc.sampler Done sampling heights\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:07:40,348 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:40,351 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:40,352 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:40,352 DEBUG xsmc._sampler Xcs.shape=(1, 35624) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 3.5621e+04 3.5622e+04 3.5623e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:43,019 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:43,024 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:43,025 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:43,025 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:43,030 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:43,033 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:43,033 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:43,034 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:44,927 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:44,931 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:44,932 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:44,933 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:44,939 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:44,941 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:44,942 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:44,944 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:48,043 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:48,048 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:48,049 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:48,049 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:48,056 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:48,058 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:48,059 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:48,060 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:50,794 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:50,799 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:50,799 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:50,808 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:50,814 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:50,817 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:50,817 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:50,818 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:54,288 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:54,292 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:54,293 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:54,294 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:54,302 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:54,305 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:54,305 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:54,306 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:07:57,010 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:07:57,015 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:07:57,016 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:07:57,016 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:07:57,023 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:07:57,026 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:07:57,027 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:07:57,028 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:00,022 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:00,027 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:00,028 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:00,029 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:00,038 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:00,040 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:00,041 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:00,041 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:02,869 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:02,873 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:02,874 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:02,875 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:02,881 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:02,888 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:02,888 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:02,889 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:06,482 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:06,487 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:06,488 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:06,489 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:06,495 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:06,499 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:06,500 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:06,500 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:09,555 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:09,560 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:09,561 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:09,561 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:09,570 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:09,573 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:09,573 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:09,574 DEBUG xsmc._sampler Xcs.shape=(1, 41755) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.1752e+04 4.1753e+04 4.1754e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:12,441 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:12,446 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:12,447 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:12,447 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:12,451 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:08:12,455 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:12,456 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:12,456 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:14,866 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:14,873 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:14,874 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:14,875 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:14,883 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:14,885 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:14,885 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:14,886 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:18,579 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:18,584 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:18,585 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:18,586 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:18,595 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:18,598 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:18,599 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:18,599 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:22,057 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:22,063 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:22,063 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:22,065 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:22,072 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:22,074 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:22,074 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:22,075 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:25,973 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:25,979 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:25,980 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:25,980 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:25,987 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:25,990 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:25,990 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:25,991 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:29,643 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:29,648 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:29,649 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:29,650 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:29,658 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:29,661 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:29,662 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:29,663 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:33,487 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:33,492 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:33,493 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:33,494 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:33,503 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:33,506 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:33,506 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:33,507 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:37,190 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:37,196 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:37,197 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:37,198 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:37,205 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:37,207 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:37,207 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:37,208 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:43,371 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:43,378 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:43,379 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:43,380 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:43,389 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:43,392 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:43,393 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:43,394 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:47,165 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:47,170 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:47,171 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:47,172 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:47,180 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:47,182 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:47,182 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:47,183 DEBUG xsmc._sampler Xcs.shape=(1, 48941) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 4.8938e+04 4.8939e+04 4.8940e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:50,876 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:50,882 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:50,883 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:50,884 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:50,889 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:50,892 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:50,893 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:50,893 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:53,280 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:53,286 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:53,287 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:53,287 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:53,297 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:53,300 DEBUG xsmc._sampler Sampling paths\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:08:53,301 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:53,301 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:08:57,546 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:08:57,552 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:08:57,553 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:08:57,554 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:08:57,567 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:08:57,571 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:08:57,571 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:08:57,572 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:01,724 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:01,730 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:01,731 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:01,732 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:01,742 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:01,746 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:01,747 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:01,747 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:06,164 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:06,170 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:06,172 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:06,173 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:06,182 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:06,186 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:06,187 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:06,187 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:11,537 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:11,543 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:11,545 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:11,545 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:11,554 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:11,557 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:11,557 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:11,557 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:16,837 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:16,845 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:16,846 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:16,847 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:16,857 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:16,860 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:16,860 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:16,861 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:21,213 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:21,219 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:21,220 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:21,221 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:21,230 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:21,233 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:21,233 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:21,234 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:26,458 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:26,464 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:26,465 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:26,466 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:26,475 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:26,478 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:26,479 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:26,480 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:31,336 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:31,342 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:31,344 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:31,345 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:31,353 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:31,355 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:31,356 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:31,356 DEBUG xsmc._sampler Xcs.shape=(1, 57363) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 5.7360e+04 5.7361e+04 5.7362e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:35,730 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:35,737 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:35,738 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:35,738 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:35,745 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:35,749 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:35,750 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:35,751 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:38,782 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:38,789 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:38,790 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:38,791 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:38,804 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:38,808 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:38,809 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:38,809 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:44,259 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:44,266 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:44,267 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:44,268 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:44,280 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:44,284 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:44,284 DEBUG xsmc._sampler Computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:09:44,285 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:49,177 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:49,184 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:49,185 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:49,186 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:49,195 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:49,199 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:49,199 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:49,200 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:09:54,586 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:09:54,594 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:09:54,595 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:09:54,596 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:09:54,606 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:09:54,608 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:09:54,609 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:09:54,609 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:00,298 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:00,306 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:00,307 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:00,308 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:00,325 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:00,329 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:00,330 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:00,331 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:05,702 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:05,710 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:05,711 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:05,712 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:05,723 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:05,726 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:05,727 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:05,727 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:10,908 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:10,916 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:10,917 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:10,919 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:10,931 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:10,935 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:10,936 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:10,937 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:16,056 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:16,064 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:16,065 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:16,066 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:16,076 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:16,078 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:16,080 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:16,080 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:21,331 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:21,338 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:21,339 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:21,340 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:21,351 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:21,355 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:21,356 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:21,357 DEBUG xsmc._sampler Xcs.shape=(1, 67235) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 6.7232e+04 6.7233e+04 6.7234e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:26,234 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:26,241 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:26,241 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:26,242 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:26,247 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:26,250 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:26,251 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:26,252 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:29,726 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:29,735 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:29,737 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:29,738 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:29,754 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:29,758 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:29,759 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:29,760 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:35,951 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:35,963 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:35,964 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:35,965 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:35,979 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:35,984 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:35,985 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:35,985 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:42,549 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:42,558 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:42,559 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:42,560 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:42,573 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:42,577 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:42,577 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:42,578 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:10:48,773 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:48,784 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:48,785 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:48,786 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:48,800 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:48,804 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:48,805 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:48,806 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:10:55,974 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:10:55,983 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:10:55,984 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:10:55,985 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:10:56,000 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:10:56,004 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:10:56,005 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:10:56,005 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:02,864 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:02,874 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:02,875 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:02,876 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:02,892 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:02,897 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:02,897 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:02,898 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:08,910 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:08,920 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:08,922 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:08,922 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:08,937 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:08,941 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:08,942 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:08,942 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:14,856 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:14,865 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:14,866 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:14,867 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:14,879 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:14,883 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:14,884 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:14,884 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:20,977 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:20,987 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:20,988 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:20,989 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:21,004 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:21,008 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:21,008 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:21,009 DEBUG xsmc._sampler Xcs.shape=(1, 78806) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 7.8803e+04 7.8804e+04 7.8805e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:27,690 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:27,701 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:27,702 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:27,703 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:27,709 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:27,713 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:27,714 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:27,715 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:32,247 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:32,260 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:32,261 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:32,261 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:32,279 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:32,285 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:32,286 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:32,286 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:38,975 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:38,986 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:38,994 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:38,995 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:39,011 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:39,015 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:39,016 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:39,016 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:46,707 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:46,716 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:46,717 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:46,718 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:46,736 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:46,739 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:46,740 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:46,740 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:11:53,128 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:11:53,139 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:11:53,140 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:11:53,141 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:11:53,159 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:11:53,162 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:11:53,163 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:11:53,163 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:00,334 DEBUG xsmc._sampler Done computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:12:00,344 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:00,345 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:00,345 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:00,363 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:00,370 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:00,371 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:00,371 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:07,286 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:12:07,297 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:07,298 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:07,299 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:07,315 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:07,318 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:07,319 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:07,319 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:16,125 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:12:16,138 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:16,139 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:16,140 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:16,155 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:16,159 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:16,159 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:16,159 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:24,697 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:12:24,709 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:24,710 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:24,711 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:24,728 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:24,732 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:24,732 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:24,733 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:32,500 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:12:32,513 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:32,514 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:32,514 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:32,535 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:32,541 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:32,542 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:32,542 DEBUG xsmc._sampler Xcs.shape=(1, 92369) positions=[0.0000e+00 1.0000e+00 2.0000e+00 ... 9.2366e+04 9.2367e+04 9.2368e+04] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:40,709 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:12:40,719 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:40,720 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:40,721 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:40,731 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:40,737 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:40,738 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:40,738 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:46,396 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:12:46,411 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:46,412 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:46,413 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:46,436 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:46,440 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:46,441 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:46,442 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:12:55,613 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:12:55,624 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:12:55,626 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:12:55,626 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:12:55,646 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:12:55,652 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:12:55,653 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:12:55,653 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:13:05,183 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:13:05,195 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:13:05,196 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:13:05,197 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:13:05,217 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:13:05,221 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:13:05,221 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:13:05,222 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:13:14,258 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:13:14,270 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:13:14,271 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:13:14,272 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:13:14,291 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:13:14,295 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:13:14,296 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:13:14,297 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:13:23,645 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:13:23,656 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:13:23,657 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:13:23,658 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:13:23,673 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:13:23,677 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:13:23,678 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:13:23,678 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:13:33,139 DEBUG xsmc._sampler Done computing log Q\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:13:33,149 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:13:33,150 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:13:33,151 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:13:33,169 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:13:33,172 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:13:33,173 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:13:33,173 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:13:42,627 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:13:42,641 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:13:42,642 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:13:42,643 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:13:42,662 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:13:42,667 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:13:42,668 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:13:42,668 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:13:54,312 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:13:54,332 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:13:54,336 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:13:54,341 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:13:54,365 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:13:54,372 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:13:54,373 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:13:54,373 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:14:05,989 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:14:06,003 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:14:06,004 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:14:06,004 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:14:06,029 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:14:06,034 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:14:06,035 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:14:06,035 DEBUG xsmc._sampler Xcs.shape=(1, 108265) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.08262e+05 1.08263e+05\n", " 1.08264e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:14:17,038 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:14:17,056 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:14:17,060 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:14:17,065 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:14:17,078 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:14:17,090 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:14:17,090 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:14:17,091 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:14:25,056 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:14:25,081 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:14:25,085 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:14:25,090 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:14:25,124 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:14:25,137 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:14:25,138 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:14:25,138 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:14:38,314 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:14:38,338 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:14:38,342 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:14:38,348 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:14:38,384 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:14:38,395 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:14:38,395 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:14:38,396 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:14:50,334 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:14:50,352 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:14:50,353 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:14:50,354 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:14:50,384 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:14:50,389 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:14:50,390 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:14:50,391 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:15:03,017 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:15:03,038 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:15:03,042 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:15:03,048 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:15:03,079 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:15:03,090 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:15:03,091 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:15:03,092 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:15:15,392 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:15:15,416 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:15:15,421 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:15:15,426 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:15:15,458 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:15:15,475 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:15:15,475 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:15:15,476 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:15:28,736 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:15:28,760 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:15:28,764 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:15:28,769 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:15:28,801 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:15:28,811 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:15:28,812 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:15:28,813 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:15:40,815 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:15:40,839 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:15:40,845 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:15:40,851 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:15:40,884 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:15:40,897 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:15:40,898 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:15:40,898 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:15:53,590 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:15:53,615 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:15:53,619 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:15:53,624 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:15:53,661 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:15:53,675 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:15:53,675 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:15:53,676 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:16:06,464 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:16:06,495 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:16:06,498 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:16:06,502 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:16:06,539 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:16:06,549 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:16:06,550 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:16:06,550 DEBUG xsmc._sampler Xcs.shape=(1, 126898) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.26895e+05 1.26896e+05\n", " 1.26897e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:16:19,077 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:16:19,099 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:16:19,104 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:16:19,110 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:16:19,124 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:16:19,132 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:16:19,132 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:16:19,133 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:16:27,547 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:16:27,566 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:16:27,570 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:16:27,571 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:16:27,611 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:16:27,616 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:16:27,617 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:16:27,618 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:16:43,122 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:16:43,142 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:16:43,143 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:16:43,144 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:16:43,175 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:16:43,181 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:16:43,181 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:16:43,182 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:16:57,997 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:16:58,014 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:16:58,015 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:16:58,016 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:16:58,052 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:16:58,057 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:16:58,058 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:16:58,058 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:17:12,836 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:17:12,859 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:17:12,860 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:17:12,869 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:17:12,907 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:17:12,914 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:17:12,914 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:17:12,915 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:17:27,137 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:17:27,156 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:17:27,157 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:17:27,158 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:17:27,187 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:17:27,195 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:17:27,195 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:17:27,196 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:17:43,469 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:17:43,490 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:17:43,491 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:17:43,492 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:17:43,532 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:17:43,537 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:17:43,538 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:17:43,538 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:17:57,937 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:17:57,958 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:17:57,958 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:17:57,959 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:17:58,003 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:17:58,011 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:17:58,012 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:17:58,013 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:18:12,567 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:18:12,586 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:18:12,587 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:18:12,588 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:18:12,629 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:18:12,635 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:18:12,635 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:18:12,636 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:18:26,564 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:18:26,583 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:18:26,584 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:18:26,584 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:18:26,619 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:18:26,627 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:18:26,627 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:18:26,628 DEBUG xsmc._sampler Xcs.shape=(1, 148737) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.48734e+05 1.48735e+05\n", " 1.48736e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:18:41,213 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:18:41,234 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:18:41,235 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:18:41,236 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:18:41,260 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:18:41,267 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:18:41,267 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:18:41,268 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:18:50,817 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:18:50,838 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:18:50,839 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:18:50,840 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:18:50,887 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:18:50,895 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:18:50,896 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:18:50,896 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:19:10,076 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:19:10,096 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:19:10,097 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:19:10,098 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:19:10,138 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:19:10,145 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:19:10,145 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:19:10,146 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:19:27,009 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:19:27,029 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:19:27,030 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:19:27,031 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:19:27,067 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:19:27,073 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:19:27,074 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:19:27,074 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:19:44,886 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:19:44,906 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:19:44,907 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:19:44,915 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:19:44,957 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:19:44,963 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:19:44,964 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:19:44,964 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:20:02,141 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:20:02,162 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:20:02,162 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:20:02,163 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:20:02,206 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:20:02,212 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:20:02,213 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:20:02,213 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:20:17,978 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:20:17,998 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:20:17,999 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:20:18,000 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:20:18,049 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:20:18,055 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:20:18,056 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:20:18,056 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:20:34,282 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:20:34,303 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:20:34,303 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:20:34,304 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:20:34,349 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:20:34,355 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:20:34,356 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:20:34,356 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:20:50,661 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:20:50,682 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:20:50,683 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:20:50,683 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:20:50,722 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:20:50,728 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:20:50,729 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:20:50,729 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:21:09,097 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:21:09,117 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:21:09,118 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:21:09,119 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:21:09,159 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:21:09,165 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:21:09,166 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:21:09,166 DEBUG xsmc._sampler Xcs.shape=(1, 174334) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 1.74331e+05 1.74332e+05\n", " 1.74333e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:21:25,489 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:21:25,509 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:21:25,510 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:21:25,511 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:21:25,528 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:21:25,535 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:21:25,535 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:21:25,536 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:21:37,455 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:21:37,478 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:21:37,479 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:21:37,479 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:21:37,532 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:21:37,539 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:21:37,539 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:21:37,540 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:21:58,254 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:21:58,279 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:21:58,280 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:21:58,281 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:21:58,347 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:21:58,357 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:21:58,357 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:21:58,358 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:22:16,900 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:22:16,924 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:22:16,925 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:22:16,926 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:22:16,983 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:22:16,992 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:22:16,993 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:22:16,994 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:22:38,450 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:22:38,475 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:22:38,476 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:22:38,477 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:22:38,538 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:22:38,546 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:22:38,546 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:22:38,547 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:22:59,625 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:22:59,653 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:22:59,654 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:22:59,655 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:22:59,720 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:22:59,728 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:22:59,728 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:22:59,729 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:23:17,572 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:23:17,596 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:23:17,597 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:23:17,598 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:23:17,662 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:23:17,669 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:23:17,670 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:23:17,670 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:23:38,019 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:23:38,042 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:23:38,043 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:23:38,044 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:23:38,100 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:23:38,107 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:23:38,108 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:23:38,108 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:23:58,447 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:23:58,473 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:23:58,474 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:23:58,475 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:23:58,537 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:23:58,544 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:23:58,545 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:23:58,545 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:24:17,142 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:24:17,182 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:24:17,184 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:24:17,186 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:24:17,255 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:24:17,263 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:24:17,263 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:24:17,264 DEBUG xsmc._sampler Xcs.shape=(1, 204337) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.04334e+05 2.04335e+05\n", " 2.04336e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:24:39,476 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:24:39,501 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:24:39,502 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:24:39,502 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:24:39,520 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:24:39,527 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:24:39,528 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:24:39,528 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:24:56,184 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:24:56,212 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:24:56,213 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:24:56,213 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:24:56,285 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:24:56,294 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:24:56,295 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:24:56,295 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:25:19,580 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:25:19,606 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:25:19,607 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:25:19,608 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:25:19,679 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:25:19,687 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:25:19,688 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:25:19,688 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:25:42,227 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:25:42,254 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:25:42,255 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:25:42,256 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:25:42,327 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:25:42,335 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:25:42,336 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:25:42,336 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:26:06,887 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:26:06,927 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:26:06,928 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:26:06,929 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:26:07,024 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:26:07,033 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:26:07,034 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:26:07,034 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:26:30,395 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:26:30,424 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:26:30,425 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:26:30,426 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:26:30,506 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:26:30,515 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:26:30,516 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:26:30,516 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:26:53,900 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:26:53,934 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:26:53,935 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:26:53,937 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:26:54,025 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:26:54,034 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:26:54,035 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:26:54,035 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:27:16,510 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:27:16,540 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:27:16,541 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:27:16,542 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:27:16,632 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:27:16,641 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:27:16,641 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:27:16,642 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:27:37,614 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:27:37,644 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:27:37,645 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:27:37,646 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:27:37,728 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:27:37,739 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:27:37,739 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:27:37,740 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:28:00,603 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:28:00,634 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:28:00,636 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:28:00,637 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:28:00,710 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:28:00,718 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:28:00,719 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:28:00,719 DEBUG xsmc._sampler Xcs.shape=(1, 239504) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.39501e+05 2.39502e+05\n", " 2.39503e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:28:25,291 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:28:25,318 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:28:25,320 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:28:25,321 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:28:25,348 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:28:25,358 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:28:25,359 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:28:25,360 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:28:41,505 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:28:41,540 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:28:41,541 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:28:41,542 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:28:41,641 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:28:41,651 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:28:41,651 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:28:41,652 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:29:08,332 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:29:08,365 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:29:08,366 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:29:08,367 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:29:08,463 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:29:08,475 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:29:08,476 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:29:08,477 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:29:37,242 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:29:37,283 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:29:37,287 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:29:37,292 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:29:37,390 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:29:37,401 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:29:37,402 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:29:37,402 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:30:04,116 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:30:04,150 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:30:04,151 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:30:04,152 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:30:04,269 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:30:04,279 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:30:04,280 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:30:04,280 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:30:29,207 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:30:29,241 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:30:29,242 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:30:29,243 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:30:29,336 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:30:29,348 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:30:29,349 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:30:29,350 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:30:58,941 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:30:58,976 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:30:58,977 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:30:58,978 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:30:59,085 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:30:59,095 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:30:59,096 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:30:59,096 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:31:25,691 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:31:25,724 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:31:25,725 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:31:25,726 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:31:25,828 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:31:25,837 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:31:25,837 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:31:25,838 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:31:53,351 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:31:53,391 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:31:53,392 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:31:53,393 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:31:53,488 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:31:53,497 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:31:53,498 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:31:53,499 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:32:22,644 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:32:22,679 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:32:22,680 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:32:22,681 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:32:22,800 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:32:22,810 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:32:22,811 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:32:22,811 DEBUG xsmc._sampler Xcs.shape=(1, 280723) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 2.80720e+05 2.80721e+05\n", " 2.80722e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:32:47,259 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:32:47,292 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:32:47,293 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:32:47,294 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:32:47,327 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:32:47,339 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:32:47,340 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:32:47,341 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:33:05,290 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:33:05,333 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:33:05,334 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:33:05,335 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:33:05,492 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:33:05,507 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:33:05,508 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:33:05,508 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:33:37,765 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:33:37,804 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:33:37,805 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:33:37,806 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:33:37,941 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:33:37,952 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:33:37,953 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:33:37,954 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:34:07,791 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:34:07,830 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:34:07,831 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:34:07,832 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:34:07,958 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:34:07,972 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:34:07,973 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:34:07,974 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:34:40,586 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:34:40,625 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:34:40,626 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:34:40,627 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:34:40,749 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:34:40,760 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:34:40,761 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:34:40,761 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:35:12,429 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:35:12,467 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:35:12,468 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:35:12,469 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:35:12,596 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:35:12,607 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:35:12,608 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:35:12,608 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:35:44,065 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:35:44,105 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:35:44,106 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:35:44,107 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:35:44,245 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:35:44,259 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:35:44,260 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:35:44,260 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:36:14,847 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:36:14,886 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:36:14,887 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:36:14,888 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:36:15,035 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:36:15,046 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:36:15,047 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:36:15,047 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:36:44,206 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:36:44,244 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:36:44,245 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:36:44,246 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:36:44,379 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:36:44,390 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:36:44,391 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:36:44,392 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:37:15,801 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:37:15,842 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:37:15,843 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:37:15,844 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:37:15,984 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:37:15,995 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:37:15,996 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:37:15,997 DEBUG xsmc._sampler Xcs.shape=(1, 329036) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.29033e+05 3.29034e+05\n", " 3.29035e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:37:49,343 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:37:49,388 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:37:49,389 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:37:49,390 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:37:49,437 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:37:49,450 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:37:49,450 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:37:49,451 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:38:10,375 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:38:10,420 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:38:10,421 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:38:10,422 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:38:10,599 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:38:10,611 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:38:10,612 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:38:10,613 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:38:46,973 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:38:47,022 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:38:47,023 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:38:47,024 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:38:47,192 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:38:47,205 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:38:47,206 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:38:47,206 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:39:23,308 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:39:23,353 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:39:23,354 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:39:23,354 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:39:23,500 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:39:23,513 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:39:23,513 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:39:23,514 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:40:00,727 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:40:00,772 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:40:00,773 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:40:00,774 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:40:00,976 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:40:00,990 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:40:00,991 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:40:00,991 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:40:36,590 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:40:36,640 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:40:36,641 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:40:36,641 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:40:36,802 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:40:36,814 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:40:36,815 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:40:36,816 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:41:15,673 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:41:15,719 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:41:15,720 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:41:15,721 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:41:15,919 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:41:15,932 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:41:15,933 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:41:15,933 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:41:50,011 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:41:50,056 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:41:50,057 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:41:50,058 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:41:50,225 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:41:50,238 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:41:50,239 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:41:50,240 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:42:26,670 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:42:26,714 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:42:26,715 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:42:26,715 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:42:26,864 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:42:26,878 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:42:26,878 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:42:26,879 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:43:06,729 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:43:06,786 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:43:06,788 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:43:06,793 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:43:06,966 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:43:06,983 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:43:06,984 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:43:06,984 DEBUG xsmc._sampler Xcs.shape=(1, 385664) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 3.85661e+05 3.85662e+05\n", " 3.85663e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:43:46,517 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:43:46,561 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:43:46,562 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:43:46,563 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:43:46,618 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:43:46,632 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:43:46,633 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:43:46,634 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:44:14,843 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:44:14,894 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:44:14,894 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:44:14,895 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:44:15,122 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:44:15,136 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:44:15,137 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:44:15,137 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:44:58,536 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:44:58,596 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:44:58,600 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:44:58,605 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:44:58,819 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:44:58,840 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:44:58,841 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:44:58,841 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:45:44,547 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:45:44,612 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:45:44,614 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:45:44,618 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:45:44,862 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:45:44,882 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:45:44,883 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:45:44,884 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:46:29,831 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:46:29,888 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:46:29,891 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:46:29,895 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:46:30,142 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:46:30,163 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:46:30,163 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:46:30,164 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:47:14,301 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:47:14,361 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:47:14,366 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:47:14,371 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:47:14,626 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:47:14,648 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:47:14,649 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:47:14,650 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:47:59,798 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:47:59,858 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:47:59,864 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:47:59,871 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:48:00,126 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:48:00,146 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:48:00,147 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:48:00,147 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:48:43,873 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:48:43,934 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:48:43,939 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:48:43,946 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:48:44,193 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:48:44,212 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:48:44,212 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:48:44,213 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:49:30,324 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:49:30,387 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:49:30,390 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:49:30,395 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:49:30,638 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:49:30,656 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:49:30,657 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:49:30,657 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:50:15,928 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:50:15,990 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:50:15,995 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:50:16,000 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:50:16,236 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:50:16,254 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:50:16,255 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:50:16,256 DEBUG xsmc._sampler Xcs.shape=(1, 452037) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 4.52034e+05 4.52035e+05\n", " 4.52036e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:51:03,222 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:51:03,283 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:51:03,288 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:51:03,293 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:51:03,367 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:51:03,396 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:51:03,397 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:51:03,397 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:51:34,612 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:51:34,678 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:51:34,684 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:51:34,689 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:51:35,009 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:51:35,033 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:51:35,034 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:51:35,034 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:52:25,768 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:52:25,841 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:52:25,845 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:52:25,848 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:52:26,160 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:52:26,183 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:52:26,184 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:52:26,185 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:53:20,404 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:53:20,471 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:53:20,477 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:53:20,482 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:53:20,808 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:53:20,835 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:53:20,836 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:53:20,836 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:54:14,761 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:54:14,831 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:54:14,836 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:54:14,842 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:54:15,160 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:54:15,182 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:54:15,182 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:54:15,183 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 16:55:06,828 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:55:06,904 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:55:06,909 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:55:06,914 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:55:07,252 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:55:07,274 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:55:07,274 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:55:07,275 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:55:59,345 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:55:59,418 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:55:59,423 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:55:59,429 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:55:59,761 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:55:59,783 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:55:59,784 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:55:59,785 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:56:52,104 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:56:52,175 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:56:52,182 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:56:52,187 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:56:52,529 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:56:52,552 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:56:52,553 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:56:52,553 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:57:41,958 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:57:42,029 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:57:42,034 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:57:42,039 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:57:42,345 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:57:42,363 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:57:42,364 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:57:42,364 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:58:32,798 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:58:32,865 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:58:32,870 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:58:32,876 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:58:33,190 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:58:33,211 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:58:33,212 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:58:33,212 DEBUG xsmc._sampler Xcs.shape=(1, 529833) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 5.29830e+05 5.29831e+05\n", " 5.29832e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 16:59:25,268 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 16:59:25,335 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 16:59:25,339 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 16:59:25,344 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 16:59:25,458 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 16:59:25,482 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 16:59:25,483 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 16:59:25,484 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:00:01,266 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:00:01,342 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:00:01,343 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:00:01,344 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:00:01,770 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:00:01,791 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:00:01,791 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:00:01,792 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:01:01,457 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:01:01,534 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:01:01,539 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:01:01,544 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:01:01,949 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:01:01,974 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:01:01,975 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:01:01,975 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:02:05,247 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:02:05,330 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:02:05,333 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:02:05,338 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:02:05,776 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:02:05,801 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:02:05,802 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:02:05,802 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:03:07,131 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:03:07,210 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:03:07,215 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:03:07,223 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:03:07,606 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:03:07,630 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:03:07,631 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:03:07,632 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:04:12,145 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:04:12,224 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:04:12,228 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:04:12,233 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:04:12,676 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:04:12,701 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:04:12,702 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:04:12,702 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 17:05:14,259 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:05:14,332 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:05:14,334 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:05:14,335 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:05:14,779 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:05:14,802 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:05:14,803 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:05:14,803 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:06:13,601 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:06:13,682 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:06:13,686 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:06:13,691 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:06:14,098 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:06:14,121 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:06:14,122 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:06:14,123 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:07:15,224 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:07:15,296 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:07:15,297 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:07:15,298 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:07:15,668 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:07:15,688 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:07:15,689 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:07:15,689 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:08:14,479 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:08:14,557 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:08:14,562 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:08:14,567 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:08:14,965 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:08:14,990 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:08:14,990 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:08:14,991 DEBUG xsmc._sampler Xcs.shape=(1, 621018) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 6.21015e+05 6.21016e+05\n", " 6.21017e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:09:14,636 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:09:14,717 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:09:14,718 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:09:14,719 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:09:14,847 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:09:14,869 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:09:14,870 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:09:14,870 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:10:00,102 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:10:00,209 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:10:00,213 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:10:00,217 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:10:00,921 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:10:00,952 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:10:00,952 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:10:00,953 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:11:10,367 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:11:10,460 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:11:10,465 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:11:10,470 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:11:10,996 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:11:11,023 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:11:11,024 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:11:11,024 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:12:23,540 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:12:23,635 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:12:23,639 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:12:23,644 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:12:24,188 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:12:24,216 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:12:24,217 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:12:24,217 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:13:37,700 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:13:37,795 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:13:37,800 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:13:37,803 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:13:38,390 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:13:38,428 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:13:38,429 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:13:38,430 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:14:54,193 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:14:54,284 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:14:54,288 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:14:54,293 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:14:54,868 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:14:54,895 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:14:54,896 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:14:54,896 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:16:07,773 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:16:07,864 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:16:07,867 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:16:07,872 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:16:08,499 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:16:08,529 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:16:08,530 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:16:08,530 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 17:17:16,024 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:17:16,115 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:17:16,120 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:17:16,126 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:17:16,697 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:17:16,730 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:17:16,730 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:17:16,731 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:18:28,597 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:18:28,686 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:18:28,690 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:18:28,695 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:18:29,236 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:18:29,265 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:18:29,265 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:18:29,266 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:19:38,620 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:19:38,707 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:19:38,714 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:19:38,719 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:19:39,280 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:19:39,306 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:19:39,306 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:19:39,307 DEBUG xsmc._sampler Xcs.shape=(1, 727897) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 7.27894e+05 7.27895e+05\n", " 7.27896e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:20:45,358 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:20:45,450 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:20:45,452 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:20:45,456 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:20:45,615 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:20:45,644 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:20:45,645 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:20:45,645 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:21:36,274 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:21:36,378 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:21:36,385 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:21:36,390 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:21:37,096 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:21:37,126 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:21:37,126 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:21:37,127 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:22:57,740 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:22:57,847 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:22:57,851 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:22:57,856 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:22:58,608 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:22:58,639 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:22:58,640 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:22:58,640 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:24:17,739 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:24:17,854 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:24:17,858 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:24:17,864 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:24:18,570 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:24:18,601 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:24:18,602 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:24:18,602 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:25:45,621 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:25:45,729 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:25:45,736 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:25:45,742 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:25:46,529 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:25:46,564 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:25:46,565 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:25:46,565 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:27:09,359 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:27:09,461 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:27:09,469 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:27:09,474 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:27:10,214 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:27:10,244 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:27:10,245 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:27:10,245 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:28:33,953 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:28:34,054 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:28:34,057 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:28:34,061 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:28:34,812 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:28:34,842 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:28:34,843 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:28:34,844 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:29:58,441 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:29:58,541 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:29:58,545 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:29:58,550 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:29:59,297 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:29:59,323 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:29:59,324 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:29:59,325 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 17:31:19,016 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:31:19,122 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:31:19,125 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:31:19,129 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:31:19,864 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:31:19,894 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:31:19,895 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:31:19,896 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:32:42,325 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:32:42,429 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:32:42,432 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:32:42,437 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:32:43,144 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:32:43,175 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:32:43,176 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:32:43,176 DEBUG xsmc._sampler Xcs.shape=(1, 853169) positions=[0.00000e+00 1.00000e+00 2.00000e+00 ... 8.53166e+05 8.53167e+05\n", " 8.53168e+05] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:34:07,162 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:34:07,261 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:34:07,268 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:34:07,274 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:34:07,481 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:34:07,785 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:34:07,786 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:34:07,786 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:35:05,638 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:35:05,762 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:35:05,763 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:35:05,764 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:35:06,786 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:35:06,817 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:35:06,818 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:35:06,819 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:36:43,266 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:36:43,387 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:36:43,394 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:36:43,399 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:36:44,382 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:36:44,416 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:36:44,417 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:36:44,418 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:38:18,617 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:38:18,740 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:38:18,747 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:38:18,752 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:38:19,690 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:38:19,725 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:38:19,725 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:38:19,726 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:39:55,447 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:39:55,568 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:39:55,576 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:39:55,581 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:39:56,583 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:39:56,618 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:39:56,618 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:39:56,619 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:41:31,084 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:41:31,199 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:41:31,206 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:41:31,211 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:41:32,143 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:41:32,178 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:41:32,179 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:41:32,179 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:43:10,379 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:43:10,495 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:43:10,496 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:43:10,500 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:43:11,464 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:43:11,495 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:43:11,496 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:43:11,496 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:44:36,181 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:44:36,270 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:44:36,271 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:44:36,272 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:44:37,068 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:44:37,095 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:44:37,095 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:44:37,096 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:46:02,509 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:46:02,605 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:46:02,607 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:46:02,610 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:46:03,482 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:46:03,524 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:46:03,525 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:46:03,525 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-06 17:47:29,321 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:47:29,410 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:47:29,411 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:47:29,420 DEBUG xsmc.sampler Done sampling heights\n", "2020-09-06 17:47:30,207 DEBUG xsmc._sampler Counting mismatches for focal=0 panel=[1]\n", "2020-09-06 17:47:30,233 DEBUG xsmc._sampler Sampling paths\n", "2020-09-06 17:47:30,234 DEBUG xsmc._sampler Computing log Q\n", "2020-09-06 17:47:30,234 DEBUG xsmc._sampler Xcs.shape=(1, 1000002) positions=[0.000000e+00 1.000000e+00 2.000000e+00 ... 9.999990e+05 1.000000e+06\n", " 1.000001e+06] params={'theta': 0.009999999776482582, 'rho': 0.0024999999441206455, 'eps': 9.999999747378752e-05, 'robust': False, 'use_cache': False}\n", "2020-09-06 17:48:52,249 DEBUG xsmc._sampler Done computing log Q\n", "2020-09-06 17:48:52,345 DEBUG xsmc._sampler Done sampling paths.\n", "2020-09-06 17:48:52,346 DEBUG xsmc.sampler Sampling heights\n", "2020-09-06 17:48:52,347 DEBUG xsmc.sampler Done sampling heights\n" ] } ], "source": [ "times_map, memory_map = run_sim(num_sim, Ls, bayesian=False)\n", "times_b, memory_b = run_sim(num_sim, Ls, bayesian=True)" ] }, { "cell_type": "code", "execution_count": 176, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame()\n", "df['Time'] = np.r_[times_map.flatten(), times_b.flatten()]\n", "df['Length'] = np.tile(np.repeat(Ls, num_sim), 2)\n", "df['Method'] = np.repeat(['MAP', 'Bayesian'], num_sim * T)\n", "df = df.groupby(['Method', 'Length']).describe()\n", "df.columns = df.columns.get_level_values(1)\n", "df.reset_index(inplace=True)\n", "df['lower'] = df['mean'] - df['std']\n", "df['upper'] = df['mean'] + df['std']" ] }, { "cell_type": "code", "execution_count": 186, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/caleb/Desktop/Git/exact_smc/venv/lib/python3.7/site-packages/plotnine/ggplot.py:729: PlotnineWarning: Saving 8 x 3.5 in image.\n", "/home/caleb/Desktop/Git/exact_smc/venv/lib/python3.7/site-packages/plotnine/ggplot.py:730: PlotnineWarning: Filename: ../../../exact_decoding_paper/figures/benchmark/linear_time_lines.pdf\n", "/home/caleb/Desktop/Git/exact_smc/venv/lib/python3.7/site-packages/ipykernel_launcher.py:10: UserWarning: Matplotlib is currently using module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAFcCAYAAADmj1e3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJdklEQVR4nO3deXxU1fk/8M+dO5NkMiF7yGRPZrIpKAFEC2hdQMVacAFbLdqqFVKrdrEIWpVFVAiLFpVq0FZs6wqhrViNsigqaAuBiCzZZrInk30ymUkms93fH/nO/WWYmWQymcySed6vV1/13nPuyUlyuHnm3nOew3Acx4EQQgghhJAAIPB1BwghhBBCCHEVBa+EEEIIISRgUPBKCCGEEEICBgWvhBBCCCEkYFDwSgghhBBCAgYFr4QQQgghJGBQ8EoIIYQQQgIGBa+EEEIIISRgUPBKCCGEEEIChtDXHfCWqqoqX3eBEBKkcnNzfd0Fl9G9khDiS67cL+nJKyGEEEIICRgUvBJCCCHEY1paWnzdBTLJBc20ATJ5VVVV4Z133sGRI0ewcuVK/nxlZSVWrVqFiIiICe/DypUrsWrVqoB6PUwIIY60tLRg165dOHLkCN5++20kJyfblJeVlWHVqlW48847sXz5crt77AsvvICrr74aixcvtjnv6F6t0Wig1WpRWFjolXs1mRzoySsJeLm5ufjZz36G5ORk3HXXXfz/Zs+ejUcffdQrfVi+fLndDZ4QQgJRcnIyVq5ciauvvhr79++3K9dqtQDgMODUarXIycnBkSNH7K5zdK8uLCxEbm6u1+7VZHKg4JVMCo4+sefl5aG6utorX//qq6+mpwaEkEll8eLF+PLLL23OabVaJCUlOb2mrKwMhYWFqKys5IPc0SQnJ3vtXk0mBwpeyaS1f/9+3HnnnfxxcXExjhw5wv8/ABw5cgTXXnstiouLAQy91lq8eDHKysqwf/9+vPvuu/z/A0M37nfffRdHjhzBu+++i7KyMlRVVWHlypUoKysb8WuVlZVh+fLl2L9/P/bv34/i4mKHTzUIIcQfTJkyBTk5OTb3trKyMpemR82ePRuff/65S1/nxIkT+PGPf+x2P0nwoTmvZNLQaDQ4cuQINBoNn+6nsLCQL6+urkZhYSGuvvpqLF++HFdffTWuvvpq3HnnnYiMjAQw9ARg1apVmDJlCsrKyrB+/XoAwPr161FVVYWysjLMnj0bubm50Gq1qKysRG5uLvLy8myeMjj6WrNnz8asWbPQ0tKCwsJCfp7XhfPCCCHEXyxevBj79+/H7NmzR607/Kns4sWLUVxc7PD+ptFo+A/uWq0W+fn5uPrqqz3bcTKpUfBKJo3IyEibG2BVVRWWL1+O4uJiREREYP369fwN07pIICIiAosXL8Zjjz2Gu+66C59//jl/0wXAPzW13pBnz56NP/zhD8jLy7NZkHDhlAFnXwsA8vPz+Ws0Gs1E/TgIIWTcZs+ejRdeeAFarRYtLS0jBrGff/45/6Feq9WiuroaLS0tDtcD0Id2Mh4UvJJJy/pqq6ysDDk5OVi/fj1eeOEFRERE4L333uPrJScnQyKR2CVnT0pK4oNh6/9bpw1YpxUA9jfhlpYWp1+LEEICzQ9/+EPs378fycnJI04ZiIyMtLkftrS04MiRI7jrrru80U0SRGjOK5kUHC0MsD4psM7ZysvL459+Wp94Wp+sLl68GNu2bUNeXh4A4Nprr7WZ59XS0oKWlha8/fbbAIaCWetUgguN9rUIIcTfabVa9PX1ARi6P3700UcjLkptaWmxK7/mmmvw0UcfTWg/SXCiJ68k4LW0tOCdd95BS0sL3n33XURERECr1fJzVpOTkxEZGWnztPRnP/sZiouL+ScC1nld1qcKubm5WL58ObZv386fW7x4MSIjI7F//35ERESgpaUFd911Fz8XtrW1FbNnz+YD3wu/1g9+8AOcPHmSr7d//35otVrs37+fXqERQvyGNc8rMLRoKzc3Fzk5OZg9eza0Wi3/Ib64uBjLly9HZWUlXnjhBSQlJdlMK/jiiy/Q0tLC19NoNHjnnXf4N1j0RJa4i+E4jvN1J7yB9usmo6EgkkyUQNq8gu6VhBBfcuV+SdMGSFB79913+XlZ1157ra+7QwghhJBRUPBKglpERAQ/t5U2GSCEEEL8H815JUGNpgkQQgghgYWevBJCCCGEkIBBwSshhBBCCAkYFLwSQgghhJCAETRzXqVSKQwGg8OykJAQuzKGYSAWizEwMAB/zCbmqM/+1PZY2xhL/dHqjqecxoLn2/blWBitzmQbC54QGxsLiUQCnU5nV+boPMuyiImJQU9PD8xms7e6OSbOvh9/aNud6129xpV6o9WhseC9tgN1LDgrm8jxEDRPXkNDQ8dUJhAIEB4eDoHAP39EI30//tD2WNsYS/3R6o6nnMaC59v25VgYrc5kGwue4uz7C9TveyL7Pd623bne1WtcqTdaHRoL3ms7UMfCWPrhKYE5+gghhBBCSFCi4JUQQgghhAQMCl4JIYQQQkjAoOCVEEIIIYQEDJ9nG1CpVNi5cyc2btzIn1MoFCgvL+dXry1dunTE84QQQgghJDj49MlraWkpSktL0dbWZnN+9+7dWLp0KRYtWgSJRILS0tIRzxNCCCGEkODg0yevixYtgkqlwrFjx/hz1ierVjk5Odi9ezekUqnD84sWLfJqnwkhZDKTSCQQCoWYMmWKXZmj8wzD8Nf5a+5bZ9+PP7TtzvWuXuNKvdHq0FjwXtuBOhaclU3kePD5tIELKRQKmx+ARCJBTU2N0/OEEEI8R6fTQSAQoK+vz65sypQpdudZlkVISAh0Op3fJqZ31G9/adud6129xpV6o9VxVk5jwfNtB+pYcFbm7nhwJX83LdgihBBCCCEBw++evAKwid6Hbzfm7Lwjra2taG1t5Y9jY2MRFRXlsC7DMGBZ1uac9fjC8/7CUZ/9qe2xtjGW+qPVHU85jQXPt+3LsTBanck2FgghJBj4XfAql8tRXV3NH/f19SE7O9vpeWeKi4uxYcMG/vjpp5/GM88847R+SEiIw/ORkZFj6b5XOeuzv7Q91jbGUn+0uuMpp7Hg+bZ9ORZGqzOWMqPRCMC/xwIhhPgax3EwGAwT1r7fBa8FBQV46623+GOVSoX58+c7Pe9MYWEhlixZwh/Hxsaip6fHYV1r6q3hWJZFZGQkNBqNX87dcdRnf2p7rG2Mpf5odcdTTmPB8237ciyMVsfVMqPRiJaWFvT29uLqq68e81iIiYlxuS4hhASqwcFBdHR0oKOjA1KpFImJiRPydXwavJaXl+Po0aNQqVQoKSnB/PnzIZVK8fDDD/MZBlQqFe69914AcHrekaSkJCQlJfHHg4ODTicacxzn9A+R2Wz2y4BlpD77Q9tjbWMs9UerO55yGgueb9uXY2G0OqOVGQwGtLa2QqVSwWw2IywsDID/jgVHysvLodPpoFKpoFKp8NBDD/m6S4SQSYTjOHR1dUGpVKK3t9crX9OnwWtBQQEKCgrsbqZyuRxyudyuvrPzhBDiSRaLBc3NzaiurobJZAIANDc3o6KiAi0tLZg3b57TOfT+Zu3atfjwww8BDE2fKi0tpRSDhJBx0+v1aG9vR2dnJ4RCIQYGBgAA/f39+Oc//4ne3l5cdtlluP/++21SnXqC300bIIQQX+E4Dh0dHWhqaoJQKOQD12+//RabNm3iF2pFRUVh//79AfFheteuXTbHE5XjkhASHDiOQ01NDbq7u/lzQuFQODkwMIBHH30UKpUKJpMJBw8exNtvv42DBw8iIiLCY30ImuBVIBD4TXJdT/DnRMvutDGW+uNJpDxaOY0Fz7fty7EwWp3hZWq1GgqFAnq9HkKhECzLQiwWY2BgAFu3brWZKtDT04Pf//73+Pzzz13+vnxFKpUCALRaLbRaLWbMmOHjHhFCAlltba1N4DrcZ599xgeuAGAwGNDY2Ii//e1v+PWvf+2xPgRN8GqxWLySXNdb/DnRsjttjKX+eBIpj1ZOY8HzbftyLIxWx1rW0tKCxsZGmzJr4FpXV4fBwUGbMpPJhO+//97lfrqSdHsilZeXo7S0FMuWLbN7+nFhWkGxWIzIyEiH6cACNX2YP6eTc+d6V68Zbyq5kcppLHi+7UAYCyqVCl1dXRAIBHZlAoEA3d3ddg95LBYLVCqVR3/uQRO8EkLIhUwmE6qqqpxmIjGbzTh37pzDsvj4+InsmkdZ1xds3rwZKpUKS5cu5csuTCu4bt06rF+/3mkKsUBMJQf4dzo5d6539ZrxppIbqZzGgufb9uex0NHRgZ6eHqev/3U6HSoqKuwe8jAMg5kzZ3o06woFr4SQoNTf34/q6mq0trbiL3/5C8rKyhAaGoqlS5fiuuuuw+HDh/G3v/0NHR0dyM3NRXV1NTiOA8MwYBhmxLzR/qK0tBSffvopXnzxRQBDQey+fftsgtcL0wqKxWIYDAaHKcQCMZUc4N/p5Ny53tVrxptKbqRyGgueb9ufx4JGo0FtbS3a29tRUlIClUqF1NRU3H777eA4Dvv27cPevXshl8uRn5+P6upqCIVCmM1mXHXVVbj11ludPiS4kCtBLgWvhJCgY03rEhISgueeew7ff/89P0frT3/6E/72t7+hv78fN998M26//XZERkbis88+w8mTJ5Geno677roLc+fO9fF3MTqpVIorr7ySP1apVJDJZDZ1Lkwr2NnZ6TSFWCCmkgP8O52cO9e7es14U8mNVE5jwfNt++tY0Ov1qKiogF6vxyOPPILu7m6YTCawLIuPP/4YFosFERER+MMf/oD58+fDYrHgm2++gV6vx9y5c3HdddcBgEd/7hS8EkKCBsdxaGhogEqlAgA0NTXh1KlTdvUGBwfxj3/8g8/rCgA33ngjbrnlFixYsAA9PT1++8d5uIKCAj6PNjD0Wu/hhx/2ca8IIYHCaDSisrISJpMJH374IR+4AkPBqFqtxpVXXomnnnqKP8+yLK688kqkp6fjkksumZD7ZdAEr5RtwLttU7YB76Gx4Fq2AYPBgKqqKvT29kIsFgMYeqLgSEhICOLj4+1uuNZg1l/HgiNjzekqkUic/lwD8d8H4N//Rty53tVrxpuNY6RyGgueb9vfxoLFYsGZM2fAMAzEYjG6urpgsVjsrsnIyEBYWJjd/dJ6n52I8RA0wStlG/Bu25RtwHtoLIyebaClpQXV1dUwGo02ZWFhYRAIBDY3ZKFQiEsvvRRms5lPum1lvQGPdSz4OtvAWOh0OggEAoc/10D89wH4978Rd6539ZrxZuMYqZzGgufb9rexUF1dbZMSKz093e4ajuOQnJzs8H5pPZ6I+6Vg1BqEEBLAmpqacO7cObvA9dSpU/jtb3+LzMxM/gkBMLST34MPPmjXDsMwiIuLm/D+EkKIrzU0NNjlck1NTeUXrYaEhEAgEOCKK67AVVddZXd9XFyczVx6TwuaJ6+EkOBiMpmgUCjscrRaLBa8//77ePfdd/HTn/4Ud955JwYHB1FXV4fQ0FBkZmba5CNkWRYJCQlISkqyCXIJIWQyamtrs8n9DAB1dXV45plncOuttyIvLw/t7e1ISUnB5Zdfzk8XAYY+5Kenp0MqlU5ovl8KXgkhk45Wq0V1dTU6Ojrw8ssv4/Tp0wgLC8PixYvx/fffo7KyEk8++SSuueYaDAwMIDw8HBdffLFNG0KhECkpKZBKpfzWh8GA5rx6t21/m+foajmNBc+37Q9jobe3F21tbTYf1Nvb27F+/XrMnTsXv/71r+02KACGPuRHR0cjPz+fzwM7keMheO7IhJCg0NraioaGBpjNZjz99NNoaGiAyWRCf38/3nrrLSQkJGDHjh38tqkXEolESEpKglwuR39/v5d773s059W7bfvbPEdXy2kseL5tX44FjuPQ2dkJpVJpc16r1WLNmjVITk7GqlWr7N5kWSUnJyMpKQkcx/Ffx93x4Mqc16AJXinbgHfbpmwD3kNjYaiuyWTiFxiIxWJUVlba3YiBoRWwWVlZAIZurtYnDCEhIUhLS8PUqVMhEAggFArtXnv5+1gghJCxslgsUCgUdguujEYjnn32WQgEAjz55JMQiUR8Oqzh0tLSkJeXN2EfChwJmuCVsg14t23KNuA9NBb6+GkCBoOBL3PWhsFg4G/SYrEYAwMDiI6Ohlwuh1Ao5HeY8eRYCKRsA4SQ4GHdIruvrw9CoRCff/45Ojs7kZqaiiNHjqCtrQ1bt26FRCKxu1YkEiE7O9sn2wEHTfBKCJmc2traUFdXZ3c+OjraYRqsyy+/nD+2Li6YyFWxgYbmvHq3bX+Y50hzXv2jbW+PhcHBQdTU1PC7ZT366KOoqqqCQCCAwWCAUCjEa6+9hrS0NAC2b6oiIyORl5eHkJAQp+3TnFdCCLkAx3FQKpUOA9fKyko899xzyMjIQGdnJ/8Edc6cObj33nsBDD0NveSSS7zY48BAc1692zbNefUuGgtD+vv7UVlZyb+t2rt3L6qqqmymBZjNZtTW1vLrA6xvqiIiIpCWlobBwUF+Dqy331RR8EoICThmsxk1NTUOFw8cOnQIr7zyChYsWIDCwkKEhYWhrq4OYrEY8fHxAIDY2FjIZLIJ/UNGCCH+qK+vD5WVlTYBZWNjo918VqFQiMbGRsydO5c/JxaLkZeXN6FpsFxBwSshJKAMDg6iqqoKOp0O3377LU6fPo3w8HAsXLgQH330ET766CMUFhbiRz/6EYD/vxALsM1BSAghwaa7uxs1NTV2r/Hj4uLAMIzNeYvFYrMxS1hYGDIzM/0idaDve0AIIS7S6XSorKyE0WhEcXExPv74YwBDQemePXsgkUjw3HPPYfr06XbXhoWFITs72+HCA0IImeycrQ8wGo1oamoCAH6dgFAoRGZmJn74wx8CGFqcdfHFFzvMNuALDOevs6o9zGg02izcGE4oFNr9QqzbnxkMBr+ceO6oz/7U9ljbGEv90eqOp5zGgufb9tRY6OrqQlVVFSwWC+rq6vDLX/7Srk5BQQG2b99uc45lWURFRSEnJ8fuiYG3xkIgZRsYGBhASEiIw59LIP77APz734g717t6jSv13L1f0ljwfNsTORZaWlpQW1trd16r1WLdunVoamrCU089hf/+97/o6OhAeno6li1bhtDQULAsi+nTpyM6Otpv7pdB8+SVUmV5t21KleU9wTAWWlpa0NjYyB83NDTYZRIAgM7OTrtchTKZDPHx8XbnR+tbsKbKogVb3m2bFmx5V7CNBY7jUF9fD41GY3cP7OzsxPr168FxHLZt24a0tDRkZ2fz5RaLBXq9Hvn5+eA4DiaTyW/ul0ETvBJCAg/HcaitrUVHR4fNealUahe4siyL1NRUm3NpaWmQyWS0KIsQEnSsmw90d3dDKBTiiy++QHd3NzIyMhAXF4f169cjKSkJTz75JL+l64V8lcd1NBS8EkL8ksFgQE1NjV3gOTg4iPfee49/TSUSiQAMrYJdsWIFX08mkyEhIcGrfSaEEH9gNptRWVmJvr4+6PV6PPHEE1AqlWBZFkajESzLYt68efj973/P30MvJJPJEBsb6+Weu4aCV0KI31Gr1VAoFHZzqLq6uvDss8+it7cXL774Ivr6+vDdd99BIpHguuuuQ3R0NFiWRXZ2NqKjo33TeUII8SGDwcBnZAGAffv2oba2FmazmX99bzKZsGDBAqeBa1paml9/+KfglRDiN6zzs6qrq2E2m9HV1YWIiAiEh4ejqqoKzz77LJKSkvDiiy8iKioKYrEYl156KX+9SCRCXl4eZRQghAQlvV6PiooKmxzYtbW1dg8CQkJC0NTUhNmzZ9u1kZycjOTk5Anv63hQ8EoI8QvWaQImkwnnz5/Hxo0bodFoAACzZs3CmTNncM011+DBBx90+LQgLCwMeXl5CAsL83bXJxXaHta7bdP2sN41mceCTqdDbW0tBAIBv40rAIdzVs1mM5KSkmzqsSyLiy++2GngOlL/aHtYQkjQ0Wg0qKmpgdFoxODgINauXQu9Xs+Xnzx5EnPnzsUjjzzC3xCHk0gkyMvLc/oKjLiOsg14t23KNuBdk3UsaLVaVFRU2PzcOY7D4cOHceTIEQiFQnAcB7PZDKFQiJycHMyaNYvPQCAQCDBjxgyEhISMKaPASGWUbYAQMilxHIfm5mY0Nzfz586ePeswL2BPT4/DwDUmJgZyudzn2xUSQogvOApctVot/vznP+PYsWO4//77sWDBArz33nvo7OxEVlYWbr31Vj7vtVAoRF5eHuLi4gImM0vQBK8CgcBvHnd7gj+/+nCnjbHUd/c1lyvlNBY837azNoxGI6qqqqBWq21eXYWEhDjcUCQkJMSmHsMwyMzMHHVu1lh/3yOV+ftYIIQEl76+PhQXF+P111+HRqNBRkYGbrvtNrz11lsICwvDiy++iKysLIjFYocbuwTqdKugCV5pkwLvtk2bFHhPII4FR4sKgKGA9vjx4+A4zmafbYZhcMMNN/CvuKwZBZKTk8f1WtSfXoMRQshYaLVa7NmzB0VFRfy9UqFQYOvWrVi4cCF+9atfjRiURkREIDc3NyCnWwVN8EoI8Q86nQ6VlZUwGo0255ubm7F161Z0d3fjd7/7HT7++GMoFAqEh4fjnnvuwTXXXAMACA8PR05OTsA9KSCEEE+xThXYv3+/zVsgjuMgEAhQUFAw4j0yNjYWcrkcAoHAG931OApeCSFeo9FocO7cOZSUlKC6uhoxMTG45ZZb8P3336O4uBiXXnopioqKEBoaioULF9pdHxcXh6ysLJrfOoEo24B326ZsA941GcZCX18f6uvrERISYvcQABh6Q8QwjF0mAetxcnIyMjMz7dYQBNKUOwpeCSFe0dXVherqaqxduxbff/89TCYTBAIBPv74Y7AsiwceeAA/+tGPEB4ebrcHNwCkp6cjKSnJBz0PLpRtwLttU7YB7wr0sXDh4qyMjAx8++23dvXy8vJs7qNisRgmkwmpqamIj4+HVqsd89f3p2lWFLwSQiZcW1sb6urqUF5eju+++45fkGX9/8suuww333yzw2tFIpHf7q9NCCHecmHg+s033+Cf//wnsrOzUVNTA2AoSH388cchlUr560JCQiCTySAWiyfNWysKXgkhE6qhoQF1dXUAgO7ubrAsa5dNwLqN4YUiIiKQk5ODkJCQie4mIYT4rQsD148//hivvfYaHnjgASxevBg6nQ4ajQYJCQn8AiyxWIykpCTEx8cjMjIyYNJguYKCV0LIhOA4DnV1dTY3zPT0dLs5WkKhEDKZzOYcwzBITU1FUlKSw9yuhBASLDo7O1FXVwez2QyO4/D3v/8d+/btw6OPPoqbbroJAwMDiIiIQEREBIChD/3JycmIiYnxcc8nDgWvhBCPs1gsUCgU6O7utlk00N/fD5ZlYTabERISwm9RePfdd/N1IiMjkZubS9kECCFBzWw2429/+xt27NgBjUaDnJwciMVinDx5EuvXr0dBQYFN/cjISKSkpATFFCsKXgkhHmU2m1FZWWn3iurcuXN45plncNttt2HWrFmora1FZGQk5s2bh9DQUAgEAqSlpSE7O9vhYgLiHZRtwLttU7YB7wqUsaDT6fCPf/wDa9as4X+Wp06dAsMw+NOf/oRp06YBGFoUFR4ePuqGLRM5FpyVUbYBD6AdtrzbNu2w5T3+NBYGBwdx7tw5mEwm/okry7Kor6/H+vXr8aMf/Qi/+tWvwDAMrrjiCv66yMhIZGdnQywWe3QsjFZnso0FT6BsA95tm7INeFcgjIWOjg7U1dXhH//4h10OV4Zh0NHRwWcSiI6ORkpKCiIiIsa1eY8rdSjbgA/QDlvebZt22PIefxkL/f39qKyshMFgsDnf3NyM1atX44c//CHuv/9+6PV6vsz6tFUqlcJkMqGvr8+jY2G0Ov50MyaEBDez2QyFQoHOzk4AsLlXWgkEAn5nwujoaBQUFDhMLTjZBU3wSgiZOH19faisrITZbEZraysaGhoQExODkJAQPPnkk/jBD36AX//61zaLryQSCbKzs2luKyEk6PX396O6uhrd3d38OblcjrNnz9rUYxgG+fn5SEtLQ3JyMoTC4AzjgvO7JoR4TFdXFxQKBTiOw0cffYTi4mIIBAKYzWaIRCLMmzcPv/nNb2y2IQwNDUVeXl5A7qlNCCGe1N7ejrq6OpsP8mfPnsWhQ4cglUqhUqkAgH8YcM0110zYVLFAQcErIcRtKpUK9fX1AACFQoHi4mJwHMe/UjcajcjJybFJjM2yLHJzcylwJYQENbPZDKVSafO0FQD+97//YfPmzbjpppvwy1/+Ep2dndBoNMjLy8Oll15Kea9BwSshxE319fX8EwEAqKyshEgkspvzeubMGdx66638sVwuR3h4uLe6SQghfken06GmpsZuXuuhQ4fw0ksvYfny5bjjjjvAMAymTp2KgoICpKamUt7r/zOu4LW8vBxKpRLA0MRhmUyGzMxMT/SLEOKnhudwHU4ikcBkMtmcEwgEiIqK4o/T0tImdeJsQggZjUqlQkNDA1pbW/Hxxx9Dq9UiPz8fer0eb7zxBh566CHceOONfH2pVIq0tDQf9tj/jDl4ff3117Fnzx4wDIOsrCxER0fzZUqlErW1tbjsssuwZs0aCmQJmWQGBwdRU1PjMA+rXq+HxWIBwzDgOA4CgQACgQBLly4FAMTHx4+Yh5D4B8rz6t22Kc+rd/lyLJhMJtTU1KCrqwsdHR145JFHYDQaYTKZcODAAQDA2rVr8cMf/pC/Jj4+Hnl5eW5/zbHUC6Q0ky4Hr7W1tSguLsbll1+Ozz77bNS6r732GrKzs/HAAw+Mu5OEEN/r6upCbW2tXYoojuPw7rvv4r333sN9992H+vp6VFdXIz4+Hr/4xS8gl8shFAqRlZXlo56TsaA8r95tm/K8epevxoJWq0VNTQ2f5uq1117D4OAgLBYLAPDBXUxMDJ/6asqUKZBKpePO3+pqPX9JM+mxPK+1tbU4dOgQNm/e7NIXzsrKwubNm1FbW4s33niDAlhCApjZbEZ9fT06OjrsyoxGI15++WV88803WLt2LS677DK7OmFhYcjKyrLJNkAIIcGitbUVjY2NNk8fVSoVH7haCYVCtLe38xu25Obm0n3TCZeC16ysLLcCUHevI4T4B51OhzNnzkCv14PjOBw9ehT19fWIi4vDnDlzsG3bNrS0tKCoqAgymczuepZlkZ+fb3eTJt6jUqmwc+dObNy40dddISSoGAwG1NbWQq1W25XFx8ejrq7O5pzJZEJKSgpEIhHy8vKCNoerK9z+yWg0GgBD2zoCwL59+wAAt99+uwe6RQjxNZVKhY6ODj5w3bJlC44dOwaBQACLxYLXXnsNqamp2L59O+Lj4x22IZfLIZFIJuw1HRlZaWkpVCoV2trafN0VQoIGx3FobW1FS0uLw9flx48fx9mzZxESEgKz2QyBQACTyYS7774bMpkMeXl5tCvfKNwOXh944AFcfvnlWLFiBX7yk59AJpNh4cKF2LZtG1atWuXJPhJCvMhkMkGpVKKnpwdisRjAUN7Bo0ePwmKx8DdjhmEwZ84cp4ErZRbwvUWLFkGlUuHYsWO+7gohQUGtVqO+vt7h1q4cx6GkpAR/+9vfcOedd+LHP/4xvvrqK2i1WuTl5WHevHlIT0+HRCLxQc8Di9vB609/+lMsXboUp06dwsGDB/k/aCUlJR7rHCHEu/r6+lBdXQ2j0Whzvrm5GSzL2rz+5zjOJs/rcImJiZRZgBASNAYHB9HU1ITm5mYAQ/fHlpYW9Pf3IyUlBSzL4uWXX8a3336Lxx9/HPPmzQMA3HzzzXwbOTk5tF22i9wOXq1PVA4ePIgFCxbw5/01ga5AIPCbFA+e4M+pX9xpYyz1x5POY7TyYB4LPT09qK+vh1Ao5OdasSwLsViM2NhYu4BWKBQiJSWFfzoLDP2sMjMzbQJXX46F0epMtrFACPEui8WClpYWtLa28q/6DQYDnn/+eZw4cQLA0KLVuLg4GI1GbN261WHmlbS0NCQkJNAUKxe5HbyWlZVBrVajuLgYW7ZsATD01LW2ttZjnfMki8XilRQP3uLPqV/caWMs9ceTzmO08mAdC2q1GlVVVXYBmVgsRllZGd566y2EhYXBaDTCYrGAZVlER0djyZIlfFoXlmWRnZ1t1x9fjoXR6vhT6hdCSOCwWCzo7e1FfX09n/7Kavfu3SgvL+eP9Xo9Wltb8ec//xmpqal2bdGbqrFzO3h97LHH8Prrr6O4uBgLFizAoUOHoFQqaY4bIQGmu7sbNTU1doGr2WzG22+/jd27d+Omm27CPffcg0OHDqGxsRGxsbFYvHgx/2QyLCwMeXl59MorALW2tqK1tZU/FovFiIyMBMuydnUZhrE7bz12VN9fOOq3v7TtzvWuXuNKvdHqOCsPhrHAcRz0er3D/xkMBv6eaU1nxTAMBAIBTp48abfboMViQXd3N9LT023OS6VSfkOnQB0LzsomcjyMKw/DihUr+P9esGABFixYgAcffJDSYxESILq6ulBTU4Ompibs3LkTjY2NmDp1Ku666y7885//hFKptJmfdcstt9i1ERUVhezsbErrEqCKi4uxYcMG/njdunVYv349QkJCHNZ3dt6aecZfOeu3P7TtzvWuXuNKvdHqBNtYMBgMOH36NJ9p5UIikQgikcjhtREREU7bjYmJsSnPzMy02/Y1UMfCSGUTMR5c+mvT29vrMPm4I0qlEq+++uq4OkUImXjWwLWnpwerVq1Cf38/LBYL1Go1NmzYALlcjl27do1440lMTERGRobfznUPduXl5Th69ChUKhVKSkowf/58SKVSmzqFhYVYsmQJfywWi2EwGKDT6ezak0gkdudZlkVkZCQ0Go1fTqsBHPfbX9p253pXr3Gl3mh1nJVP5rGgUCgcbsoymt7eXuzcuZNftGUlFAqRkZGBlJQUaLVaMAyDrKwsREREoKenZ0x9u5A/jAVnZe6OB1fe4LsUvEZFRSErKwtFRUWIjo4GAOzduxcymcwmMfmJEyccJuMlhPiXjo4OKJVKAMCXX35ps00hMPQKaPr06UhMTOTntF4oKysLU6dO9Up/iXsKCgpQUFCAhx56yGmdpKQkJCUl8cednZ3gOM7hHxtn54GhaSb+GrCM1G9ft+3O9a5e40q90eoE21jQ6XSj5kX+8ssvsXfvXvT392PmzJn4+c9/jk8++QQffPABZDIZduzYgfr6erz33nvQ6XSYPn06HnroIQgEAnAcB7lcjtjYWIdbbQfiWBitbCLGg8vv+YqKijBz5kz+WC6X221IMHPmTH6zAkKIfxoeuAJDKV4ufDXGMIzdIgQroVCInJwcv381SAghY3XhrlcXOnLkCLZt28bfMz/99FMcOnQI4eHh+N3vfof58+eDYRjIZDJce+21NteyLIvc3Fy6d3qAy8Hr8MAVGFrk4Yiz84QQ32tvb7fLCBISEmK3uAAALr30UrtzERERyM7OptXzk5hEInGaQixQ04f5c2pBd6539ZrxppIbqXwyjoWOjg6YzWab9H8X+uCDD2y+N4vFAoPBgO3bt+OSSy5x+oRRJBJh2rRpI25AEKhjwVnZRI4Ht1dY1NTUoLy8HAUFBfy58vJy1NTUeKJfhBAPsm5X2NjYyJ8zm81477338P7772PmzJk4deoUX3b77bfjqquusmkjOTkZqampNL91ktPpdBAIBA5TiAViKjnAv1MLunO9q9eMN5XcSOWTbSyYzWacO3fOLp/1hXp7ex2e1+v1MJvNDqdZhYaGIisra8SUnSP1bST+MBaclU1kakG3g9cnnngCCxYsQG1tLWQyGT/XtayszN0mCSEToKurC01NTTbbFfb29mLbtm2orq7G008/jTlz5qCnpwcqlQpxcXE2c1lFIhFkMhk/350QQiablpYWPnA1Go0wmUw2T2A1Gg327t0LjUZjd61YLLZLgWUVHh6OvLy8Cc12EYzcDl6joqJw4sQJHDx4kA9gFyxY4PAXSwjxvr6+PjQ0NOB///sfduzYgba2NsTHx+OWW27B3r17ERsbix07diAxMRHA0ArPC1d5RkVFISkpiW68hJBJy7qJgNFoxKuvvooDBw7wC6v+8Ic/4NixY9i3bx9iY2Px29/+Fv/5z39QVVUFhmEQFhaGp556yuF0gMTERKSlpfl13ttANe7EjAsXLrQ53rRpEzZt2jTeZgkhbtLr9WhsbER3dzeam5vx5JNPwmQygeM4qFQqFBcX46qrrsKjjz7qNFchAKSmpiIvLw9ardaLvSe+RnNevdt2oM5znExjoampCWFhYXjzzTdx+PBhvu9KpRIPP/wwYmNj8etf/xo33HADWJbFTTfdhJqaGgwMDEAmk/ELsKzbaVszNI00v9XVvnnqGprz+n9KSkqwZs0a9PT08FMGOI4DwzAUvBLiA0ajEc3NzTZpXr788ksAsLlxCAQCSKVSp4GrSCRCTk4OpkyZQvNbgxDNefVu24E6z3GyjIXe3l4+L+vBgwdtFq9yHAeO4/D0009DLpfDYDDwZcOnCVjnuUZFRUEqlSIuLm7U+a2u9M2T19Cc1/9z4MAB7NmzxybPK8dxWLlypbtNEkLcpFKp0NTUZHeDMJvNdp94BQKB0xtJbGwsMjMzR3wiSwghkwHHcaivr+ePnX1YH+1+yDAMpFIp8vPz0d/f79E+EsfcDl6vv/56u/RZwFA+WEKId1gsFlRVVaGhocFhuVAotEuDZTabMXv2bJtzMTExSElJGfNrLkIICVRtbW022QF+8IMf4JNPPuGPWZZFSkoKUlJSnLYRFRWFjIwMiMVimtvqRQJ3L4yJiXG4OKukpGRcHSKEuMZgMODcuXMOtzE0m81444038M477+Cqq67ib6osy+LBBx/EjBkzAAw9ab3kkkuQm5tLgSshJGiYTCY0NTXxxzqdDufOnUNcXBz/BFYul+OZZ55xGJQKBAJkZ2cjPz9/xLywZGK4/eT1gw8+QGFhIaKjoxEbGwtg6BF8WVkZVq1a5bEOEkLsabVaVFVVwWg02t04e3p6UFRUhKamJjz77LO49NJLodfr0d3djdjYWISFhSEuLg4pKSl00yV2aMGWd9sO1EU6gT4WlEoln0XFZDLxb43/+te/QiwWw2w2O82ywjAMLrroIrvsLME6FpyV+eWCrRMnTmDz5s025ziOsztHCPGszs5OKJVKcByHmpoavPbaa2hpaUFycjJuuukmvPXWW0hISMCf/vQnxMfHAwDCwsKQnJyMhIQEJCcnIywszMffBfFXtGDLu20H6iKdQB4LbW1t/BbZHMdhx44dqKurw7Zt28CyLL8wy9GGA8DQE1mhUGj3/QfrWHBW5pcLtoqKirBgwQK78xd+EiGEeAbHcWhsbERraysAoLm5GatXr4bJZOJXtlZUVOC6667DI488YrPIgGVZ5OfnIyIiwlfdJ4QQn+M4DnV1dfzxu+++i6+//hpFRUU2m7M4k5GRwT8UIL7jdvA6PHDVaDR8njNHAa0/EAgEfvO42xP8+TWYO22Mpf54Xm2MVu6vY8FkMqGqqgpqtZp/1f/ll1/CYrHAYrEAGLopsyyLrKws/t8jMNT/iy++2K0dsgJ9LIxWJxDHAiHEPVqtFjU1NfwTwoMHD+L999/nU2GNJjk5GVKpdKK7SVwwrk0Ktm7dik2bNkGtVoNhGGzZsgV/+MMfPNU3jxop51ogvv7w59dg7rQxlvrjebUxWrk/jgW9Xo/Kykqb7V2BoRuxNXC1EggE0Gq1Nq+7cnJywLKsW7/TQB8Lo9Xxp9dghJCJYTab0djYiP379+PTTz/FwMAAUlNT8emnn+LBBx/EZZddNmobU6dORVpamhd6S1zhdvD6+uuvAwDKysoQGxuLrq4u7Nq1C9u2baMFW4R4iFqtRk1NjcNAKSkpyS54NZlMuPTSS/ljmUzGL6gkxBW0YMu7bQfqIp1AGQs9PT1QKpX4z3/+g02bNvH9On36NPLy8nDbbbeN2kZ8fDxyc3NH3bQlWMeCszK/XLAFAI899hj/31FRUdi8eTO2bt067k4RQobmtA5P5TJceXk5/v73vyMjI4NPss0wDB544AE+DVZaWhoSEhK81l8yOdCCLe+2HaiLdPx9LBiNRjQ0NKCzsxMAUFxcbBdAVVZWQqVSISoqymk71l2zXNkmO1jHgrMyv1ywFRcX5/A8LdgiZHzMZjMUCgV6enocln/66af485//jKVLl+Luu++GXq9HY2Mjpk6dyv/7S05ORnJysje7TQghfqGzsxP19fU2G7Q4Cz77+vqcBq8SiQQ5OTkQCNxOiU8miNvB6//+9z8sXLjQZmGIRqNBTU2NRzpGSDAaGBhAVVUVP7+1v78fPT09iIuLQ0hICP72t7/hn//8Jx5++GFcf/31AIY+SIaHh/NtJCQk0NwsQkjQMZlMUCgUUKvVdmXx8fFobm62OScWi51mGBCLxcjPz6dds/yU28HrE088geuuuw4MwyA2Nhbd3d1Qq9UoKyvzZP8ICRrd3d1QKpX865V//vOfePPNN2GxWCAUCiGTydDc3IxnnnmGnxpwodjYWGRlZXmz24QQ4nMGgwEVFRV2uVktFgvefvtttLa2Ijw8HHq9HgKBAAKBAH/84x/tNiIIDQ1FbGwspFIphMJxzawkE8jt30xUVBROnDiBvXv34sSJE5DL5VixYoUn+0ZIUOA4Dk1NTWhpaeHP/fe//8Vf//pXfo6WNVXWE0884TRwjYqKglwuH3VRASEjoQVb3m07UBfp+NNYGBgYQGVlJQDY7Bo4MDCALVu24NSpU3j++edx0UUX4fTp09Dr9Zg+fTr/1NW662BcXJzXf5fjvd4fxoKzMr9dsAUAy5Ytw7JlywDY5nslhIzOZDKhpqYGvb29NudPnDgBhmFs/sELhUKbAHc4mptFPIUWbHm37UBdpOMvY0Gn06GyshI6nQ5VVVWwWCzIzs5GX18fNm7cCIPBgO3btyM1NRUAMG/ePAwMDCA0NJTf3n745i3e/l2O93p/GAvOyvxywVZJSQl+8pOf4MCBA7juuusAAAcOHEBMTAx/TAhxzln+VmDoH/2Fn1QZhnH4GisqKgqpqak0N4sQElT6+vpQWVmJ1tZW/PGPf4RKpQLDMBCLxWAYBrm5uVizZo1NcBoWFgaZTEa7DQa4cT2mqampsQlUly5dyu8XTAhxTqfT4dy5cw4DV61Wi4aGBpvgVSAQgGVZzJ8/36ZubGwsLr74YgpcCSFBpaenB+fPn4fZbMbWrVvR0dEBYGgaVn9/P8xmM9auXWsTpIaEhGD69OkUuE4CbgevPT09tDCEEDeo1WqcP38eRqPRrqy6uhq//e1voVar8fDDD0MqlSIkJARpaWnYvHmzzcrYxMREmipACAk6HR0dqKqqAsdx4DgOVVVVdq+l9Xq9zXQskUiEiy66iHa7myTcnjZgXaR17bXX8ucOHz6MsrIyPPDAAx7pHCGTTWdnJxQKBcxmM06dOoWuri6kp6cjPz8fH374Id58801ce+21KCwsRFhYGBYtWuSwnbS0NMrjSggJOq2trWhoaOCPGYZBaGgo+vv77epaUwiyLIu8vDyEhYV5rZ9kYrkdvBYVFWHBggWora3lU2XFxsZSqixCnGhpaUFjYyOMRiPWr1+P77//HkKhEAaDAUlJSejp6cFvfvObUeeMy2Qy2jmLEBJ0Ghsb7RatmkwmSKVSmymLLMti4cKFCA8PB8uyyM/Ph0Qi8XZ3yQQad6qsgwcP4tSpU5g1axYWLFjgyb4RMmnU19dDpVIBAP7973/j7NmzsFgsMBgMAIaeJvzud78bMXAVCATIyclBdHS0N7pMghSlyvJu24GaHsnbY6G+vh49PT02qbAMBgOef/55qNVq3H333fjmm29gNpvxwx/+EHfffTeEQiGmTZtms4MWjQX360yqVFnx8fG44447kJmZSamyCLmAxWKBQqFAd3c3f06hUNhsWwgMzccaKUWJUChEXl4eLTQgE45SZXm37UBNj+TNsWB9azXcwMAAnn32WbS2tmLz5s1ITk7GnXfeyZcbDAZkZWXZjWUaC+7X8adUWW6v9KitrUV2djbuuOMOFBcXAwCOHz+Ow4cPu9skIZOK2WxGZWWlTeAKDP0jv3AjAYvF4vSJamhoKKZNm0aBKyEk6KhUKrvAVavV4umnn0ZnZyeKiooczv/Pzs6mt1STmNtPXnft2oWysjJERUXh0KFDAIAFCxbgjTfeoDyvJOgZjUY+cfZwKpUK33//PYChaQDWrV9TUlLs0mABQ6mwMjMzIRKJvNJvQgjxFx0dHaivr8eRI0dw8OBBcByHyy67jI85Nm/ejJiYGLvrZDIZ4uLivN1d4kVuB69z5syxmUdCCBliNBpRUVFht/q1rKwMW7duRV5eHlatWoWPPvoI7e3tkMvluPPOO2322GZZFpmZmYiPj/d29wkhxOe6urqgVCqxf/9+7Nq1i58zWV5ejvj4eLzyyisO30ZlZGTQgtYg4Hbw+tlnn2H27NnIyMjgX4FqNBrU1NR4rHOEBBqDwYDz58/j3LlzUKvVSEtLQ1xcHD744AO88847+MlPfoK77roLLMvit7/9rcM2oqKiIJPJbIJZQggJFj09PaipqQHHcdi9e7fdYp/u7m6bhVtWGRkZkEql3uom8SG3g9fVq1dj5syZiIuL4+eVqNVqSpVFgpbBYMCZM2fw7LPP4quvvuI/1GVmZqKtrQ1PPvkkrrjiCqfXCwQCpKWl0c2XEBK0ent7UV1dDWAoDdbg4KBdHYvFgv7+fpvV7RS4Bhe3g1eZTIbu7m7s2rULSqUScrkcK1as8GTfCAkY1ieuH3zwAY4dOwYA/NOC2tpaPP300yMGrhEREZDL5ZREmxAStPr6+vids4ChLCzx8fHo7Ozk6zAMg5iYGJspA1lZWTa7D5LJz+3gVaPRAABWrlwJANi3bx/27duH22+/3TM9IyRADA4O4vz58xgcHMTp06ftUoKIRCL09PQ4vJZhGKSmpiIpKckuAwEhvkB5Xr3bdqDm9vT0WNBqtWhoaLBJk/Ttt9+it7cXISEhMJvNYBgGISEheOaZZxAeHg6GYZCdnT2mwJXGgvt1JkWe1wceeACXX345VqxYgZ/85CeQyWRYuHAhtm3bhlWrVnmyj4T4Lb1ej4qKCv7VlqMFBBaLhd+mcDiJRAKZTOawjBBfoTyv3m07UHN7enIs6HQ6VFRU2OS/Pnz4MHbs2IHly5fjhhtuwJkzZ8BxHKZPn46YmBgMDAxALpdDLBaP6edHY8H9Ov6U59Xt4PWnP/0pli5dilOnTuHgwYN8x0pKStxtkpCAotfrcf78eX6XLABYtGgRPv/8c/5YKBQiPj4ec+bM4c8JBAKkpqZCKpXS01ZCSFDTarWoqKiwCW7+/e9/4y9/+QsefPBB3HTTTQCAK6+80ua67OxsSocVxNwOXq251Q4ePGizLawn/xirVCrs3LkTGzdu5M8pFAqUl5dDIpFAp9Nh6dKlHvt6hLhKr9fj3LlzMBqN/DmLxYJ///vfiI+PR3x8PHp7e5GdnY2VK1fyK2OjoqKQmZlJc1sJIUGvr68PX3/9NU6ePAmGYTBjxgx88sknKCkpwerVq+0CVmAoxsjJyXGY35UED7eD17KyMqjVahQXF2PLli0Ahp661tbWeqRjpaWlUKlUaGtrszm/e/duPpgtLS1FaWkpFi1a5JGvSYgrzGYzzp8/bxO4AsC7776L8vJybN++HWlpaTZlQqEQ6enplH+QEEIwlFXgX//6F5588kmYzWZ+TiTLsli3bh1mzpxpdw3DMMjNzaWds4j728M+9thj6OrqQnFxMW6//XYcOnQISqXSY4Nq0aJFdkGp9YmrVU5ODo4ePeqRr0eIq+rr622mCgDA119/jffffx+rV6+2C1zj4uJw6aWXUuBKCCEYSqtZUVGB5557DgaDASaTCWazGWazGeHh4Q4DV5ZlkZeXR4ErATCOJ68AbFJjLViwwGb6wERQKBQ2q9kkEgltikC8qqenBx0dHTbnlEolXnzxRdx777247LLL+PMhISHIysqimy0hhPyfrq4u1NTUQKvVOszColarMTg4aLNoJzw8HDk5OTTdivBcevJaW1uLffv2jbnx3t5ebNu2bczXEeKPjEaj3bQYtVqNjRs3Yt68ebjtttv48yzLYtq0aRS4EkLI/+no6OAfOInFYrAsa1cnNDTUZnfBhIQETJs2jQJXYsOlJ69ZWVlQq9V48MEHUVhYiIKCghHrazQaFBcXg2EYj6fNGp6KQafTebRtQkZSW1sLg8GAuro69Pb2Ijk5Gdu2bUNsbCweeeQRm8WKaWlptL0rCUiU59W7bQdqbs+xjgWVSoXW1lZ+8WpbWxumTJkCtVptc/2DDz6I8PBwsCwLuVzu8elWNBbcrxOQeV5nzpyJV199FVu3bsXq1asRExODOXPm2GwNq1AooFAoEBMTgyeeeGLUIHes5HI5v20cMBTIZmdnO6zb2tqK1tZW/jg2NhZRUVEO6zIMY/cJ0Hrs6JOhP3DUZ39qe6xtjKX+aHXHU+5sLHR0dKCzsxPPP/88vvnmG76uRCLBa6+9ZvNUIDIyEsnJyS59L55AY2HkumP9fY9U5u/3BU+gPK/ebTtQc3uOZSyoVCrU19fzx42NjXj66aeRkZGB++67D//9738BANdccw3mzZsHYGgXz7CwMI//3mgsuF8noPO8PvbYY3jsscdQW1uLkydPoru7G2q1GtHR0Vi2bNmEznstKCjAW2+9xR+rVCrMnz/fYd3i4mJs2LCBP3766afxzDPPOG3b2VOyyMhIN3s78SbyyZ4n2h5rG2OpP1rd8ZRfWGYwGHD27Fn861//wvHjx/nzHMdBp9OBYRh+cwKBQIDZs2d7/RUXjQX367hT5s/3BUL8SXNzM5qamvjjyspKbNiwAZdccglWrVoFkUhkEzckJCQgIyNjUn9AJOPn9oKtrKwsZGVlebIvNsrLy3H06FGoVCqUlJRg/vz5kEqlePjhh7F7925IpVKoVCrce++9Dq8vLCzEkiVL+OPY2FinW3Rac8YOx7IsIiMjodFo/PJpgqM++1PbY21jLPVHqzueckdlVVVVMJlM+O9//2uzAwww9Krk1KlTfM7B9PR0DAwMYGBgwKXvxRNoLIxcd6y/75HK3L0vUE5KEozq6+tx/vx5sCyLKVOmoLy8HM899xyuueYaPPjggzYBqkAgQGZmJmVlIS4ZV7aBiVRQUICCggI89NBDNuflcjnkcvmo1yclJSEpKYk/HhwcdPq4m+M4p3+IrOk7/M1IffaHtsfaxljqj1Z3POUXlrW3t6O7uxsRERFOt34Vi8WwWCyQSCSYOnWq18cLjYWR647l9+1qmb/eFwjxF//73//wm9/8BgqFAgCQkZGBpqYm3HHHHVi+fLnNGoGwsDDk5uby82EJGY3beV4Jmez0ej0aGhr449tvv92mXCgUQiqV8nO7ZTIZbfdKCAlqHMehuroav/3tb1FXV8efr6+vR2pqKu6++26b++SUKVNw8cUXU+BKxsRvn7wS4mtKpRJmsxkCwdBnvO7ubggEAqSnp0Ov1yM3NxeFhYUIDQ1FSkoKwsPDfdxjEkxc3Sq7vLwcOp0OKpUKKpXK7m0WIZ5isVhw/vx5KJVKhznYm5qaYLFY+HtqXFwcZDIZf0yIq4ImeBUIBH6T4sET/DndhzttjKX+eNJ5jFZuLWtubobJZIJYLAbDMOjo6MArr7yC++67Dz/72c9srgkPD0deXp7PbsA0FtxP/+JPqV/GytWtsteuXYsPP/wQwNDCVdpSm0wEs9kMhUIBs9nsdLGVQCDg/w0lJyfb7UZIiKuCJni1WCxeSfHgLf6c7sOdNsZSfzzpPEYrnzJlCtrb21FRUWETnGzatAlpaWlYsmSJ3WIsmUzm05zDNBbcT//iT6lfxsLRVtm7d+92GJTu2rXL5niiPuiQ4GU2m1FZWQmdToeIiAiIxWLEx8ejs7OTryMUCrFgwQIwDIOsrCxMnTrVhz0mgc7jj4o0Go2nmyTEa4xGI2pqamwC148++ghnz57FqlWr7J4oJCYmOlzIRchEGstW2VKpFACg1Wqh1WoxY8YMr/SRBAej0Yjz58/zH/SMRiOKioowODiIGTNmQCQSISQkBAsXLsSDDz6IvLw8ClzJuHn8yeumTZuwadMmTzdLyIQbHBxEdXU1+vv7+XMNDQ3461//ikcffRRSqRQWi4UvCw0NpddeJCCUl5ejtLQUy5Yts/uwdeGGLmKxGJGRkQ5f/Qbqxg3+vJGHO9e7es14N/EYqZxhGBiNRlRWVmJgYAACgQAGgwEbNmxATU0Ntm7divT0dP5BQGhoKPLz832+NoDGgvt1/GlTF7eD15KSEqxZswY9PT389m4cx4FhGApeScAZGBhARUWFzT8yo9GI7du347LLLsNNN91kNzUgKyvLr/9gk8ltLFtlW1MPbt68GSqVymZx14Ubuqxbtw7r1693ukFDoG7c4M8bebhzvavXjHcTD0flHMehqakJDQ0NYFkWERER0Gq1WLt2Lbq6urBz506bXQYjIiIwbdo0v9kym8aC+3X8ZVMXt4PXAwcOYM+ePZDJZPw5juOwcuVKj3TM02jBlnfbDqQFW319faitrQXLsmBZlk/Z8vbbb6O7uxtbt24FwzAICwvjx0JiYiJSU1Nd6u9Eo7EQfAu2XN0qu7S0FJ9++ilefPFFAENB7L59+2yC1ws3dBGLxTAYDA4D4kDc0AXw74083Lne1WvGu4mHo3KNRoPa2lp89dVXOHr0KIRCIa644gq89dZbMJvNePnllxEeHg6tVgsAiIqKQlpaGnQ6nU/XBljRWHC/jj9t6uJ28Hr99ddj5syZdueLiorcbXJC0YIt77YdKAu21Go1qqurYbFY+NWynZ2dMJvNeP/99/H000/zW73q9XpYLBaEhoYiPj5+wn7+Y0VjIfgWbI20VXZ5eTmys7MREREBqVSKK6+80qbe8AcOgP2GLp2dnU43aAjUjRv8eSMPd6539ZrxbuIxvNxkMqGhoQEdHR3Yt28f3nzzTb7Of/7zH6SkpOCFF15AfHw8tFotLBYLYmNj+Q9V/jI2aCy4X8efNnVxO3iNiYmBRqOxexxcUlKCVatWjbtjhEy0zs5OfvcXvV6PtWvX4vz582AYBhaLBTNmzMCcOXPsrsvOzqbpAsTnnG2VXVJSgkWLFmH+/PkoKCjgt9gGhqYXPPzwwz7sNQlEHR0daGhogMlkQn9/P9588027Nw+Dg4M2byqmTp2KzMxM2riFTAi3g9cPPvgAhYWFiI6ORmxsLIChyLusrIyCV+L3VCoV6uvr+eO///3vqKqqAsdx/E359OnTUKlUNnO30tLSKLsA8QvOtsq25n61GmtOV4lE4nQ6hT9PpRiJP0+tced6V68Z77SagYEBnD9/Ht3d3RCJRBCJROjq6nL4e+7t7eXfUsnlcmRkZLjwnXgfjQX36/jTNCu3g9cTJ05g8+bNNuc4jrM7R4i/qa+vtwlcAeDMmTMwmUw251iWhVKp5IPXyMhIm9erhExGOp0OAoHA4XSKQJxiBfj31Bp3rnf1mvFMq+no6EBtbS3CwsJscltHRESAZVmb37VAIEBycjL0ej0uueQSSCQSv5lWdSEaC+7X8adpVm4Hr0VFRViwYIHdeVcm2hLiK7W1tQ7/8TlaDWk2m/mnrCKRCFlZWfQKjBAy6bW3t6O2ttZh2cGDB2GxWPjUSAzDQCgU4ve//z1kMhlSU1PR09Pj5R6TYON28OoocAWGBrazMkJ8qb6+Hu3t7Xw2ASuTyWS3tatQKIRcLse0adMA/P95rv76ZIkQQjzhwilVVhaLBW+99Rb+/e9/49FHH0VeXh6+/fZbCIVCzJs3D3PnzkVCQoIPekyCEcO5MRGht7eXn+fqiD/+gTcajTYJ5ocTCoV2r4wZhkFISAgMBoNfzuNy1Gd/anusbYyl/mh1HZU3NTXxN+ThQWh/fz+eeeYZKBQK3H///fjiiy+gVqsxffp0PPDAAxCLxUhKSsJFF11EY8FLbXhyLIxWZ6xl7t4XPJ1tYCINDAwgJCTE4c8lEO+VgH//G3HnelevGeu/j+bmZtTV1dmUsyyLgYEBFBUV4fjx49iwYQNmzpzJ30dZlkV+fj6io6NpLEyisTDWcm/fL9168hoVFYUFCxZgz549/Lnu7m6cPHkS0dHR7jQ54ShVlnfb9qdUWR0dHVAqlfyxWCzGwMAAenp6sH79egwODmLr1q1ITEzETTfdZDO/CwD/NIHGgnfaoFRZvkVzXr3btr/Mc2xpaUFjYyM4jsPHH3+M48ePIzQ0FDfeeCPef/99tLe3Y8uWLcjIyMDAwACfDzg/Px8sy6Kvr4/GwiQZC+6UB8yc1+LiYkRFRfHHUVFRyMrKwr59+9xtkhCP6+7uhlKphNlsRk1NDfr7+5Gfn4/u7m6sXbsWsbGx2Lhxo8M5rwzDUFosQsik19TUhObmZgBDf9s/+eQTPtg4evQopFIptm3bhri4OP4a6/2Rsq8QX3A7eM3KynJ4vru72+3OEOJJfX19qKmpgV6vx7p163D27FkwDAOBQICQkBDMmDEDjz32mNNPeenp6T7fh5sQQiZSfX09H7j29PTgo48+sqvDcZxN4AoAmZmZE5ZyipDRuBW89vb24ic/+Ynd+e7ubixcuHDcnSJkvHQ6HSorK8FxHN58801UVlYC+P+7gAwODuJXv/qV08A1OjoaUqnUm10mxC9Qnlfvtu3L3J51dXVQqVT8ItaWlhaH9bRarc1C18TERKSnpzuc4wjQWPDm9ZTndQyioqLQ1dWFwsJCm4VbMpnM4ZaxhHiTXq9HZWUl/9rr9OnTdjdZjuNQX1+P+Ph4u+tFIpHdFpqEBAua8+rdtn01z7Gurg5tbW38GgBg6G+7QCCwWdzMsiyysrL4OlOmTMHUqVNhMploLHi4bZrzOsQneV4J8SWDwYCqqioYjUb+nKM5WRzHOZwSYL1Ri0SiCe0nIYR4A8dx0Ov16O/vR39/PwYGBtDf34/BwUGbegMDA9ixYwdEIhGMRiNYloXFYkFUVBR+97vfARgKKnJycijfNfE5t4NXhmFQXl6OgoICD3Zn4ggEAr953O0J/vzqw502xlLfWV2TyQSFQgGj0WjziuvSSy/F+fPnba7Pzc3FjBkzbBZjhYaGYvr06fwWh1Y0FgJvLLhax59egxHiCQaDAZ2dnejv7wfDME63cx2uvb0dzzzzDAwGA3bs2AGBQIBz585BJBLhyiuvBMuyYFkWubm59MGe+AW3g9fNmzfjJz/5ScAEr5Qqy7ttezs9kk6nQ319Pfr6+mxeg3311VfYs2cPfvSjH0GpVKKvrw8zZ87Ez3/+cxgMBv56iUSCrKwshIWF0VjwcNuUKiuwUmWRwFZTU8OPW7FYbBe46nQ61NbWQiwWIzMzE2fOnMHatWuRlZWFxx9/nH9TZd0W23o/lcvltICV+A23g9c77rgDDzzwgN35J554Aps2bRpXpwhxhcViQVdXF9ra2qDT6ezKjx49im3btmHFihVYvHgxf354cAsMbWksl8spJRYhoAVb3m7bk4t0WltbYTKZ+DdPLMvavIU6ffo0nnzySfT39wMAkpKS0NHRgcWLF+PBBx90eA+0bkKQmpo6ah9oLPjPWHCn3qRfsAUACoUCc+bMQWxsLL+4heM47Nmzh4JXMqH0ej0aGhrQ0dHhdLePY8eOYcuWLbj//vttAtcLSaVSpKen0xwuQv4PLdjybtueWqQzODiIiooKm9/B8A/q/f39NoErMBTsXnTRRfjlL39p8yZquPT0dERFRdl9PRoLnm+bFmwNmdAFW3v37sWaNWvszp84ccLdJglxiuM4qNVqtLW1wWAw2O2CpdPpMDAwgNjYWD5w/cUvfoFbbrnFaZuZmZlITEyc6K4TQsiEq62tHTFAaGxstAlcrdrb251eI5FIkJ2d7fDNFiG+NK5sA0uXLrU7TymGiKd1dHSgqamJfzIw/DWYyWTCK6+8goMHDwIAIiMjodPpcM899+D222932B7LssjLy/PbrYwJIWQs2tvb0dvbO2IdlUrl8Pzw++lwYWFhyM3NhUAgGHf/CPE0t4NXR4ErAEqfRTxm+CIsZ/7xj3/giy++4I81Gg3EYjF+/OMfO6wfGhqKSy65xCaPISGEBCqDwYCGhgaYzWb8+9//xnfffYeIiAgsWbIEBQUFqKysxDvvvIOTJ08iOjoafX19/BNahmHws5/9zKY9hmGQnJyM5ORkClyJ33I7eCVkophMJjQ2No74Osvq6NGjdvNeBwYGUFtbi4suusjmvEQiQW5uLiQSyYTNeSKEEG+qra2FyWTCtm3bcOzYMZjNZjAMgy+//BL5+fmoqKjAvHnz8PLLL0MqleIvf/kLTp48ibCwMCxduhQ33nijzQYEMpnMLl0gIf6G4fx1SaCHGY1Gp0/bhEKhw23uQkJCYDAY/HLVpKM++1PbY21DKBTCaDSira0N9fX1I17Lsiz/5GD58uUOX4ft3LkT+fn5/HFUVBTy8/MhFApH7BuNBc+37c5YcLW+K3XH+vseqczdsRBIqbIGBgYQEhLi8OcSiP8+AP/+N+LO9dZrOjo6UFVVhdraWofZfyIjI7Ft2zbI5XKnbbEsC4ZhkJWVhalTp7rcPxoLnm97PGPBE/VGq+NP98ugefJKeV692/ZY2+A4DmfPnnVpYYBYLEZPTw/ee+89tLW12ZSxLIuUlBQkJyfzTxNiY2ORlpZm83SBxoL32qY8r4EVvFK2Ae+27e4K866uLpw5cwZmsxkqlQoMw9gFCOHh4Tb3QkcyMjIQFxcHkUjk8u/c2XkaC5RtYDi/zDZAiCdwHAelUslnC7hQY2MjDh48CL1ej4KCAsydOxfHjh3Dyy+/DI7j8OSTT6Kurg779u3D4OAgLrroIjz11FP8LjCJiYnIyMigVFiEkEmlvr6eDwjS0tLsglfrToLOhIWFISsrCykpKTSNigQcjwSvGo0GkZGRnmiKBJn29nZ0dnY6XPFaWVmJxx9/HBaLBRzH4T//+Q9SUlKgUqlw22234c4770RYWBh+8IMf4M477wTHcWAYhs9tmJaWxu8SQwghk0VnZye6u7v546ioKKSkpKCxsRFCoRAcxyE+Ph6PPPKIw+sTEhKQmZlJC7JIwBpX8Lp161Zs2rQJarUaDMNgy5Yt+MMf/uCpvpFJzmQyoampyWn5q6++CpPJZPM0obm5GS+88ILDJwrWp6sjzd8ihJBAZjQaoVQqbc795S9/QV9fHzZu3IiOjg6Eh4dj9uzZiI2NtXujlZiYiMzMTC/2mBDPc/tj1+uvvw4AKCsrQ09PD6qrq9HR0YFt27Z5rHNkcmtqahpxcnh7e7vDSd4jzYcRCATIz8+nwJUQMinV19fDaDTyxwcOHMDHH3+Mxx9/HDNnzsQNN9yAK6+80uHbrOTkZApcyaQwrievjz32GP/fUVFR2Lx5M7Zu3TruTpHJb2BgwG6x1YWio6Oh0WhszgkEAkilUof1rZsPxMbG0hwuQtwkkUic7mFO+9l7vm1Xr+c4Di0tLejv7wfLshCLxTh37hz+/Oc/45FHHsGcOXPsrrHWA4a2eU1LSxvz16ex4L223bne1WtcqefuWHBWNpHjwe3gNS4uzuH5mJgYtztDgkdDQ4PTMuv81qamJj6NC8MwMJlMWLlyJaKjo+1ehYlEIuTn5yM8PHyiu07IpEbZBrzbtivX9/X1ob6+ns/GIhaL0dTUhHXr1mHhwoVYuHChwwWv1vn/6enp/AYFY/36lG3Ae21TtoEhE5pt4H//+x8WLlxos1BLo9GgpqbG3SZJkFCr1VCr1Q7LDAYD/vznP+PLL7/E7373O1xyySX46quvoNfrcemll2L69Ol214jFYuTn5yMkJGSCe04IId5jNBrR2NiIjo4Om/MGgwHPP/88pFIpVq5cOWIbmZmZSExMnMhuEuJ1bgevTzzxBK677jowDIPY2Fh0d3dDrVajrKzMk/0jkwzHcaivrwcAaLVanDx5EkajEbNmzYLJZMLzzz8PtVqNLVu2IDs7GwBw++23O21vypQpyMvLA8uyXuk/IYRMNI7j0N7ejsbGRpjNZnAch2PHjqGiogLh4eFoampCd3c3XnjhBT4toCM5OTkO574SEujcDl6joqJw4sQJlJSU4Pjx45DL5VixYoUn+0YmIZVKBb1ej9bWVqxevRp9fX1gGAYWiwWhoaHIzs7G+vXrERUVNWpbsbGxkMvllO6FEDJpaLVa1NXV2WzY8sYbb2D//v0QCASwWCywWCx4+umnR5yml52djalTp9L8fzIpjTvP69KlS7F06VJP9GVCCQQCv5lo7An+POncWRtGoxE9PT0Qi8XYsWMHNBqNzTyYwcFBPPvss5BIJCO2zbIsZDIZZDKZW/33p0nnnhCIY8FT9ce7CGGyjQUSuEwmExoaGuymCNTV1eHf//43APBbnDMMgwMHDuCKK66wa4dhGOTk5ND6EzKpuR28vvHGGzZ7KZeUlAAY+ocz0mteX6HtYb3btqM2amtr+XM1NTV2P1ez2YzGxkZkZGSM2PZFF12EyMhIt7b8HK2cxoLn26btYQNre1jKNuDdtoVCIcRiMc6cOQOdTmf3mr+npwcsy9qMN47j0NraalfXunDVuhZlIleY01jwfNuUbcB1bgevFy64sT59pTyvxBGdTof29nb+OCoqCnq93q7eSNMFGIaBXC6n7QwJmUCUbcC7bUskEpSVlTltQyKR2P1cWZZFUlKSTYaB8PBwyGQyMAzDtzWRK8xpLHi+bco2MMTj2Qa2bt3K7+xx4sQJKBQKvsy6YCs6OnosTZIgYV2kZXXnnXdix44d/DHLsrj55pudjh+WZZGbm0vbEBNCJg2O41BZWek0IGhqasJLL73Ep7wSCof+ZIvFYps3nzExMZDL5bRwlQSNMQWvjz32GHp7e7FixQrExMRg1qxZNuUymQwLFizwaAdJ4Ovq6rK5OXMch2+++QbJyclIS0uDyWTC/Pnzcf311zu8nmVZXHTRRaPOhSWEkEBSW1sLrVbrsOzzzz/Hzp07MWPGDDz//PM4e/YsKioqIJFI8OMf/5jPaZ2SkoLU1FRvdpsQnxvztIGoqCi8/vrrOHjwYEAs1CK+ZbFY0NjYaHPuo48+wunTp7Fjxw6kpKQA+P/JtC/EMAzy8vIocCWETCrW/K1msxmvvvoqzp8/j6ioKCxbtgxff/01Dh8+jPvuuw9LliwBwzCYO3cu5s6dC2Dofjk4OAiZTOZ0wyBCJjO35rxGRUVR4EpcolKpMDg4yB/X1tbir3/9K37961/zgetIsrOzJ2xyPSGE+IJKpUJLSwuMRiNWr16N2tpamEwmAMDp06cRExODoqIi5OXlObw+JCQEcrmcPtSToDXuVFmEONPV1YXm5mb+WK/XY8uWLZg7dy4WLlw46vWZmZmIjY2dyC4SQohXdXZ28msAzpw5A4VCwafAssrMzHQauEZERGDGjBk2DwUICTYUvBKPM5vNqKqqQkNDg835N954AwaDAQ899BCfQsOZ5ORk2tKQEDKpqNVqm4XOWq3W4b2wv7/f4fXWjVlCQkIoeCVBjYJX4lF9fX1QKBR2u14dO3YMn332GYqKikZ91ZWQkIC0tLSJ7CYhxAnK8zoxbWs0GjQ1NdnkZr344ovtUggJhUIUFBTY5XBNTEyEXC4HwzB+kduTxoLn26Y8r64bd/BaXl6O6OhoZGZmQqPRUCqjIMVxHJqamtDS0gIANjfejo4OvPTSS1i+fDkuuuiiEduJjo5GVlbWhPaVEOIc5Xn1fNv9/f04d+6c3Y6Cr776Kr/4imEYmM1mXHzxxfjpT39qs4BVKpUiMTGRz0zgD7k9aSx4vm3K8zrE43leh6utrcX1118PhmGwbNkybNq0CcePHwfDMLjuuuvcbZYEIL1ej5qaGn4vbovFgrfffhsffvghjEYjBAIBMjIysGzZshHbkUgkyM7OHnVKASGEBAq1Wm23o2BfXx82btyIrq4uvPbaazCbzairq8OUKVOQl5dn8+aKUmERYs/t4HXXrl0oKytDVFQUDh06BABYsGAB3njjDQpeg0hbWxsaGhpsFhy888472LNnj83NOisra8QE2mFhYaPWIYT8fwqFAuXl5ZBIJNDpdCNmgFGpVNi5cyc2btzoxR4SlUplt0FLe3s71q1bh5CQEGzbtg3JyckYGBjA1KlT7a5PT09HUlKSt7pLSMBwO3idM2fOiFt5+huBQOA3czU8wdfzdqyLsrq7u+0e8e/fv9/uFcHJkydhMBgcjhmRSIQZM2bwu8eMt3+BNG/HE3w9Fjzdxljqj3ceVyCPhd27d/PBaGlpKUpLS7Fo0SK7eqWlpVCpVGhra/N2F4MWx3Gora1Fc3MzSkpKUF1djdjYWFxxxRV45ZVXkJaWhj/+8Y/8RgOOZGVlOQxoCSHjCF4/++wzzJ49GxkZGfwNXaPRoKamxmOd8ySLxeKVuRre4st5OxzHobq6Gj09PQ7Lna2C7e3tRUhIiM05oVAIuVwOoVDo8vcznnk5o5XTWPB822NtYyz1xzuPy5/mcI2F9YmrVU5ODnbv3u0weF20aBFUKhWOHTvm0T4Qx0wmE6qqqqBWq7F27VpUVFTAZDKBYRiUlpbi8ssvxxNPPAGRSOS0Dblcjvj4eC/2mpDA4nbwunr1asycORNxcXH8fvRqtRplZWWe6hvxU42NjQ4DV47j8Pnnn9udFwgEmDp1qt1OMGFhYcjLy0NYWNiE9ZWQyUihUNg8FZZIJH774CCYDAwMoLKyEoODgzh16hTOnTvHT6myPqmXSCROA1eGYZCTk4OYmBiv9ZmQQOR28CqTydDd3Y1du3ZBqVRCLpdjxYoVnuwb8UMdHR1QKBSoqKiAxWJBfn4+IiIi0NjYiD//+c+oqqrC0qVLcfLkSVRXVwMA4uLisG7dOptFCJGRkcjJyXF5qgAhhPizCxdm9fT0QCAQ2G1A0NXV5fB6gUCA3NzcgJqOR4ivjDtyWLlypc1xXV0dMjMzx9ss8UMajQZfffUV/vjHP6K7uxsMwyA8PBzz5s3D4cOHUVBQgJ07d0IqleKBBx7gb+QpKSk2TxoSEhKQlZVFWQUIGYfhUxqsmT6IbzhamCWVSvktX62EQiFycnLsrp8yZQpkMhm9hSLEReMKXjUaDbq7u23OrVmzBu+///64OkX8j16vR3V1NTZv3gy1Wg2O48BxHLRaLQ4ePIjVq1dj/vz5fEAqEAgcbjSQlpaG5ORkb3efkElFLpfzbzaAoUA2OzvbrbZaW1vR2trKH4vFYkRGRjrM/MEwjN1567E/Zwpx1G9PUSqVaGxstHmzZH0TFRkZCY1Gg5CQEJjNZmRkZOBnP/sZX5dlWeTk5CAiImJMX9PV78eVeqPVcVZOY8HzbbtzvT+MBWdlEzke3A5et27dijVr1iAmJoafn9Pd3Y3e3l6PdY74B5PJxM/jqq2ttSu3WCy45JJLRnySKhAIIJfLERsbO5FdJSQoFBQU4K233uKPVSoV5s+fD2BoMVd2drbLAVFxcTE2bNjAH69btw7r16+3W1xp5ey8v29Q46zf7uI4DlVVVejs7LT5WX/99dd49tlnMXv2bDz55JNQKpWorq5GTEwM5s2bx/cjISEBMpnM7X65ep0r9UarQ2PBe227c70/jIWRyiZiPIzryeuFc3kA4PHHHx9Pk8TPWDML6PV6CAQChIaG2mUTYBjGbivD4UQiEXJzc8f8dIEQ4tzDDz+M3bt3QyqVQqVS4d577wUAlJSUYNGiRTbB7NGjR6FSqVBSUoL58+dDKpXy7RQWFmLJkiX8sVgshsFgcDgVwZpTdjiWZfknjP6YjQNw3O/xsFgsqKqqwoEDB9DU1IQpU6bgyiuvxN69e/Hee+/hnnvuwR133AGLxYLMzEx+Kp3BYADDMMjKykJ0dDTfp7H2zdXvx5V6o9VxVk5jwfNtu3O9P4wFZ2XujgdXFiyOa8GWI3/84x/dbZL4obq6Omg0GgBDQercuXPxxRdf8OUsy2LJkiVOP3GFh4cjNzfX46mCCAl2crkccrnc7vyFGxEUFBSgoKAADz30kMN2kpKSbBLhd3Z2guM4h39snJ0HhnI/+2vAMlK/x8qa4/r555/HZ599BqFQCLPZjFdffRUMw+Dpp5/GnDlzANg/4JFKpUhNTQXLsnx/3Ombq9e4Um+0OjQWvNd2oI6F0comYjwIRq/imEwmw+HDh+3Or1mzZlwdIv5DpVKhvb2dPz5//jyOHTuG+fPnIzc3F9nZ2bj33ntx33332V3LsiySk5Nx8cUXU+BKCJkUzGYzKisr8eWXX+LTTz+FxWKBwWCA2WzGwMAArrnmGj5wHS48PBzTp09HRkaGX88HJSRQuP3kValUYsWKFTZzXDmOA8MwePXVVz3SOeI7arXaZvVsS0sLNm7ciOuvvx6/+tWvnM5vZVkWiYmJyMnJgV6v91Z3CSEeIpFInO485u+7jjnjiZ3iTCYTzpw5A5PJhLa2NohEIhgMBps6PT09dlOopFIpsrKybBZ0jbdvrl4z3h3oRioP5rEwUW0H6lhwVjaR48Ht4PX48eM4dOiQzfQBjuPsUmeRwMJxHNra2mwSnvf29mLdunXIz8/HypUrHQau1qBVKpVCJBJBJBJR8EpIANLpdBAIBA53HgvEHeiA8e8UZzAYUFFRgYGBAQBDC1AuTIPFsizi4+P5OizLIjMzE/Hx8SPOI3Snb65eM94d6EYqD9axMJFtB+pYcFY2kTsSuh28zpkzBzNnzrQ7X1RU5G6TxMe6urrQ1NQEhmH4gTY4OIhnn30WERERWL16td0rL4FAgMTERCQlJY243SEhhASiwcFBVFRU2HwYDwkJ4d80chwHoVCI8PBwLFu2DMDQorecnJwRF7ISQtzndvAaExMDjUZjlwKhpKQEq1atGnfHiPeo1Wo0NTXxTwesN1yLxYLt27eju7sb27Zts0ugbV3oQUErIWQyGhgYQEVFhc30gBMnTuC5557D0qVLERERgaamJkRGRuLWW29FbGwsEhISaG4rIRPM7eD1gw8+QGFhIaKjo/ncnRzHoaysjILXANHX14fGxkb+Ub/RaMTrr7+OI0eOAACmTp2K9vZ2bNu2zS51hUwmQ0JCgtf7TAiZWDTndWh+a1NTE1paWsCyLP+B/tixY3juueewfPly3HPPPQDAZw6w5rKeOnXqhPZtLNfQnFd7NOfV/TqTYs7riRMnsHnzZptzHMfZnSP+R6fTobGx0W5DiVdeeQVHjhzh53LV1tZi1qxZdjtlpaWlUeBKyCQVzHNerXP+m5ub7ea0fv3119i6dSvuueceLFu2jJ/bag1sZTIZxGLxhM1ZdOcamvNqj+a8ul9nUsx5LSoqwoIFC+zOu5JclviGxWJBQ0MD2tra7MpMJhMOHz5s9+no1KlTMJlMEAqHhkpSUhJt70oImXS6u7vR2NgIvV4PvV6Pffv2ob6+HgkJCUhOTsZrr72G+++/H7feeqvNdXFxcZBKpTRNgBAvcjt4dRS4AnC4fSjxvYGBAdTU1KC/v99hudlsdvhY35p4WCgUIj4+Hunp6RPdVUII8RqdTof6+nqb6VNr1qxBfX09TCYTBAIBLBYLfv7zn9sFrrGxscjLy4NWq/VBzwkJXi4Hr0888QSuv/56XHfddTh16pTD6QE9PT0oKyvDAw884NFOkvHp6OhAXV2dw+18rdra2uy2fmVZlt8dKzo62umuaoQQEmgMBgMaGhrQ1dVlc/6rr75CXV0d/5rTYrFAIBDYpbuKjY1Fdna205zXhJCJ43LwqlAobHYO6enp4RdsDT/nr3NeBQKB30w09gRXJl+bTCYolUp0dHQ4nUPCcRw+/vhj7Ny5EzNmzEBHRwf/9DwrKwvPPPMMEhMTcfHFF4/ptdhYJ56Ppf54JpWPVj5Zx4Iv2/blWBitzmQbC54QDAu2jEYjKisrMTg4aJfOqq+vDwKBwGaOnsVigVqt5uvGxcUhLy8PDMME7SKdyTIW/KntQB0Lzsr8YsHWBx98wP+3TCZDcXExsrKy7Oo52mvbH1gsFq9MNPaW0SZW63Q61NTU2OQm7OzsxOnTp8EwDGbOnAmhUIiXXnoJJ06cwIoVK7Bo0SJwHAetVgu9Xo/4+HhIJBKkpqY6nW7gbv/GU388k8pHK5+MY8HXbftyLIxWx58WIPiLyb5gy2KxoKKiwunvPSIiAkaj0eacUChEamoqBgYGEBMTg+TkZH6qQLAu0pkMY8Hf2g7UseCszC8WbNXV1UGtVkOhUCAmJgbXXXedw3qONi4g3tXa2orGxkabTzpnzpzBunXr+AEkEokQFhaGqKgovPjii8jIyAAw9EkpMTERAwMDCA0NRX5+Pr9YixBCAl1dXZ3TP8CnTp3CX/7yF8TExECtVkMkEsFsNiMnJwe33norYmJikJOTQ1MFCPExl6MSuVyO4uJi3HHHHYiKiprIPhE3GY1GKJVKqNVqm/MWiwXPP/+8zXxW60KE7du3O/yUIxQKkZ+fj5CQkInuNiGEeEVrays6OjrszlssFrz//vt49913cfvtt+Puu+/Gd999h6amJsTFxeEHP/gBEhISKHAlxE+4HLwuXbrUpYVYdXV1yMzMHE+fiBv6+vpQXV1t97oLADQaDTQajd15nU7n8Kkqy7KQy+V2O2oRQkigUqvVaGhoQG9vL/7+97+jvr4eSUlJuOWWW/DWW2+hsrISTz75JK644goAwOzZszF79mwAQHR0NAWuhPiRMT15dcXevXtphy0v4jgOLS0taGpqclpHIpHwe3APFx4ebrcIi2VZTJs2bUL6Sgjxf5NxwZbBYEBzczPMZjMeffRRdHV1wWQyobKyEp9//jkyMzNRXFyMpKQku2ut6bAEAoHDtoN1kU6gjgVasOV+nYBcsKVUKlFfXz9qBw4cOEDBq5cYDAYoFAqHT1WtjEYjdu/ebXeeYRjcf//9NudYlkV+fv6ETmgnhPi3ybZgy5p1RavV4pNPPuEDV2BougDDMJg9ezaio6P5XbOsoqOjkZycbJcma7hgXaQTiGMBoAVb46kTkAu29uzZg717945Yh+M4eq3iJWq1GmfOnHE4TcCqpaUFW7ZsQXd3N5577jl0dnbi66+/BsMwWLBgAebNm8fXtQauERER3ug+IYRMOI7jbKZTXbgltpWjTQYiIyORk5Pj9IkrIcR3XA5ely1bhieeeGLEOhzH4fHHHx93p4hzHMehqakJarWavyFzHIdPPvkEx44dg1AoxKJFizA4OIhXXnkF06ZNw4YNG/hFdo6yRFDgSgiZjOrq6qDRaPj8rHK5nH/qaiUQCJCdnW1zbsqUKcjNzaXAlRA/5XLwKpPJXEqDdf3114+rQ8Q5g8GAmpoa9PX12STWfvPNN/Gvf/2L30HrxIkTEAgEuO+++3DLLbeMeAOmwJUQMhmpVCq0t7fzxxaLBWVlZRAKhTCZTBCJRDCZTJg7dy5uuOEGvp5EIkFeXt6YNmUhhHiXy8Grs9ctF1q2bJnbnSHO6XQ6VFRU2D016O/vx759++zqh4eH47bbbhuxTQpcCSEXCvQFWxzHobu7Gx0dHTYf8nfu3ImjR49ix44d/BusxMREXHLJJfz3EB4ejunTp0MkErn89YJ1kU4gjAVHaMGW+3UCcsFWcXExrr/+eixcuBCRkZFO6znadYuMj8FgQGVlpV3gCsDp5OnhO2s5QoErIcSRQFuwZTKZoNVq0dfXh76+Puh0Ov4tFACYzWbs2LEDJ06cwHPPPcdvyGJN6Wi9V4aFhSE9PR16vX7U++dwwbpIxx/HgitowZb7dQJywVZZWRm6u7tx4MCBEXfYIp7FcRxqamqcLszq7e2FQCCwuVkLBIIRc+1S4EoICVSDg4PQaDTo6+uDVqu1yxAwnNFoxNatW3Hu3Dk8//zzTu+LISEhtCkLIQHE5eCVtn31jfr6eoefdIxGI/7xj39gz549mD59OioqKmCxWMBxHKZMmeI0XZlQKEReXh4FroSQgDMwMICzZ886fYpz+vRp7NixAx0dHYiLi0NsbCw6Ojrw4osvIiEhweE1IpEIF110kUtPewgh/oE2rfdjHR0daGlpQUlJCb799luEhobixz/+MaZOnYqXXnoJPT09ePzxxzF37lx0dnbi7NmzEAqFmDFjhsPgdMqUKcjOzqanC4SQgGOdPuUscK2vr8fatWv56VUdHR3o6OjAunXrkJ6e7vAJrVAoxEUXXUS7CRISYCh49VM6nQ61tbV45ZVXcPjwYf6G/f3334NhGCxcuBD3338/P0E6Pj4eV199tdP2kpOTkZqaSnl4CSEBx2w2o6qqCoODg07rWHNYD8eyLCoqKvDDH/7Qrr51+tTwRV2EkMBAwasfMhqNqKqq4ucYX2jKlCl4/PHHR5zrZSUSiSCTyRAdHT0BPSWEkIllnfc/0i5XwFCAO3zuPzC02tnRQteIiAjIZDIKXAkJUBS8+hnrjjAGg8Hpqr6RdtUaLjIyEnK5nKYJEEJc5m+pspRKJQYHB0cMNC0WC/r7++2mFJjNZlx55ZVgWRZisRgCgQAZGRlISkry2FuoYE2PRKmyPN92oI4FZ2V+kSqLeMfwBVqJiYkQi8U2T1hZlkVOTs6o7aSmpiI5OZmmCRBCxsSfUmW1traioaFhxDo9PT3Yvn07qqur8eMf/xilpaUwmUwQCoV46KGHkJOTA7PZDJFIhKysLISFhTncDtZdwZoeiVJleb7tQB0Lzsr8IlUWmXidnZ1oa2vjj0NDQ7FgwQJ89NFH/C5ZCQkJePTRR522IRKJkJOTM2GfLAkhxBu6u7vtAlelUon29nYkJycjPT0dp06dwvbt25GYmIiXXnoJiYmJuP/++6FWqxEdHY2QkBCwLAu5XA6JROKj74QQ4mkUvPoJ6wKt4err6/Hpp59ixYoVSExMhEgkwrRp05yujI2Pj0d6evqYdochhBB/09fXB4VCwR9zHIdXX30VH3/8MViWhdlsRn5+PqqqqnD77bfj7rvvhlA49OcsJCQEU6dOBQDExMQgMzMTcXFxE/a0jRDifRS8+gGDwYCqqiqbxQZGoxHbt2/HnDlzsGTJkhFf/0dFRSEtLY2eLBBCAp5er7e7Hx45cgSlpaUAwL9+rKiowPLly3HXXXfZtSEUCvmglRAy+VDw6kMWiwUqlQotLS1280HefvttqNVqbNy40WngKpFIkJ6ePuJ2vYQQEiiMRqPDrbArKirs6gqFQofz6BiGQX5+Pn2YJ2QSo+DVR6zzuRzlLTxz5gz27duHdevWISoqyq48NDQUubm5lFibEDJp6HQ6KJVK6PV6u7KIiAiHH+IdBaipqakUuBIyyVHw6mU6nc7plq/W8u3bt+Pmm2/G7NmzbcqEQiFSUlKQmJiIyMhImsNFCAl4ZrMZTU1NUKlUTuvccMMN2LNnD3/MsiwkEgmuu+46m3oRERFISkqasL4SQvwDBa9eYjQa0djYiI6OjhHrvfbaawgLC8O9995rc37KlCnIy8sDy7IT2EtCSLDzZp7X7u5ul/K4fvvttxCJRLjkkkugVquRnp6OX/3qV0hMTOTrCAQCzJgxw2E7lNvT/TqU59V7bQfqWHBWRnleL6BSqbBz505s3LjR110ZFcdxUKlUaG5uHjXP2VdffYUvv/wS27dvt8tzlpmZSYErIWTCeSPPq8FgQF1dHXp6ekate/r0abzxxhtYvXo1rrzySpuy4TmwMzIyYDKZXO63pwRrbk/K8+r5tgN1LDgrozyvw5SWlkKlUtnkQ/VXHMehqqoKarXaYbler8frr7+OEydOQCQSoaenB3fffTeys7Nt6iUmJiI8PNwLPSaEkInDcRza2trQ1NTk0h+zzs5ObNmyBbfccotd4DpcZGQkpFKpJ7tKCPFjARe8Llq0CCqVCseOHfN1V0alVCqdBq4cx2Hjxo04e/aszcraCxcaiEQipKWlTWQ3CSFkwllzWet0OpfqG41GbN68GampqXbTqIZjWRYymcxDvSSEBAKBrzswWdXV1aGzs9NpeXNzM7777ju7lDD79u2zOU5LS6PpAoSQgMVxHJqamnDmzBmXA1cA+Otf/4r29nasWbNmxHtgRkaGS68ZCSGTR8A9eQ0ETU1No05rcJQO5sLzERERSEhI8GjfCCHEWwYGBqBQKMYUtALAF198gY8//hjPP/88YmJinNaLjo6meyQhQWjSBq+tra1obW3lj2NjYx3mTAWGVsRd+MneejzWp57WrysQjPxQu6urCwzD2KzAEwqFmDlzJgQCARiGgVwud/r1HfXZUzzR9ljbGEv90eqOp9yTY8FbaCyMXHesv++Ryvx9LPgTlUqFhoYGl1YZd3Z2Ys+ePVCpVIiJicFXX32F+++/H9OmTXN6jVAoRFZWlie7TAgJEJM2eC0uLsaGDRv446effhrPPPOM0/ohISEOz49l96q2tjZ0dXUhIiLCaZ2BgQG8+uqr+PDDD3H99dfj2LFj0Gq1AID8/Hw89thjfK7C1NTUEb+esz57gifaHmsbY6k/Wt3xlHtiLHgbjQX360y2seBrg4ODUCqV0Gg0LtXv7u7Gb37zG5sVyWKxGDfccMOI12VmZk7ouCeE+K9JG7wWFhZiyZIl/HFsbKzTtCwSicTutRbLsoiMjIRGo3FpVWx3dzeqq6v5pwwWiwWlpaU4ffo0wsPDcfPNN2NwcBDbt28Hx3EoKirCtGnTsHLlSjQ0NCA0NBQZGRkAhqYOREVFjZhGxlGfPcUTbY+1jbHUH63ueMo9MRa8jcbCyHXH+vseqczdsTDSq29/M548r21tbVAqlTCbzSPmbR3uk08+QX9/v83P02Aw4L///S9uuukmh9ckJCQgMzPTxe+IcnuOpw7lefVe24E6FpyVUZ7XYcrLy3H06FGoVCqUlJRg/vz5DlOkJCUl2ey0Mjg46DQ/GcdxTv8Qmc3mUf9IaTQaVFZW2vxyXn75ZRw8eBBmsxkMw+DTTz8FwzC44YYb8Mtf/hJisRgWiwVhYWHIzc3lr7NYLEhJSQHDMCN+3ZH6PF6eaHusbYyl/mh1x1M+3rHgCzQWRq7r7u87EMeCJ7iT55VhGJw6dWrERarOtLS02C1cFQgEaG9vt8njaiUSiZCQkDCmfJiU29P9OpTn1XttB+pYcFZGeV6HKSgoQEFBAR566CFfdwXA0I2+qqrKJnBtbm7Gp59+yh9by1JSUvDwww+P2J5EIqEFCISQgKJQKNDd3e2wrKenB//617/Q1dWFzMxM3HLLLRCJRGhra8OHH37oMO2h2Wx2Op9VJpNBKAy4P12EEA+iO8A46HQ6VFRU2H2icHYTHxwcHLXNzMxM/lE7IYQEsp6eHjzyyCPQarUwmUwQCoX44osvkJKSgm+++QYymQyPPPIIDh06hO+//x5CoRBGoxE33HADLrvsMrv2EhISEB0d7f1vhBDiV4ImeBUIBB6bq8FxHBobG9HU1ASRSASRSGRTLpPJ7DIJsCwLuVw+4jywxMREm6kOI/HneTvutDGW+uOZlzNaeSDO46Kx4P48rsk2FvzN3r17+cAVAEwmE+rq6iAUCvH8889j2rRpYBgGV199NcrKytDZ2YnU1FRceumldm2JRCKkp6d7+1sghPihoAleLRaLR+Zq6HQ6KJVK9Pf3O/1a586dg0AggNlshkgkAsdxiIyMRGFhocM5XNavFxsb6/J8F3+et+NOG2OpP555OaOVB+I8LhoL7s/j8qc5XJNRR0eH3XxWkUiEa6+9FtOnT+fPsSyLyy+/fMS2srKyaLoAIQRAEAWv42WxWNDc3IyWlpYR6x07dgxbtmzBz372M8yePRvnz5+HWCzGD37wgxFTaKWlpdk9wSWEBDeFQoHy8nI+88HSpUvHVK+8vBw6nQ4qlQoqlcrrawXS0tLs3kKZzeZR0wBeKD4+PqAyNhBCJhZtD+sCnU6HM2fOjBq4fvnllygqKsLPf/5z/PSnP0V2djYWL16MhQsXjhi4RkVFYerUqZ7uNiEkwO3evRtLly7FokWLIJFIUFpaOqZ6a9euxfz587F06VKoVCqn108Eg8EAhUIBgUAAgUCAkJAQCAQCLFy4ELNmzXK5HZFIxKcRJIQQgJ68jshisaChoQFNTU2j1j18+DD+9Kc/YcWKFVi8eLHLXyMhIQFZWVm0SIsQYsP6JNUqJycHu3fvxqJFi1yut2vXLpu6EzU3+kIDAwN49tln0dLSgpdeeglKpRJdXV3IyMjAZZddNqb7HU0XIIRciO4ITgwODuLUqVNob2+3K9NoNNi5cyfOnj0LiUSCadOm4eDBg/j1r39t94dlJGlpaUhOTvZktwkhk4RCobAJNiUSCWpqasZUz5oDW6vVQqvVYsaMGRPc66GvtWHDBmg0GmzZsgUJCQluPzmNi4uj6QKEEDtBE7yONduAWq1Gf38/wsLCbOZrmUwmPP3006ivr4fJZIJarUZzczOWLFmC2267zaW+MAyDnJycceVzpRXmlG3AisYCZRsYSXl5OUpLS7Fs2TKH05daW1vR2trKH4vFYkRGRoJlWbu6DMPYnTebzfzmBBqNBk899RQ4jsOWLVvGFXiKRCLIZDKH/RgrR/32lPG27c71rl7jSr3R6jgrd3TeejxRP2tPoLHgfp2Ryr09HoImeB1rtgFrNgG9Xg+LxcKfP3fuHBQKhV0bFRUVTjMJDCcUCpGbm4uwsDCv78ThzbYp24D30FiYvNkGhn/9kbbBHamedWOXzZs3Q6VS2S36Ki4uxoYNG/jjdevWYf369QgJCXH4tYaf37x5M5566imYzWZMmTIFYrEY8fHx2Lp167g/9Fx00UWIj48fVxvDOft+/KFtd6539RpX6o1Wx5WxMFxkZOToHfMhGgvu1xmp3JvjIWiCV0/R6/UOz7sSuIaFhSEvLw9hYWGe7hYhZJKRy+Worq7mj/v6+pCdne1yvdLSUnz66ad48cUXAQwFsfv27bMLXgsLC7FkyRL+WCwWw2AwOAyWrdkMAGDPnj148skn+Q/3fX19/JQBhmGg1Wrd/t7j4uLAsix6enrcbsNZvz1tvG27c72r17hSb7Q6zsodnWdZFpGRkdBoNH75QR+gsTCeOiOVe3I8uPLGhoLXMXKU31UoFDrcDWa4KVOmIDc3lxYeEEJcUlBQgLfeeos/VqlUmD9/PoChqQDZ2dmIiIhwWk8qleLKK6+0OS+Tyey+TlJSks3mKJ2dneA4zuEfm+Hn//nPf9q8lQKG/lhVVVUhLS3Nze966H6alpbm0eDH2ffjD227c72r17hSb7Q6royFC5nNZr8NXmksuF9npHJvjweKpFxkNBrx1ltv4cMPP8RVV12F48eP809hZ82ahXvuucfptfHx8fyuW4QQ4qqHH34Yu3fvhlQqhUqlwr333gsAKCkpwaJFi/hg1lk9lUqFkpISAEPTCR5++GGP9W2kuW/jkZmZSTmvCSEjouDVgbKyMnz77bcwm82YOXMmVCoVtm7dit7eXmzcuBEzZsxAf38/mpqaIJFIkJyc7PSGTRkFCCHuksvlkMvlduc3btzoUr2xZD+xkkgkTheyDT9/33334eOPP+YXrgkEAoSFhWHu3LkjboPtDMMwiI+PR2Zm5pivHY0/L2p053pXrxnvgsaRygN1QSONBffr+NMCV4bz1xHmYUaj0e4Vl5VQKOS3MNy+fTueeuophIaGwmg0YsqUKejv78fll1+ORx99FFFRUS59PZZlkZeXN2FpXob32R/bHmsbY6k/Wt3xlDsqYxgGISEhMBgMfnlDprEwct2x/r5HKnN3LATS9rCdnZ1OF7JdeP4f//gH1q1bh76+PiQnJ2PNmjUOpyYMxzAMwsLCIBaL+f9ZjwWCidk3x58XNbpzvavXjHdB40jlzhY0xsTEoKenx2+nDdBYcL+OOwtc3RkPrizUDJonr65kG6isrOTTvFinBKjValx88cVYs2YNGIZxeWGWTCaDUCj0238kE902ZRvwHhoLkzfbgL+7++678Ytf/ALNzc1obGx0+oAAGJoOEBUVhdDQUJpCRQgZl6AJXl1RWVkJoVAIo9Foc35wcNDlm210dDSys7P9Os8dIYR40mgLUZOSkpCYmOil3hBCJjsKXodJTEy0e00oEAhczjWYnJyM1NRUeqpACAlYrs55tbLe7y7c0MUqIiICF198sU/vizTP0f06NOfVe20H6lhwVjaR44GC12Euv/xy3HDDDTh8+DCMRiNYlgXLsiNmEgCGAlyZTIa4uDgv9ZQQQiaGTqeDQCAY0zxHwH5DF2tZcnLyuHK+eoI/T60J1HmOgTjFCqCxMJ46/jTNioLXYRiGwe7du1FcXIxvvvkGoaGhuPnmm5GSkuL0mpCQEOTm5kIikXixp4QQ4v+ysrJoUxZCiMdR8HoBoVCIhx56CD//+c/R1NQErVbrdBHClClTkJOTQzkJCSHkAgkJCfQ2ihAyIYImeBUIBGOaq2F9xO1sHldSUhKysrJ8No/Ln+ftuNPGWOqPZ17OaOWBOI+LxoL787gm21jwF2FhYcjIyPB1Nwghk1TQ5HkdHBwc01yNvr4+h09eBQIBsrKyXF7ENVH8ed6OO234e6osf85dSGPBu6myJipvob8YGBhASEiIw/y3znLfKpVKtLa2guM4MAyDGTNm+NVUKn/OhezO9a5eM948yCOVB2JObIDGwnjq+FNe7KB58uoJoaGhyMnJ8aubMiGEeNJ4F2xlZGSMmFfbF/z5A16gLtKhBVuebztQx4KzMlqw5QeioqKQnZ09aj5DQggJVtHR0ZBKpb7uBiFkkqNIzAWUv5UQQkYWEhIy6tawhBDiCRS8joBlWeTm5iIqKsrXXSGEEK9wd5OCSy+9FJGRkV7p41j586LGQE1MH6gLGmksuF/Hnxa4UvDqREhICAoKCjA4OOi3c3cIIcTT3JnzmpqaCqPR6FfzXIejeY7u16E5r95rO1DHgrOyiZzzKnC5tSATHh6O8PBwX3eDEEL8XkREhK+7QAgJIhS8EkIIIYSQgBE00wbGukmBv8/d8ed5O+60QZsUuI/GAm1SQAghwSRogteR8g4G4twdf563404b/r5JAY0F77Xh75sUTNQcLkIIIa4JmuCVEELI6NzNNuDPT6P9+e1EoK4wp7Hg+bYDdSw4K6NsA4QQQrzCnWwD/vxmAvDvtxOBusKcxoLn2w7UseCsjLINEEIIIYQQAgpeCSGEEEJIAKHglRBCCCGEBAwKXgkhhBBCSMCgBVuEEEJ4lG3Au20H6gpzGguebztQx4KzMso2QAghxCso24B32w7UFeY0FjzfdqCOBWdlE5ltgOH89eORj7W2tqK4uBiFhYVISkrydXeID9FYIFY0FuzRz4RY0Vggw03keKA5r060trZiw4YNaG1t9XVXiI/RWCBWNBbs0c+EWNFYIMNN5Hig4JUQQgghhAQMCl4JIYQQQkjAoODViaSkJKxbt47m7RAaC4RHY8Ee/UyIFY0FMtxEjgdasEUIIYQQQgJG0KbKUqlU2LlzJzZu3OhS/ZKSEkgkEgBAQUEBpFLpRHaPeNFYxsKSJUtsjiUSCV5//XVERERMVPeIl41lPCgUClRXV/PX3XvvvRPcO9+g+yWxovslsfLlvTIog9fS0lKoVCq0tbW5VH/37t0oKChAQUEBSkpKcPToUSxdunSCe0m8YSxjQaVS4Re/+AXmz58PYCgfZnl5Od2IJ5Gx3hu++uor/iasUChQWlqKRYsWTWAPvY/ul8SK7pfEytf3yqCc87po0SKXf2harRbHjh1DQUEBAGDp0qV0I55ExjIWIiIicOONN0IqlUIqlaK8vJzGwiQzlvEAAN999x20Wi0ATFjic1+j+yWxovslsfL1vTIon7w6U1paCp1OB4lEAp1Oh6VLl6KmpgaJiYk4evQo+vr6JvWrQfL/ORoLw58YlJeX83+gyeTnaDwAwIwZM7BixQosW7YMfX19QXVvoPslsaL7JbHy1r0yKJ+8OqJQKPhPhosWLUJ1dTUUCgVUKhW+++47zJ8/H4sWLYJUKsXu3bt93V0ygZyNheFKS0shl8t91EPiTSONh0WLFuHKK6/E3r17oVKpfNxT76H7JbGi+yWx8ua9koLX//PVV18BAI4ePYqjR4/yCwymTJli849OKpXi2LFjPukj8Q5nY8FKoVBgypQpvuga8QFn40Gr1aKkpAQPPfQQ3n33XQDA5s2bfdZPb6L7JbGi+yWx8ua9kqYNDCOVSvnJ5db/J8FppLFQXl7Or6QmwcHReCgtLbV5Ffr444/j97//vS+65xN0vyRWdL8kVt66V9KT1/9z1VVX4bvvvuOPVSoVVCqV3asOhUKBefPmebt7xIucjYXhx/QkIXg4Gw9SqdTu9Vd2dra3u+cTdL8kVnS/JFbevFcG5SYF5eXlOHr0KD799FM+lYdUKsXRo0dRXl7O34CtK+msaR2kUmnQLcqY7MY6FgBg586dKCgooKdNk9BYx4N1cYLVjTfeOOlSAdH9kljR/ZJY+fpeGZTBKyGEEEIICUw0bYAQQgghhAQMCl4JIYQQQkjAoOCVEEIIIYQEDApeCSGEEEJIwKDglRBCCCGEBAwKXgkhhBBCSMCg4JUQQgghhAQMCl4JIYT4nFKp5P9brVZDrVZ7pC1CyORDwSshxCOUSiUKCwuxZcsW/n9qtZr//4MHD2LNmjXYtWuXr7sakE6ePIk1a9aAYRjI5XJs2bLFb4K08f5uT548iZMnTwIA9u7di9mzZ2PNmjXj6o+//GwIIZ5HO2wRQsZt165dKC4uxqFDhxAdHc2f37JlC9asWYOenh5ER0djy5YtOH78OPbs2eO7zgY4hmFQXFyMlStX+qwPW7ZswerVq+3Oufu7LSwsRHFxMX+8a9culJWV2ZwbqzVr1qCoqMjt6wkh/ouevBJCxuXkyZMoLCy0C1wBYPXq1ZDJZPzx8P8m7rnwZ+xtarUaCoXC7ry7v9stW7agsLBwvN2yM2fOHHrKT8gkRcErIWRc1qxZg4ULFzoNqpYtW+bdDpEJo1arsWLFCo+2eeDAAcyaNcujbQJD446e8BMyOQl93QFCSGA7ePCg3Svk4Z544gm7wPbgwYNQq9U4cOAArr/+eixbtgx79+7FmjVrsGzZMsjlcuzZs4cPjNVqNTZt2oQ5c+agu7sbAPjX5tb5lpdddhnuuOMOqNVqHD9+HHPmzIFMJoNSqeTnPw7v50htAkNPBGfNmgW1Wo33338fr7/+OqKjoz3eF6VSiaKiIlx//fU4fvw4CgsLx/2E2lmbjvo3/HcADD1JLy4uxuzZs6FQKCCXy1FWVobCwkIolUqo1WoolUps2bIF0dHRdtMXHP1uR+qnsw893d3d2LVrF2JjY/mfoXWcbNq0CTKZDNdffz0AoKysbNSvRQiZRDhCCHFTT08PB4ArKipyqf6ePXs4mUzG9fT0cBzHcWVlZZxMJuPLi4uLuVmzZvH/XVZWxnEcx82aNYu/huM4rqioyOZrOmo3OjqaO3DgAF8HgE0bI7VZXFzM7dmzx6bMWtfTfYmOjuYUCgXHcUM/z+E/D0eio6O54uLiUes4a3O034FMJuN/7sXFxdzKlSttvl/ruQuN1q4je/bscTh2ho8Dq1mzZvE/Q0flMpnM5mfMcRy3cuVK/nshhEweNG2AEOI261Ozrq6uMV1jvU4mk/FPL61iY2MBDD3NnDVrFvbu3WvztYChV8KbNm0asV21Wo2FCxfalFu/1mhtymQyrFmzBlu2bMHJkyexcuVKREdHe7wv1ieL1iet1musK+/HwppaypU2R/odKJVK/trY2FicOHHC5Xm2o/1uL9Td3e207QufPhcWFtoswBqt3NofyjpAyORDwSshZFwWLlw4YrBlDfisrMGp1YX5PC8MSo4fP253TWxsrF0u0AvrXGh4+WhtLly4EEVFRThw4ABmz56NO+64Y0L6olAoEB0djYMHD/L/W7ZsmVuLsj744AOX2xzpd7Bw4UKcOHECwND3+9Of/tTlPoz2u73QWHK5xsbGjhiIUqBKSPCgOa+EkHEpKirC7NmzoVarHQZdoz19G41cLsfBgwcdtunuyvvR2rQGfNY5lIWFhdi7d6/H+2Jtb/hT2eH/PRbWDADjbfOOO+6AUqnErl27+HmmFxr+BHs880ytc4hdMfyJsCNqtdphua+zMxBCPI+evBJCxmXWrFkoLi7GggUL7AKRvXv34rLLLhtX+ytXrrR7sllcXDzmHJ7Dg+jR2jx58qTNE2PrwiBP98VRe9YFT844Ktu7dy9/3p02hysrK8PKlSuxcuVKh4GpdRqEJ8hkModptwD7XbLef/99m5/zhU/7Hf0eRgt4CSGBiZ68EkLGbeXKlVi4cCHWrFkDuVzOn1+2bBkfPBw8eBCbNm3iV6ovW7aM30VpzZo1mDt3LoqLi/kV6MMDkbKyMmzatAlyuRxqtRpxcXH8av2R2rXOg9y0aRPUajWfuF4mk43YpvUVtDWAVSqVfJmn+zK8PWAooHP0tNCaBQAYCtTUajW6urpw8uRJHDx40OnPa3ibo/0OnnjiCcjlcjAMw/fhsssuQ1FREZ/OauHChSguLsaWLVtc/t06yjhhbctZ4F9UVMT//I8fP27TB+v3NDwbQXFxsV3KLQpeCZmcaIctQgghAIYC5OFPOK1pse644w6nT0jH64477uDTkLlq165dOHDgwIh5XK3pwsazSxchxD/RtAFCCCEAhp6gzpkzhz+Ojo7GrFmzJvTp5RNPPDEhO2EVFxfzT38JIZMLTRsghBACYGjjhC1btvCv45VKJbq6usY8p3csZs2axc/JdeXp68GDB/npJbt27bLbJAEYeuoql8tpygAhkxRNGyCEEOJzW7ZsGXGntrFwFtQSQiYHCl4JIYQQQkjAoDmvhBBCCCEkYFDwSgghhBBCAgYFr4QQQgghJGBQ8EoIIYQQQgIGBa+EEEIIISRgUPBKCCGEEEICBgWvhBBCCCEkYFDwSgghhBBCAgYFr4QQQgghJGD8P+V00L6sfdAuAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pn.options.figure_size = (8, 3.5)\n", "plot = ggplot(df, aes(x='Length', y='mean')) + \\\n", " geom_ribbon(aes(ymin='lower', ymax='upper', x='Length'), alpha=0.3) + \\\n", " geom_point() + geom_line() + \\\n", " scale_x_log10() + scale_y_log10() + facet_wrap('Method', ncol=2, scales = \"free\") + \\\n", " labs(y= \"Time to run (seconds)\", x = \"Chromosome Length (bp)\") + theme_classic() + \\\n", " theme(subplots_adjust={'wspace': 0.15},\n", " panel_grid_major = element_blank(),\n", " panel_grid_minor = element_blank(),\n", " strip_background = element_blank())\n", "\n", "plot.save(folder + 'linear_time_lines.pdf')\n", "fig = plot.draw()\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Li-Stephens vs Exact Decoding" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# Python implementation of Li and Stephens' Method\n", "\n", "def theta_tilde(n):\n", " \"\"\"\n", " parameters:\n", " n - total number of sampled haplotypes\n", " \"\"\"\n", " x = 1/np.arange(1,n)\n", " return 1/x.sum()\n", "\n", "def get_emissions(haplotype_bank, theta, k):\n", " common_term = 0.5 * theta/(k+theta)\n", " equal = k/(k+theta) + common_term\n", " \n", " \n", " B0 = np.where(haplotype_bank == 0, equal, common_term)\n", " B1 = np.where(haplotype_bank == 1, equal, common_term)\n", " \n", " B = np.stack([B0.T, B1.T], 1)\n", " return np.log(B)\n", "\n", "def setup_viterbi(df, m_locations, focal, panel, theta=None, rho_over_theta=1):\n", " n, S = df.shape\n", " \n", " if theta is None:\n", " theta = theta_tilde(n+1)\n", " rho = rho_over_theta * theta\n", " d = np.diff(m_locations)\n", " \n", " k = len(panel) \n", " log_pi = np.log(np.repeat(1.0/k, k))\n", " \n", " obs = df[focal]\n", " haplotype_bank = df[panel]\n", "\n", " log_B = get_emissions(haplotype_bank, theta, k)\n", " return d, rho, log_B, log_pi, obs\n", "\n", "def viterbi(d, rho, log_B, log_pi, obs, panel):\n", " L = len(obs)\n", " K = len(log_pi)\n", " T1 = np.zeros([L, K])\n", " T2 = np.zeros([L, K], dtype=int)\n", " T1[0] = log_pi + log_B[0,obs[0]] \n", " \n", " for i in range(1,L):\n", " row = np.repeat(-np.expm1(-rho*d[i-1]/K)/K, K)\n", " A = np.tile(row, (K,1))\n", " np.fill_diagonal(A, np.diag(A) + np.exp(-rho*d[i-1]/K))\n", " log_T = np.log(A)\n", "\n", " prob = T1[i-1][:,None] + log_T + log_B[i,obs[i]]\n", " T1[i] = np.max(prob, axis=0)\n", " T2[i] = np.argmax(prob, axis=0)\n", " \n", " Z = np.zeros(L, dtype=int)\n", " Z[L-1] = np.argmax(T1[L-1])\n", " \n", " Z_panel = np.zeros(L, dtype=int)\n", " Z_panel[L-1] = panel[Z[L-1]]\n", " \n", " for i in range(L - 1, 0, -1):\n", " Z[i - 1] = T2[i, Z[i]]\n", " Z_panel[i - 1] = panel[Z[i - 1]] \n", " return Z_panel, T1\n", "\n", "def get_viterbi(df, m_locations, focal, panel, theta=None, rho_over_theta=1):\n", " d, rho, log_B, log_pi, obs = setup_viterbi(df, m_locations, focal, panel, theta, rho_over_theta)\n", " return viterbi(d, rho, log_B, log_pi, obs, panel)\n", "\n", "def to_pp_ls(path, m_locations, L):\n", " x = np.r_[m_locations, L]\n", " return PPoly(x=x, c=path[None])\n", "\n", "def to_pp_xsmc(seg):\n", " x = np.array(\n", " [seg.segments[0].interval[0]] + [s.interval[1] for s in seg.segments]\n", " )\n", " c = np.array([s.hap for s in seg.segments])[None]\n", " return PPoly(x=x, c=c)\n", "\n", "def proportion_correct(ts, focal, Z, offset):\n", " check_set = [list(tree.leaves(tree.get_parent(focal))) for tree in ts.trees()]\n", " end = [round(tree.interval[1]) for tree in ts.trees()]\n", " count = 0\n", " i = 0\n", " while end[i] < offset:\n", " i += 1\n", " \n", " for j in range(len(Z)):\n", " if offset + j == end[i]:\n", " i += 1\n", " if Z[j] in check_set[i]:\n", " count += 1\n", " return count/(ts.sequence_length-offset)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "ns = [3,5,11,26,101]\n", "chroms = [10,13]\n", "\n", "engine = stdpopsim.get_engine('msprime')\n", "species = stdpopsim.get_species(\"HomSap\")\n", "demo = stdpopsim.PiecewiseConstantSize(species.population_size)\n", "\n", "# def simulate(n, chrom, seed):\n", "# contig = species.get_contig(f'chr{chrom}')\n", "# r = contig.recombination_map.get_rates()[0]\n", "# mu = contig.mutation_rate\n", "# ts = msp.simulate(\n", "# sample_size=n,\n", "# mutation_rate=mu,\n", "# recombination_rate=r,\n", "# Ne=N0,\n", "# length=L,\n", "# random_seed=seed)\n", "# return ts, r, mu\n", "\n", "def simulate(n, chrom, seed):\n", " samples = demo.get_samples(n)\n", " contig = species.get_contig(f'chr{chrom}')\n", " r = contig.recombination_map.get_rates()[0]\n", " mu = contig.mutation_rate\n", " \n", " ts = engine.simulate(demo, contig, samples, seed=seed)\n", " return ts, r, mu\n", " \n", "def one_run(n, chrom, seed, default=True):\n", " ts, r, mu = simulate(n, chrom, seed)\n", " positions = np.array([int(v.position) for v in ts.variants()])\n", " df = ts.genotype_matrix().T\n", " focal = 0\n", " panel = list(range(1,n))\n", " \n", " if default:\n", " theta=None\n", " theta_LS = None\n", " rho_over_theta=1\n", " else:\n", " theta=mu*N0\n", " theta_LS=2*theta\n", " rho_over_theta=r/mu\n", " \n", " y_ls, T1 = get_viterbi(df, positions, focal, panel, theta_LS, rho_over_theta)\n", " xs = XSMC(ts, focal=focal, panel=panel, theta=theta, rho_over_theta=rho_over_theta)\n", " path = xs.viterbi(-np.log(xs.rho))\n", " x = np.arange(positions[0],ts.sequence_length).astype(int)\n", " y_xs = to_pp_xsmc(path)(positions).astype(int)\n", "\n", " i = 0\n", " m_ls = []\n", " m_xs = []\n", " for t in ts.trees():\n", " while i < len(positions) and positions[i] < t.interval[1]:\n", " m_xs.append(t.get_tmrca(focal, y_xs[i]))\n", " m_ls.append(t.get_tmrca(focal, y_ls[i]))\n", " i += 1\n", " \n", " A = np.array(m_xs) - np.array(m_ls)\n", " denominator = (A!=0).sum()\n", " numerator = (A<0).sum()\n", " return numerator/denominator, 1 - denominator/len(positions)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/caleb/Desktop/Git/exact_smc/venv/lib/python3.7/site-packages/ipykernel_launcher.py:50: RuntimeWarning: divide by zero encountered in log\n", "2020-09-11 13:05:20,159 DEBUG xsmc.xsmc MainThread Estimated θ=0.000373\n", "2020-09-11 13:05:20,159 DEBUG xsmc.xsmc MainThread Setting window size w=26.000000\n", "2020-09-11 13:06:26,663 DEBUG xsmc.xsmc MainThread Estimated θ=0.000508\n", "2020-09-11 13:06:26,664 DEBUG xsmc.xsmc MainThread Setting window size w=19.000000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "0 1\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-11 13:07:24,315 DEBUG xsmc.xsmc MainThread Estimated θ=0.000373\n", "2020-09-11 13:07:24,315 DEBUG xsmc.xsmc MainThread Setting window size w=26.000000\n", "2020-09-11 13:08:05,687 DEBUG xsmc.xsmc MainThread Estimated θ=0.000514\n", "2020-09-11 13:08:05,687 DEBUG xsmc.xsmc MainThread Setting window size w=19.000000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "1 0\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-11 13:10:07,144 DEBUG xsmc.xsmc MainThread Estimated θ=0.000488\n", "2020-09-11 13:10:07,145 DEBUG xsmc.xsmc MainThread Setting window size w=20.000000\n", "2020-09-11 13:12:36,531 DEBUG xsmc.xsmc MainThread Estimated θ=0.000519\n", "2020-09-11 13:12:36,532 DEBUG xsmc.xsmc MainThread Setting window size w=19.000000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "1 1\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2020-09-11 13:14:14,826 DEBUG xsmc.xsmc MainThread Estimated θ=0.000491\n", "2020-09-11 13:14:14,827 DEBUG xsmc.xsmc MainThread Setting window size w=20.000000\n", "2020-09-11 13:15:37,675 DEBUG xsmc.xsmc MainThread Estimated θ=0.000516\n", "2020-09-11 13:15:37,675 DEBUG xsmc.xsmc MainThread Setting window size w=19.000000\n" ] } ], "source": [ "num_sim = 25\n", "win_p = np.empty((len(ns), len(chroms), num_sim))\n", "agree_p = np.empty((len(ns), len(chroms), num_sim))\n", "\n", "for i,n in enumerate(ns):\n", " for j,chrom in enumerate(chroms):\n", " for k in range(num_sim):\n", " win_p[i,j,k], agree_p[i,j,k] = one_run(n, chrom, k+1)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "means = np.average(win_p, axis=2)\n", "ses = sem(win_p, axis=2)\n", "entries = mfunc(means, ses, 4)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Panel Size24
Chromosome 100.7017 (0.0033)0.7918 (0.0045)
Chromosome 130.7099 (0.0010)0.8160 (0.0085)
\n", "
" ], "text/plain": [ "Panel Size 2 4\n", "Chromosome 10 0.7017 (0.0033) 0.7918 (0.0045)\n", "Chromosome 13 0.7099 (0.0010) 0.8160 (0.0085)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "columns = ['Chromosome 10', 'Chromosome 13']\n", "df = pd.DataFrame(data=entries, columns=columns)\n", "df['Panel Size'] = np.array(ns)-1\n", "df = df.set_index('Panel Size').T\n", "df.to_latex(folder + 'ls_win.tex')\n", "display(df)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "means = np.average(agree_p, axis=2)\n", "ses = sem(agree_p, axis=2)\n", "entries = mfunc(means, ses, 4)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Panel Size24
Chromosome 100.9404 (0.0369)0.6935 (0.0219)
Chromosome 130.9403 (0.0358)0.6852 (0.0204)
\n", "
" ], "text/plain": [ "Panel Size 2 4\n", "Chromosome 10 0.9404 (0.0369) 0.6935 (0.0219)\n", "Chromosome 13 0.9403 (0.0358) 0.6852 (0.0204)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "columns = ['Chromosome 10', 'Chromosome 13']\n", "df = pd.DataFrame(data=entries, columns=columns)\n", "df['Panel Size'] = np.array(ns)-1\n", "df = df.set_index('Panel Size').T\n", "df.to_latex(folder + 'ls_agree.tex')\n", "display(df)" ] } ], "metadata": { "kernelspec": { "display_name": "xsmc", "language": "python", "name": "xsmc" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 2 }